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It was shown by Granville that the ABC conjecture allows one to prove asymptotic
estimates on the number of squarefree values of polynomials. However, his proof gives
no information on the error term of the asymptotic formula. On the ABC conjecture,
we prove an asymptotic formula with error term using a different technique. From the
ABC conjecture we also deduce an asymptotic formula with error term for the number
of squarefree values of polynomials on certain sets of integers that are residually well
distributed in a suitable sense.
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1. Introduction and Results

Let r ≥ 2 and let f ∈ Z[X ] be a polynomial of degree r. Define

Nf(x) = #{n ≤ x : f(n) is squarefree}

and write Gf := gcd(f(n) :n ≥ 1). Define ωf(n) to be the number of solutions of
the congruence f(x) ≡ 0 mod n; this is a multiplicative function on n. If f has some
repeated factor or if Gf is not squarefree, then trivially Nf (x) is bounded, so we
will assume that f has no repeated factors and Gf is squarefree.

On the ABC conjecture, Granville [2] showed the asymptotic formula Nf (x) ∼
cfx for certain explicit constant cf , although it is not clear how to get an error term
from his technique. Lee and Murty [7] provided such an error term under the ABC
conjecture and the so-called abscissa conjecture. Due to the strong evidence and
heuristics supporting the ABC conjecture, it is desirable to obtain an error term
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assuming the ABC conjecture without the use of the abscissa conjecture. We prove
the following.

Theorem 1.1. Assume the ABC conjecture. Let f be a polynomial with integer
coefficients, of degree r ≥ 2, without repeated factors, and with Gf squarefree. Then

Nf(x) = cfx+Of

(
x

(log x)γ

)
,

where γ > 0 is a computable constant that only depends on r (not on the particular
f), and

cf =
∏
p

(
1 − ωf (p2)

p2

)
> 0.

The constant cf is (on the ABC conjecture) the probability of f(n) being square-
free, while the factor 1−ωf (p2)/p2 can be seen as the probability that p2 does not
divide f(n) as we vary n. Thus, the main term basically says that there is a sort
of local–global principle in the problem of counting squarefree values of f . This
observation about the main term is already made in [2].

As in [2], one can suitably normalize f (provided that it has no repeated factor)
in order to get non-trivial counting of squarefree values of f even when Gf is not
squarefree; our method can be modified to obtain a result in that case too.

The proof of Theorem 1.1 uses the ABC conjecture in a way which is different to
previous applications in the problem of counting squarefree values of polynomials.
For this, we will establish the following result, which is of independent interest.

Theorem 1.2. Assume the ABC conjecture. Given ε > 0 and a positive integer r,
there is a constant Kε depending only on ε and computable constants α, β depending
only on r, such that for all polynomials F ∈ Z[X ] of degree r without repeated factors
and for all integers n one has

|n|r−1−ε < Kε exp(αH(F )β)max{1, rad(F (n))}.
Here, H(F ) is the height of F ∈ Z[X ], which is defined as the maximum of the

absolute value of the coefficients of F , and rad(N) is the product of the primes
dividing N when N is a non-zero integer (and we set rad(0) = 0). This result is
an explicit version of the classical result of Langevin [6] that gives nr−1−ε �ε,F

rad(F (n)) for F without repeated factors, on the ABC conjecture.
Finally, we mention that the technique of this paper actually allows one to count

(with error term) squarefree values of polynomials on sets of integers of positive
density that are residually well distributed in a suitable sense (see Sec. 7). For
instance, we have the following theorem.

Theorem 1.3. Assume the ABC conjecture. Let f be a polynomial with integer
coefficients, of degree r ≥ 2, without repeated factors, and with Gf squarefree. Let
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α > 1 be an irrational real number with finite approximation exponent (for example
α =

√
2 or α = π are allowed). Consider the set of positive integers

A = {�kα	 : k ∈ Z+}.
Let NA

f (x) be the number of integers n ≤ x such that f(n) is squarefree and n ∈ A.
Then

NA
f (x) =

cf
α
x+O

(
x

(log x)γ

)
,

where γ > 0 and cf > 0 are as in Theorem 1.1.

This result is proved in Sec. 8, where the notion of “finite approximation expo-
nent” is recalled. Note that the constant cf/α can be seen as a product of proba-
bilities; as commented before, cf is a product of local probabilities for f(n) to be
squarefree, while 1/α is the probability that the argument n belongs to A.

A more general result is given in Sec. 7, from which Theorem 1.3 is deduced (in
Sec. 8) by means of the theory of uniform distribution of sequences modulo 1. Since
we care about the error term, it will be crucial to have control on the discrepancy
of uniformly distributed sequences.

2. Heights

In this section we recall several height estimates that we will later need in our
computations.

