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Abstract. Let K be a number field with unit rank at least four, containing
a subfield M such that K/M is Galois of degree at least four. We show
that the ring of integers of K is a Euclidean domain if and only if it is a
principal ideal domain. This was previously known under the assumption of
the generalized Riemann Hypothesis for Dedekind zeta functions. We prove
this unconditionally.

1. Introduction

In 1927 Artin formulated his famous conjecture about primitive roots.

Artin’s Primitive Root Conjecture. If a is not −1 or a square, then there are
infinitely many primes p such that a is a primitive root modulo p.

In fact, for an explicit constant A(a), Artin conjectured that the number of primes
p ≤ x such that a is a primitive root modulo p is ∼ A(a)x/ logx. Assuming the
generalized Riemann hypothesis (GRH), Hooley proved this conjecture in 1967.
In 1983 Gupta and M.R. Murty [3] proved without any hypothesis that there are
infinitely many values of a which satisfy the conjecture. This was refined by Gupta,
M.R. Murty and V.K. Murty [4] and later by Heath-Brown [7]. Heath-Brown’s
refinement implies that the conjecture fails for at most two prime values of a.
Despite this, the conjecture is not known to hold for a single value of a. A connection
between a number field version of this conjecture and the Euclidean algorithm was
first touched on by Samuel [15], who applied a criterion of Motzkin to quadratic
fields.

An integral domain R is Euclidean if there exists a map φ : R − {0} → N such
that given any a, b ∈ R there exist q and r so that a = bq + r with either r = 0 or
φ(r) < φ(b). Any such R is a principal ideal domain (PID). It is a beautiful result
of Weinberger’s [16] that assuming the GRH this condition is sufficient when OK

is the ring of integers of any number field K other than an imaginary quadratic.
That is, he proved the following conjecture conditionally.

Conjecture 1.1. If K is a number field other than an imaginary quadratic, the
ring of integers OK is Euclidean if and only if it is a PID.

For an integral domain R, define the set A0 = {0} and inductively define the
sets An to be the set of all r ∈ R such that every residue class modulo r has a
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representative in Am for some m < n. Motzkin’s criterion is that R is Euclidean if
and only if

R =

∞⋃
n=0

An.

The set A1 is the unit group, R×, of R and A2 consists of those r ∈ R such that
the unit group surjects the non-zero residue classes modulo r.

There are only nine imaginary quadratic number fields whose integer rings are
PIDs. These are the integer rings of Q(

√
−d) for

d = 1, 2, 3, 7, 11, 19, 43, 67, 163.

Motzkin used this criterion to prove that of these nine imaginary quadratic fields,
only for the first five is the ring of integers Euclidean, and for these the absolute
value of the norm map serves as the function φ. We call such fields norm Euclidean.
Samuel’s work made the prediction that real quadratic number fields whose ring of
integers are PIDs are all Euclidean (but not necessarily norm Euclidean). Wein-
berger’s work built upon these ideas and the work of Hooley.

Harper refined Motzkin’s criterion. For a prime ideal p ⊂ OK , let ϕp be the
reduction modulo p map. Harper showed the following [5].

Harper’s Criterion. Let B be the set of all prime ideals p of OK such that
ϕp(O×

K) = ϕp(OK)× and let B(x) be those p ∈ B such that NK/Q(p) ≤ x. If
OK is a PID and

|B(x)| � x

(log x)2
,

then OK is Euclidean.

Harper [5] used a more robust version of this criterion to show that Z[
√
14] is

Euclidean. The integer ring Z[
√
14] was known to be a PID and known not to

be norm Euclidean. Weinberger’s theorem, as echoed in Harper’s theorem, shows
a direct connection between the Euclidean condition and primitive roots. The
generalization of Artin’s primitive root conjecture to number fields relevant to the
Euclidean algorithm problem is the following.

Conjecture 1.2. Let K be a number field other than Q or an imaginary quadratic.
Then there are infinitely many prime ideals p in OK such that ϕp(O×

K) = ϕp(OK)×.