For f ∈ Q(X) we define its height H(f) as follows: up to sign, there are unique
u, v ∈ Z[X ] coprime such that f = u/v. Then we define H(f) as the maximal
absolute value among the coefficients of u and v. From the definition, one has
H(u), H(v) ≤ H(f). Also, note that if f ∈ Q[X ] is a polynomial then v is the least
common denominator of the coefficients of f and H(f) is the usual affine height
of f , that is, the affine height of the tuple given by the coefficients of f .

We need to recall the notion of height of an algebraic number. Let α be an
algebraic number of degree d, and let F be the minimal polynomial of α over
Q, normalized so that it has coprime integer coefficients. We define the (absolute
multiplicative) height of α as H(α) = H(F )1/d. Note that this is not the same as
the Weil height defined in terms of valuations, but it is much simpler to define and
both heights agree up to a factor bounded in terms of d (cf. [5, Proposition 4, p. 49]).
For instance, if ζ is a primitive 105th root of unity then H(ζ) = 21/48 although the
Weil height of any root of unity is 1.

For the next result, see [5, Proposition 3, p. 48].

Proposition 2.1. Let f, g ∈ Q[X ] be non-zero polynomials with deg f + deg g < d.
Then

1
4d
H(fg) ≤ H(f)H(g) ≤ 4dH(fg).

The height of a polynomial admits the following local decomposition.
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Proposition 2.2. Let f = caX
a + · · · + c0 ∈ Q[X ]. Let MQ = {∞, 2, 3, 5, 7, . . .}

be the set of places of Q and for each w ∈MQ let | − |w be the normalized absolute
value. We have

H(f) =
∏

w∈MQ

max{1, |ca|w, . . . , |c0|w}.

Using this local decomposition we can prove the following proposition.

Proposition 2.3. Let f, g ∈ Q[X ] be polynomials of degree a, b ≥ 1 respectively.
Then

H(f ◦ g) ≤ (a+ 1)(b + 1)aH(f)H(g)a.

Proof. Write f = uaX
a + · · · + u0 and g = vbX

b + · · · + v0. Expanding

f ◦ g = ua(vbXb + · · · + v0)a + · · · + u0

we see that the coefficients of f ◦ g have (Archimedean) absolute value bounded by

(a+ 1)max{|ui|}(b+ 1)a max{|vi|}a.

Similarly, for each prime p we find that the coefficients of f ◦ g have p-adic absolute
value bounded by

max{|ui|p}max{|vi|p}a.

The result follows from the local decomposition of the height.

We will also need a bound for the resultant of two polynomials.

Proposition 2.4. Let f, g ∈ Z[X ] be coprime polynomials of degrees a, b ≥ 1 and
height ≤H. Let R ∈ Z be the resultant of f and g. Then

|R| ≤ (a+ b)a+bHa+b.

Proof. Let M = [mi,j ]i,j be the Sylvester matrix of f and g, which is of size
(a+ b) × (a+ b). Expanding detM we find

|R| = |detM | ≤
∑

σ∈Sa+b

∣∣∣∣∣
a+b∏
i=1

mi,σ(i)

∣∣∣∣∣ ≤ (a+ b)a+bHa+b.

Finally, we state another useful bound (see [3, p. 237]).

Proposition 2.5. Let f ∈ Q[X ] and d ∈ Q. Then

H(f(X + d)) ≤ 4deg fH(f(X))H(d)deg f .
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3. Belyi Maps

Let S be a finite set of m algebraic numbers of degree at most r and absolute
multiplicative height bounded by B. A well-known theorem of Belyi shows that
there is a rational function φ ∈ Q(X) such that φ takes all its ramification points
in P1 and all the elements of S to {0, 1,∞}. Moreover, one can find such a function
φ that also takes the point at infinity to {0, 1,∞}.

The construction of φ is very explicit and it is clear that one should be able to
bound the height of φ in terms of m, r and B. Keeping track of the heights during
the construction, one concludes the following.

Proposition 3.1. There are computable constants A1, A2, A3, A4 depending only
on the numbers r,m but not on B or the particular set S, such that one can find a
rational function φ ∈ Q(X) with

deg φ < A1B
A2 , H(φ) < exp(A3B

A4),

which maps its ramification points, the elements of S and ∞ to {0, 1,∞}.
The proof is a simple height computation which we give below for the sake

of completeness. Such a bound has also been worked out in [4] with explicit Ai
but the computation is longer and more delicate; for our application the simpler
Proposition 3.1 will suffice.

Now we construct φ keeping track of the heights and degrees of maps. In the
remainder of this section, we write c1, c2, . . . for computable constants that depend
only on r,m but not on B or the particular S.

Step I (mapping to Q). This step is standard, see for instance [3, Exercise A.4.7].
Here we do not consider the point at infinity; we will work with non-constant poly-
nomials in this step, hence, ∞ gets mapped to ∞.

Inductively, one uses the monic minimal polynomial Fα of an element α in S to
map all the elements of the set and hence reducing the degree over Q of at least α,
at the cost of introducing new elements (the critical points of Fα) whose degrees
over Q are smaller than the degree of α. This procedure stops after c1 steps, and
say that T ⊆ Q is the final set in this procedure. If 0 /∈ T we will also include it to
simplify the notation later; note that #T ≤ c2. Let F be the composition of all the
Fα; then the degree of F is c3 and F maps all its critical points and all the elements
of S to T ⊆ Q. Also, note that F is monic.

At each step of this construction the height of the elements of the new set can
increase. However, a simultaneous induction with the height of the Fα and the height
of the sets at each step shows that the elements in T and all the Fα have height
bounded by c4B

c5 . As there are c1 polynomials Fα, each with height bounded by
c4B

c5 , it follows that H(F ) < c6B
c7 .

Step II (mapping to {0, 1,∞}). In most references, this step is performed using
functions of the form cX a(1−X)b to inductively move one element of T each time;
this is the first proof that Belyi gave. This procedure is completely explicit but
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unfortunately it is very expensive in terms of heights. Instead, one can move all
the elements of T at the same time as in Belyi’s second proof — see [1] for a more
detailed discussion on these two proofs and an explanation of why this second proof
is not so widely known. Note, however, that we follow a different approach for the
construction, which makes the estimates simpler.

Enumerate the elements of T as follows: q0 = 0, q1, . . . , qt, where t < c2. We
claim that there are (economical) non-zero integers ki such that

∑
i ki = 0 and

the map

ψ(X) =
t∏
i=1

(X − qi)ki ∈ Q(X)

has all its affine critical points (i.e. possibly excluding ∞) in T . Indeed, away from
the poles of ψ (which already belong to T ), the affine critical points are the solutions
of dψ(X)/ψ(X) = 0. Clearing denominators this becomes

D(X) :=
t∑
i=1

kiPi(X) = 0, where Pi(X) =
∏
j �=i

(X − qj).

The Pi have degree t−1 in X and evaluating at the qi we see that the Pi are linearly
independent. Thus, there are integers ki not all zero such that D(X) = aX t−1

with a =
∑

i ki = 0, and again evaluating at the qi we see that for such a tuple
k = (ki)i = 0 one necessarily has that all the ki are non-zero. For such k, the only
affine critical point of ψ which is not a pole of dψ/ψ is 0 which also belongs to T .
This proves the claim, and as we will see below, one can control the size of k.

The condition
∑
i kiPi(X) = D(X) = aX t−1 can be seen as a vanishing con-

dition on the coefficients of 1, X, . . . , Xt−2. This is the same as requiring Ak = 0
where A is a (t−1)×t matrix whose entries are (t−1)-variable elementary symmet-
ric functions of degree ≤ t− 1 evaluated at the qi. Moreover, observe that if k = 0
satisfies this condition then a = 0 because the Pi are linearly independent. If δ is the
product of the denominators of the qi then A = δA is a matrix with integers coeffi-
cients, and all its entries have absolute value bounded by M t · 2t−1M t−1 < c8B

c9 ,
where M is the maximal height of an element in T . We are now in a position
to apply an elementary version of Siegel’s Lemma, which we now recall (see, for
instance [3, Lemma D.4.1]).

Proposition 3.2 (Siegel’s lemma). Let A be an m×n matrix with integer coeffi-
cients. Suppose that m < n and that all the entries of A have absolute value bounded
by X. Then there is a non-zero vector k ∈ Zn in the kernel of A such that all the
coordinates of k have absolute value bounded by (nX )m/(n−m).

Applied in our setting, Siegel’s lemma gives that there is a k = 0 in the kernel
of A such that all its coordinates are integers and have absolute value bounded by

(tc8Bc9)
t−1

t−(t−1) < c10B
c11 .
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With this choice of ki, the degree and height of ψ are

degψ ≤
t∑
i=1

|ki| < c12B
c13 ,

H(ψ) < δ
P

i |ki|4t
P

i |ki|
t∏
i=1

H(qi)|ki| < exp(c15Bc16).

The height was estimated as follows: first we clear denominators of the qi (this is
the factor δ) so that the numerator and denominator of ψ become polynomials with
integer coefficients, and then we use Proposition 2.1 to estimate the height of these
two polynomials.

Now observe that ψ(0) ∈ Q× and let Ψ(X) = 1
ψ(0)ψ(X). Note that it has the

same degree as ψ, and H(Ψ) < exp(c17Bc18). The function Ψ maps all its affine
ramification points and the set T to {0, 1,∞} because of our choice of the ki and
because ki = 0 for each i. Moreover, since

∑
i ki = 0 we see that Ψ(∞) ∈ {0,∞}.

Finally, use Step I and Step II to conclude that φ = Ψ◦F maps all its ramification
points in P1 and all the elements of S to {0, 1,∞}. Moreover, since F is a polynomial
F (∞) = ∞ and hence φ(∞) ∈ {0,∞}. The degree of φ can be bounded using
deg(φ) = deg(F ) deg(Ψ), and the height of ψ can be estimated using Proposition 2.3.
Therefore, Proposition 3.1 follows.