Harper and M.R. Murty [6] used Harper’s criterion to show that Conjecture 1.2
holds for K Galois of unit rank at least four. M.R. Murty and Petersen [11] showed
that Conjecture 1.2 holds for those K, even with the additional restriction that
NK/Q(p) ≡ a (mod b) for any (a, b) = 1 if K ∩Q(ζb) = Q. This generalization has
applications to hyperbolic geometry (see [14]). The main goal of this paper is to
remove the Galois condition. We prove the following.

Theorem 1.3. Let K be a number field. If the unit rank of K is at least 4 and
there is a subfield M < K such that K/M is Galois with group G of order at least
4, then there are � x/(log x)2 prime ideals p in OK such that ϕp(O×

K) surjects
ϕp(OK)×.

The theorem below follows immediately using Harper’s criterion.

Theorem 1.4. For K as in Theorem 1.3, OK is a PID if and only if OK is
Euclidean.
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We show in §5 that the following corollary can be deduced from the methods used
in the proof of Theorem 1.3.

Corollary 1.5. If K is a totally real number field of degree at least five and K has
a proper subfield M such that K/M is Galois, then K satisfies Conjecture 1.1 and
Conjecture 1.2.

These results do not address small degree number fields, number fields K that
are not Galois over any number fields M , and small degree extensions of these
fields. In the spirit of Gupta and M.R. Murty’s result, Narkiewicz [13] proved that
at most two real quadratic number fields fail to satisfy Conjecture 1.1. Moreover,
he proved that Conjecture 1.1 fails for at most two Galois cubic extensions.

Narkiewicz’s results follow from his work [12] proving that Conjecture 1.2 fails
for at most two real abelian number fields. He proves that if such an exceptional
field exists it is cubic and there is only one exception or there are at most two
quadratic exceptions.

The main tool in the proof of Theorem 1.3 is the lower bound sieve in the form
given by Iwaniec [8]. We use the generalized Riemann hypothesis on the average
proven by M.R. Murty and Petersen [10] to control the error term in the sieve.
The sieve allows us to find many rational primes p lying under a split prime ideal
p ⊂ OK such that p − 1 has only necessary small divisors (e.g. 2) and very large
divisors. The image ϕp(OK) has order p − 1, and we construct a conjugacy class
in which the small divisors of such p− 1 do not divide the index (p− 1)/ϕp(O×

K).

Therefore, if ϕp(O×
K) does not surject ϕp(OK)×, the index is large, so that the order

of ϕp(O×
K) is small. The remainder of the proof is a counting argument. First, in

§2 we review the lower bound sieve and apply it to our situation in §3. After that,
we prove Theorem 1.3 in §4. Finally, we make some concluding remarks in §5.

2. The lower bound sieve

Let L/M be a Galois extension of number fields with group G, and let C be a
conjugacy class in G. For an unramified prime ideal p of M , let σL/M (p) denote
the conjugacy class of the Frobenius element. The lower bound sieve estimates the
number of prime ideals p in M with σL/M (p) = C. Our reference for the lower
bound sieve is [2].

Let z ≥ 2 be a real parameter, and define A to be a finite sequence of integers
(depending on the parameter z), and P a sequence of rational primes. With P (z) =∏
p<z
p∈P

p, define

S(A,P, z) = {a ∈ A : (a, P (z)) = 1},
the elements of A all of whose prime factors which belong to P are all greater than
z. The lower bound sieve gives a lower bound for |S(A,P, z)|.

Let Z be a quantity which approximates |A|. For a square-free integer d define
Ad = {a ∈ A : d|a}. For each rational prime p ∈ P, let ω(p) be a number such
that (ω(p)/p)Z approximates |Ap|. Set ω(1) = 1 and ω(p) = 0 for primes p �∈ P
and extend the definition of ω to square-free integers d multiplicatively. The error
of the approximation is measured by

Rd = |Ad| − ω(d)
d Z.
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We define

W (z) =
∏
p<z

(
1− ω(p)

p

)

and the functions F (u) and f(u) by setting

F (u) = 2eγu−1 and f(u) = 0

in the range 0 < u ≤ 2, where γ is Euler’s constant. For u > 2, F and f are
solutions to the differential-difference equations

(uF (u))′ = f(u− 1) and (uf(u))′ = F (u− 1)

so that f is defined by f(u) = 2eγu−1 log(u− 1) for 2 ≤ u ≤ 4.
We now state the lower bound (‘linear’) sieve in the form given by Iwaniec [8].