4. Explicit ABC

In this section we prove Theorem 1.2, so we keep the same notation and assump-
tions from its statement. We remark that the argument below is essentially due to
Langevin and our only contribution is to make explicit the dependence on the height
of the polynomial. The same argument, as the one below, gives explicit dependence
on the degree of F provided that one uses the bounds from [4] instead of Proposi-
tion 3.1. We leave this variation as an exercise for the interested reader.

Let us first introduce some notation. In the computations of this section, we
write c0, c1, c2, . . . for computable constants that only depend on r. Given a non-
zero g ∈ Z[X ], we write radZ[X](g) for the product of all distinct irreducible factors
of g in Z[X ] with positive leading coefficient; this is the radical of g in Z[X ]. When
g = 0 we define radZ[X](0) = 0. Note that radZ[X] agrees with our previously defined
rad on Z ⊆ Z[X ].

Let S be the set of roots of F . Note that S has r elements, all of them with
degree ≤ r and height bounded by c0B where B := H(F ). Let φ be the function
provided by Proposition 3.1 for this S; then the corresponding Ai only depend on
r, not on B. Put D = degφ and H = H(φ).

Let u, v ∈ Z[X ] be coprime with φ = u/v and let w = v − u ∈ Z[X ]. Then
H(u), H(v), H(w) ≤ 2H and degw ≤ max{deg u, deg v} = D. Using the Riemann–
Hurwitz formula and the fact that φ is unbranched away from {0, 1,∞} we see
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that

−2 = −2D + (3D − #φ−1{0, 1,∞}), hence #φ−1{0, 1,∞} = D + 2.

Note that α ∈ C is a root of uvw if and only if φ(α) ∈ {0, 1,∞}, and φ(∞) ∈
{0, 1,∞} by construction, hence uvw has D + 1 distinct roots (without counting
multiplicities). We also conclude that F divides radZ[X](uvw) in Q[X ] because F
has no repeated roots and φ(S) ⊆ {0, 1,∞}. Hence F divides δradZ[X](uvw) in Z[X ]
for some integer 0 < δ ≤ B, by Gauss lemma.

Let R ∈ Z be the resultant of u and w; then R = 0 as u,w are coprime. Moreover,
Proposition 2.4 gives

|R| ≤ (deg u+ degw)deg u+degw max{H(u), H(w)}degu+degw

≤ (2D)2D(2H)2D < c1(2H)c2D
2
.

For n ∈ Z put gn = gcd(u(n), w(n)) which is well defined because u,w have no
common root, and observe that for every n we have gn|R. We can apply the ABC
conjecture to the equation u(n)/gn + w(n)/gn = v(n)/gn provided that n is not a
root of uvw . It follows that for any ε > 0 there is Kε depending only on ε such that
for every integer n one has

1
R

max{|u(n)|, |v(n)|, |w(n)|}1−ε < Kεmax{1, rad(u(n)v(n)w(n))},

where the extra 1 covers of the case when n is a root of uvw (in which case
max{|u(n)|, |v(n)|, |w(n)|} ≤ gn ≤ R).

Let G ∈ Z[x] be such that FG = δradZ[X](uvw); then deg(G) = deg rad(uvw)−
r = D+1−r. Moreover,G divides δuvw in Z[X ], say δuvw = G ·G0 with G0 ∈ Z[X ],
and Proposition 2.1 gives

H(G) ≤ H(G)H(G0) ≤ 43D+1H(δuvw)

≤ 43D+146D+3B ·H(u)H(v)H(w) ≤ ec3DBH 3.

Hence, for n = 0 we have

rad(u(n)v(n)w(n)) ≤ rad(F (n)) · rad(G(n)) ≤ |G(n)|rad(F (n))

≤ (deg(G) + 1)H(G)|n|degGrad(F (n))

≤ ec4DH3B|n|D+1−rrad(F (n)).

Combining this with the bound obtained from the ABC conjecture, we get that for
every integer n = 0

max{|u(n)|, |v(n)|, |w(n)|}1−ε < KεR(1 + ec4DH3B|n|D+1−rrad(F (n)))

< Kεc1(2H)c2D
2
(1 + ec4DH3B|n|D+1−rrad(F (n)))

< Kεc5(1 +H)c6D
2
B|n|D+1−r max{1, rad(F (n))}.
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Note that max{|u(n)|, |v(n)|, |w(n)|} ≥ 1. Let x be a polynomial among u, v, w

having degree D; then

max{|u(n)|, |v(n)|, |w(n)|} ≥ |x(n)| ≥ |n|D −D ·H(x)|n|D−1

≥ |n|D−1(|n| − 2DH ) >
1
2
|n|D

provided that |n| > 4DH . Therefore, for all n we have

max{|u(n)|, |v(n)|, |w(n)|} ≥ 1
(4DH )D

|n|D.

It follows that

|n|D(1−ε) < Kε(4DH )D · c5(1 +H)c6D
2
B|n|D+1−r max{1, rad(F (n))}

< Kεc5(1 +H)c7D
2
B|n|D+1−r max{1, rad(F (n))}

and after choosing a different ε > 0 we get that for all n

|n|r−1−ε < Kεc5(1 +H)c7D
2
Bmax{1, rad(F (n))}

< Kεc5(1 + eA3(c0B)A4 )c7A
2
1(c0B)2A2

Bmax{1, rad(F (n))}
< Kε exp(c8Bc9)max{1, rad(F (n))}

as we wanted. This proves Theorem 1.2.

5. Sieve Preliminaries

The proof of Theorem 1.1 starts with some standard sieve manipulations.
Let us set the notation. Let r ≥ 2 and let f ∈ Z[X ] be a polynomial of degree

r, without repeated factors, and with Gf squarefree. We write ar for the leading
coefficient of f and ∆f for the discriminant of f (which is non-zero as f has no
repeated factors). The symbol p will denote a prime.

Among the several versions of Hensel’s lemma available in the literature, let us
recall the following one which is obtained by setting m = 1 in [10, Theorem 1, p. 14]
(note that the conditions 0 ≤ j ≤ m and 0 < 2k < n in the cited result should be
1 ≤ j ≤ m and 0 ≤ 2k < n).

Proposition 5.1 (Hensel’s lemma). Let F ∈ Zp[X ] and x ∈ Zp where Zp is the
ring of p-adic integers. Suppose that for some integers n, k with 0 ≤ 2k < n we have
F (x) ≡ 0 mod pn and vp(F ′(x)) = k, where vp is the p-adic valuation and F ′ is the
derivative of F . Then there is y ∈ Zp with F (y) = 0 and y ≡ x mod pn−k.

Using this, we obtain the follwing lemma.

Lemma 5.2. If p � ar∆f then for every t ≥ 1 the congruence f(X) ≡ 0 mod pt

has at most r solutions. Moreover, there is a constant C = C(f) such that for all
primes p and all t ≥ 1 the congruence f(X) ≡ 0 mod pt has < C solutions.
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Proof. For the first part, it suffices to show that each solution to the congruence
f(X) ≡ 0 mod pt lifts to a p-adic solution, because f has at most r roots in Zp
(recall that Zp is an integral domain).

Let x ∈ Z such that f(x) ≡ 0 mod p2. If p | f ′(x) then p |Res(f, f ′) = ±ar∆f

which is not possible, hence p � f ′(x). Hensel’s lemma (with n = t and k = 0) gives
the desired p-adic lift of n.

For the last part of the lemma, we can restrict our attention to primes p

dividing Res(f, f ′). Let p be a prime divisor of Res(f, f ′) and let tp be such
that ptp � Res(f, f ′). Similarly, we apply Hensel’s lemma with k ≤ tp − 1 and
n = t ≥ 2tp − 1 to conclude that f has at most r roots modulo pt−tp+1 that
are congruent (modulo pt−tp+1) to roots in Z/ptZ. Hence, f has at most rptp−1

roots modulo pt for any p dividing Res(f, f ′) and t ≥ tp. Since the prime p (divisor
of Res(f, f ′)) and tp are bounded in terms of f , the result follows.

Let ε > 0 to be chosen later. First we note that

#Q ≥ Nf (x) ≥ #Q− #R− #S − x1−ε (1)

where we write

Q = {n ≤ x : ∀ p ≤ y, p2 � f(n)},
R = {n ≤ x : ∃ p ∈ (y, z], p2 | f(n)},
S = {n ∈ (x1−ε, x] : ∃ p > z, p2 | f(n)}

and y < z are parameters to be chosen later. These sets depend on ε, x, y, z although
the notation does not reflect this fact.

To simplify the exposition, let us introduce the following notation: if X is a
true statement then write δ(X) = 1, and if X is false then δ(X) = 0. For instance
δ(3|2) = 0 because 3 does not divide 2 in Z.

Lemma 5.3. We have

#Q = cfx+Of,ε

(
exp(εy) +

x

y1−ε

)

provided that y �f,ε 1.

Proof. Set P =
∏
p≤y p. We begin by observing that

#Q =
∑
n≤x

∏
p≤y

(1 − δ(p2 | f(n))) =
∑
n≤x

∑
d|P

µ(d)δ(d2 | f(n))

=
∑
d|P

µ(d)ωf (d2)
( x

d2
+O(1)

)
= x

∏
p≤y

(
1 − ωf (p2)

p2

)
+O


∑
d|P

ωf (d2)




= x
∏
p≤y

(
1 − ωf(p2)

p2

)
+O


∏
p≤y

(1 + ωf (p2))


.
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By Lemma 5.2, for y �ε,f 1
∏
p≤y

(1 + ωf (p2)) �f

∏
p≤y

(r + 1) �f,ε exp(εy).