Theorem 2.1 (Iwaniec). Assume that 0 < ω(p) < p and that there is a constant
A ≥ 2 such that for all z > w ≥ 2,

∏
w≤p<z

(
1− ω(p)

p

)−1

<

(
log z

logw

) (
1 +

A

logw

)
.

Then for ξ2 ≥ z there is a positive B such that the lower bound

|S(A,P, z)| ≥ Z W (z)

{
f

(
log ξ2

log z

)
− B

(log ξ)
1
3

}
−

∑
d<ξ2

d|P (z)

|Rd|

holds.

3. An application of the lower bound sieve

Let K be a number field Galois over M . Define tK = max{t : Q(ζt) ⊂ K},
where ζt is a primitive tth root of unity. Let η be as in Theorem 3.4 and let ε > 0
be specified. Define the set T (x) as the set of all p < x, where p is a rational prime
lying under a split prime ideal p of K with the conditions that tK divides p − 1

and if a rational prime � divides (p− 1)/ϕp(O×
K), then � > x

1
2η−ε. For p lying over

such a p, the index [ϕp(OK)× : ϕp(O×
K)] is small. We will use a counting argument

to show that there are ‘few’ p associated to such small indices. The goal of this
section is to prove the following estimate for |T (x)|.

Proposition 3.1. There is a positive constant D so that

|T (x)| = D
x

(log x)2
+O

( x

(log x)3

)
.

Before employing the sieve, we require a lemma that will enable us to handle the
small divisors of p− 1. We will do so by constructing a conjugacy class in a Galois
extension of M containing K. For a rational prime � define the number field K� by
adjoining the �th roots of elements of a set of representatives of O×

K/(O×
K)� to K.

The extension of number fields K�/K is Galois. Let L be the compositum of all K�

as � varies over the prime divisors of tK . The intersection of all K� for � dividing
tK is K and the extension L/K is an abelian radical extension. Therefore L/M is
Galois. Let G = Gal(L/M) and G� = Gal(K�/M). Let H ∼= Gal(L/K), so that
with N = Gal(K/M) we have G/H = N . For each �, define H�

∼= Gal(L/K�) and
N�

∼= K�/K so that H/H� = N�.
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Lemma 3.2. There is a conjugacy class C ⊂ G such that if p is an unramified
prime ideal in M , then σp(L/M) = C exactly for those p which are split in K and
not split in any K�. Furthermore, if A < N is an abelian subgroup, then A lifts to
an abelian subgroup of G with the property that G ∩ C �= ∅.

Proof. A prime ideal p ⊂ K splits completely in K� if σp(K�/K) = 1 ∈ N�. Since
N� = H/H� this condition lifts to the subgroup H� < H. That is, p ⊂ K splits
completely in K� if σp(L/K) ∈ H�. Therefore, to ensure that p does not split
completely in K� for any � it is enough to require that σp(L/K) is in H −

⋃
H�.

Such conjugacy classes exist if H �= H� since H is abelian. If H = H� the condition
is satisfied by choosing a non-identity conjugacy class.

A prime ideal p ⊂ M splits completely inK if σp(K/M) = 1 ∈ N . This condition
lifts to H < G. That is, σp(L/M) ∈ H corresponds to the condition that p splits
completely in K. To combine the requirements, it suffices to show that there is
a conjugacy class in H that is not in

⋃
H�. Such a conjugacy class exists unless

H = H� for some (necessarily the only �). As mentioned above, if H = H� we can
choose any non-identity conjugacy class of H. This is the desired conjugacy class
C ⊂ G.