Let us analyze the other product. If y �f,ε 1 then

1 <
∏
p>y

(
1 − ωf (p2)

p2

)−1

≤
∏
p>y

(
1 − r

p2

)−1

< 1 +
∑
n>y

1
n2−ε/2 < 1 +

1
y1−ε

and multiplying by cf we obtain

cf <
∏
p≤y

(
1 − ωf(p2)

p2

)
<

(
1 +

1
y1−ε

)
cf .

The result now follows.

Lemma 5.4. We have

#R �r
x

y
+

z

log z

provided that z > y �f 1.

Proof. Indeed, for z > y �f 1

#R ≤
∑
n≤x

∑
y<p≤z

δ(p2 | f(n)) ≤
∑

y<p≤z
ωf(p2)

(
x

p2
+ 1

)

≤
∑

y<p≤z
r

(
x

p2
+ 1

)
≤ 2rx

y
+

2rz
log z

.

Now, if we choose y = log x and z = x, then by inequalities (1) we have the
following proposition.

Proposition 5.5. Let ε > 0. Then

Nf (x) = cfx+Of,ε

(
x

(log x)1−ε

)
+O(#S)

for x�f,ε 1, where

S = {n ∈ (x1−ε, x] : ∃ p > x, p2 | f(n)}.

Note that the proof actually shows that the upper bound does not require one
to estimate #S. The problem of bounding #S is only relevant for the lower bound,
and it is exactly the point where one needs to invoke the ABC conjecture. We treat
this in the next section, in order to conclude the proof of Theorem 1.1.
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6. Error Term for Counting Squarefree Values

First, observe that the conditions on f imposed by Theorem 1.1 are compatible
with the conditions of the previous section.

With the notation of the previous section, Proposition 5.5 shows that in order
to prove Theorem 1.1 it suffices to show that cf > 0 when Gf is squarefree, and
(on the ABC conjecture) that

#S = #{n ∈ (x1−ε, x] : ∃ p > x, p2 | f(n)} �f
x

(log x)γ
(2)

with γ > 0 as in the statement of the theorem, for some 1/2 > ε > 0 say.
It is well known that cf > 0 when Gf is squarefree, but we sketch a proof

for the sake of completeness. Since Gf is squarefree, ωf (p2) < p2 for all primes p,
hence no factor in the definition of cf is zero. For large primes, we use the bound
ωf (p2) ≤ r from the previous section and it follows that the product defining cf
converges absolutely, hence, it is non-zero.

Now we focus on proving the estimate (2) on the ABC conjecture.
We partition (x1−ε, x] into T intervals Ii, each one having length ≤ 2x/T (we

will later take T equal to x divided by a power of log x, so that x/T → ∞). First
we show, on the ABC conjecture, that Ii ∩ S contains at most �f1 elements for
suitable choice of T . For d ≥ 1 define Fd(X) = f(X)f(X + d).

Claim 6.1. There is a constant Mf depending only on f such that if d ≥Mf then
the polynomial Fd has no repeated factors.

Proof. The roots of f(X) have complex modulus bounded in terms of f . Hence, if
d�f 1 then f(X) and f(X + d) have no common factor.

Suppose that Ii∩S contains more than Mf elements. Then we can find d ≥Mf

such that n, n+ d are in Ii ∩ S. By the previous claim, we can apply Theorem 1.2
to Fd (on the ABC conjecture) to obtain

n2r−1−ε < Kε exp(αH(Fd)β) rad(Fd(n)) �f Kε exp(αH(Fd)β)
(
xr

x

)2

,

where we have used the fact that n, n+d ∈ S (note that α and β depend only on r).
Hence (as n > x1−ε in S)

x1−2εr < x1−2εr+ε2 �f Kε exp(αH(Fd)β).

Let us fix ε = 1/(4r) to get

x1/2 �f exp(αH(Fd)β).

On the other hand, using Propositions 2.1, 2.5, and the fact that d < 4x/T , we
obtain

H(Fd) ≤ 42r+1H(f)H(f(X + d)) ≤ 43r+1H(f)2dr < 44r+1H(f)2
xr

T r
.
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Therefore, if we choose

T = κ
x

(log x)1/(rβ)

for some κ > 0 sufficiently large with respect to r and H(f), then we get a con-
tradiction. It follows that with this choice of T and assuming the ABC conjecture,
each Ii ∩ S contains at most Mf elements.

Finally, since there are T of these intervals Ii, we conclude that

#S �f
x

(log x)γ
,

where γ = 1/(rβ) > 0 is computable and depends only on r, not on the particular f .
This proves the inequality (2), and hence Theorem 1.1.

7. A More General Result

As said in Sec. 1, the method in this paper allows one to give, on the ABC conjecture,
asymptotic formulas with error term for the problem of counting squarefree values
of polynomials when the variable is restricted to suitable subsets of the positive
integers. Let us explain this in more detail.

Given a set A of positive integers, we say that A has density σ(A) if the following
limit exists and equals σ(A):

lim
x→∞

#{n ≤ x :n ∈ A}
x

.

For instance the primes have density 0 and the multiples of a fixed positive integer
k have density 1/k. Not all sets of positive integers have a density, but we restrict
our attention to those with density.

Given A and integers m, a we define A(m, a) = {t ∈ A : t ≡ a mod m}.
In this section g(x) will always denote a positive real-valued function satisfying

g(x) = o(x), while λ(x) will denote a function growing to ∞ and A will denote a set
of positive integers with density. We say that A is residually well distributed with
level λ(x) and discrepancy g(x) if there are constants C, x0 such that for all x > x0

one has ∣∣∣∣#{n ≤ x :n ∈ A(m, a)} − σ(A)x
m

∣∣∣∣ < Cg(x)

for eachm ≤ λ(x) and each residue class a modulo m. Observe that if A is residually
well distributed with level λ and discrepancy g, then it is residually well distributed
with level λ′ and discrepancy g′ for any functions λ′ and g′ satisfying λ′(x) < λ(x)
and g′(x) > g(x) for x sufficiently large, and λ′ → ∞, g′(x) = o(x).

We warn the reader that the concept of discrepancy just introduced is not the
same as the discrepancy that arises in the theory of uniformly distributed sequences.
However, as we will see in the next section, there is indeed a connection between
both notions of discrepancy.
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The relevant result is the following.

Theorem 7.1. Assume the ABC conjecture. Suppose that A is residually well dis-
tributed with level (log x)2 and discrepancy g. Let f be a polynomial as in Theo-
rem 1.1. Let NA

f (x) be the number of n ≤ x such that n ∈ A and f(n) is squarefree.
Then for any given ε > 0 we have

NA
f (x) = σ(A)cfx+Of,A,ε

(
(log x)1+εg(x) +

x

(log x)γ

)
,

where cf and γ are as in Theorem 1.1.

Proof. The proof of this result is similar to the proof of Theorem 1.1. First note
that ωf (n) �ε n

ε because ωf is multiplicative and bounded on prime powers (see
Lemma 5.2).

Define the sets

QA = {n ≤ x :n ∈ A, ∀ p ≤ y, p2 � f(n)},
RA = {n ≤ x :n ∈ A, ∃ p ∈ (y, z], p2 | f(n)},
SA = {n ∈ (x1−ε, x] :n ∈ A, ∃ p > z, p2 | f(n)}

with ε, y, z to be chosen. Then one observes that

#QA ≥ NA
f (x) ≥ #QA − #RA − #SA − x1−ε.

However, since RA ⊆ R and SA ⊆ S (with R,S as in Sec. 5) we obtain from our
previous work that, on the ABC conjecture, the following relation holds:

NA
f (x) = #QA +O

(
x

(log x)γ

)

provided that we choose y, z as in Sec. 5 (namely, y = log x, z = x) and ε as in
Sec. 6 (namely, any fixed ε ≤ 1/(4r)). Therefore one just needs to prove that

#QA = σ(A)cfx+O

(
(log x)1+εg(x) +

x

(log x)γ

)
.

This formula requires more work than the estimation of #Q in Sec. 5, since we
want to assume that A is residually well distributed with level (logx)2, which is
rather small (see, for instance, Theorem 8.2 below).

To prove the estimate for #QA, write P =
∏
p≤y p and observe that

#QA =
∑
n≤x
n∈A

∏
p≤y

(1 − δ(p2 | f(n))) =
∑
d|P

µ(d)
∑
n≤x
n∈A

δ(d2 | f(n))

=
∑
d|P

µ(d)
∑

a mod d2

f(a)≡0 mod d2

∑
n≤x

n∈A(d2,a)

1.



August 27, 2014 11:35 WSPC/S1793-0421 203-IJNT 1450053

Squarefree values with error term 1757

Let us split the latter sum as U + V where U takes the summands with d |P
and d ≤ y, while V takes the summands with d |P and d > y. For V one finds

|V | ≤
∑
d|P
d>y

ωf (d2)
( x

d2
+ 1

)
≤ x

∑
d>y

1
d2−ε +

∑
d|P

ωf (d2) ≤ O

(
x

y1−ε + exp(εy)
)
,

where we used ωf(n) � nε, and the second summand was bounded as in the proof
of Lemma 5.3. Hence, V is absorbed by the error term. On the other hand, since A
is residually well distributed with level (logx)2 and discrepancy g, we find

U =
∑
d|P
d≤y

µ(d)ωf (d2)
σ(A)x
d2

+O(y · yε · g(x)).

Indeed, the error term comes from the discrepancy, and we only used moduli d2 ≤
y2 = (log x)2. A computation as in the bound for V shows that we can include those
d |P with d > y obtaining

#QA = U + V = σ(A)x
∑
d|P

µ(d)
ωf (d2)
d2

+O

(
x

y1−ε + exp(εy) + y1+εg(x)
)

= σ(A)x
∏
p≤y

(
1 − ωf(p2)

p2

)
+O

(
(log x)1+εg(x) +

x

(log x)γ

)
.

Here we used y = log x. The product is treated as in the proof of Lemma 5.3, which
introduces an error term O(x/y1−ε) that has no effect in the previous error term.
This concludes the proof.

We remark that actually, for Theorem 7.1 it is enough to have an averaged
version of residually well-distributed sets.

8. Proof of Theorem 1.3

For q ∈ Q one defines H(q) = max{|a|, |b|} where a, b are coprime integers satisfying
q = a/b. This agrees with our previous definition of the height of an algebraic
number. Let α ∈ R\Q. Recall that the approximation exponent of α (also known as
measure of irrationality) is defined as

τ(α) = sup{t ∈ R : there are infinitely many q ∈ Q with |q − α| < H(q)−t}.
Dirichlet’s box principle shows that τ(α) ∈ [2,∞]. On the other hand, Liouville
showed τ(α) ≤ r whenever α is algebraic of degree r ≥ 2, which allowed him to
construct transcendental numbers by showing examples of real numbers with infinite
approximation exponent. A celebrated theorem of Roth shows that actually τ(α)= 2
whenever α is algebraic. There are also very familiar transcendental numbers that
have finite approximation exponent, such as π (this is a theorem of Mahler, see [8]).
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For later reference, let us recall the Erdös–Turán inequality (see, for instance,
[9, Sec. 11.4]).

Theorem 8.1 (Erdös–Turán inequality). Let {xn}n be a sequence of real num-
bers. For all integers M,N ≥ 1 we have

sup
0≤a<b≤1

∣∣∣∣#{n ≤ N : a ≤ (xn) < b}
N

− (b − a)
∣∣∣∣

≤ 1
M + 1

+ 3
M∑
k=1

1
Nk

∣∣∣∣∣
N∑
n=1

e2πikxn

∣∣∣∣∣,

where (xn) denotes the fractional part of xn.

The next result provides a source of examples where Theorem 7.1 can be applied.
In particular we obtain Theorem 1.3.

Theorem 8.2. Let α ∈ R\Q be an irrational real number with α > 1. Assume that
α has finite approximation exponent τ = τ(α). Then the set A = {�nα	 :n ≥ 1} has
density 1/α and for all ε > 0 it satisfies

max
r mod m

∣∣∣∣#{n ≤ x :n ∈ A(m, r)}
x

− σ(A)
m

∣∣∣∣ �ε,α

(m
x

)1/(τ+ε)

whenever m ≤ x/α. In particular, A is residually well distributed with level x1/2

and discrepancy x1−1/(3τ).

(Observe that, if 0 < α < 1 then A = N.)

Proof of Theorem 8.2. The fact that σ(A) = 1/α is clear. Given a positive
integer m, we define

∆m(x) = max
r mod m

∣∣∣∣#{n ≤ x :n ∈ A(m, r)}
x

− σ(A)
m

∣∣∣∣.
Given a positive real number β, we define

D(β, x) = sup
0≤a<b≤1

∣∣∣∣#{k ≤ x : a ≤ (kβ) < b}
x

− (b− a)
∣∣∣∣,

where (kβ) denotes the fractional part of kβ. This quantity D(β, x) is called the
discrepancy in the theory of uniformly distributed sequences, and as we will see,
it is very much related to our notion of discrepancy for residually well-distributed
sets. Taking β = α/m, b = r/m and a = (r − 1)/m we see that

∆m(x) ≤ O

(
1
x

)
+ σ(A)D(α/m, x/α).
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Therefore, it suffices to show D(α/m, y) � (m/y)1/(τ+ε) for m < y. Write ‖β‖ for
the distance of β to the nearest integer, then the Erdös–Turán inequality gives (see
also [9, Exercise 11.4.10])

D(α/m,N) ≤ 1
M + 1

+ 3
M∑
k=1

1
Nk

∣∣∣∣∣
N∑
n=1

e2πik·
nα
m

∣∣∣∣∣

≤ 1
M + 1

+ 3
M∑
k=1

1
Nk

1
|sin(πkα/m)|

≤ 1
M + 1

+
3

2N

M∑
k=1

1
k‖kα/m‖

for all positive integers M,N . Since α has finite approximation exponent τ we have

‖kα/m‖ = |j − kα/m| =
k

m

∣∣∣∣α− mj
k

∣∣∣∣ �α,ε
1

mkτ−1+ε ,

where j ∈ Z is an integer that satisfies |j−kα/m| = ‖kα/m‖. Hence, using the fact
that τ ≥ 2 we get

D(α/m,N) �α,ε
1
M

+
m

N

M∑
k=1

kτ−2+ε ≤ 1
M

+
mM τ−1+ε

N
.

Choose M = �(N/m)1/(τ+ε)	 (provided that N > m) to get

D(α/m,N) �α,ε

(m
N

)1/(τ+ε)

,

which proves the result.

Acknowledgments
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