The final statement follows because G/H = N with H abelian. �

Now we employ the lower bound sieve. Let L,K, and M be as above. Let C be
the conjugacy class prescribed in Lemma 3.2. Consider the sequence P consisting
of the rational primes which do not divide tK , and the set

A = {pn − 1 ≤ x : pn = NM/Q(p), σL/M (p) = C}

with z = x
1
2η−ε. Note that |S(A,P, z)| is the set consisting of the values pn − 1 =

NM/Q(p) − 1, where σL/M (p) = C for an unramified prime ideal p of M with the
additional conditions that pn − 1 is not divisible by any prime up to z other than
those prime divisors of tK .

Lemma 3.3. There is a positive constant D such that |S(A,P, z)| ≥ D
x

(log x)2
+

O

(
x

(log x)3

)
.

Proof. In the lower bound sieve, Z is a quantity which approximates A and ω(p)
p Z

approximates Ap. By the Čebotarev density theorem, A ∼ |C|
|G| li(x) and Ap ∼

|C|
|G|

li(x)
φ(p) . Therefore, we wish to choose ω(p) with ω(p)

p Z ∼ |C|
|G|

li(x)
φ(p) , so that ω(p)

p ∼
1

p−1 . We choose Z = li(x) and ω(p) = 1 so that

(∗)
∏

w≤p<z

(
1− ω(p)

p

)−1

=
∏

w≤p<z

(
1− 1

p

)−1

.

By Mertens’ theorem (see [9] Theorem 9.1.3),

∏
1≤p<z

(
1− 1

p

)
=

e−γ

log z

(
1 +O

( 1

log z

))
.
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Using this to estimate the product in (∗) for w < p < z as a quotient of products
from 1 < p < z and 1 < p < w, one can easily deduce that

∏
w≤p<z

(
1− ω(p)

p

)−1

<
( log z

logw

)(
1 +

A

logw

)

is satisfied since w < z. Therefore, the conditions of the lower bound sieve hold.
Let π(x,C, d, a) denote the number of prime ideals p in M unramified in L such

that NM/Q(p) ≤ x, NM/Q(p) ≡ a (mod d), and σL/M (p) = C. We first estimate
the main terms in the sieve. Let |R| denote the error term,

|R| =
∑
d<ξ2

d|P (z)

|Rd|.

First, we show that the term f(log ξ2/ log z) − B(log ξ)−
1
3 from Theorem 2.1 is

bounded. Choosing z ≥ ξ
1
2 implies that log ξ2/ log z ≤ 4. (We need to satisfy

ξ
1
2 ≤ z < ξ.) In the range 2 ≤ u ≤ 4, f(u) = 2eγu−1 log(u− 1). We have

f

(
log ξ2

log z

)
=

2eγ log z

log ξ2
log

(
log ξ2

log z
− 1

)
.

Since ξ > z, we conclude that log ξ2/ log z > 2. Taking z = x
1
2η−ε, the term

f(log ξ2/ log z)−B(log ξ)−
1
3 is bounded and positive.

The sieve indicates that there is a positive constant C1 so that

|S(A,P, z)| ≥ W (z) li(x)C1 − |R|.
The prime number theorem with the estimate that li(x) ∼ x/ log x shows that
π(x) ∼ x/ log x. Since ω(p) = 1, the term

W (z) =
∏
p≤z

(
1− 1

p

)
=

e−γ

log z

(
1 +O

( 1

log z

))

uses Mertens’ theorem. Therefore, there is a positive constant C2 so that W (z) ≥
C2/ log x. Combining these estimates, there is a positive constant C3 such that

|S(A,P, z)| ≥ C3
x

(log x)2
+ |R|.

By definition, |S(A,P, z)| is the number of elements in A relatively prime to tK
that are not divisible by any prime up to z = x

1
2η−ε.

It suffices to show that the remainder term satisfies |R| � x/(log x)3. We have

|Rd| =
∣∣∣|Ad| −

ω(d)

d
Z

∣∣∣ � ∣∣∣π(x,C, d, 1)− |C|
|G|

li(x)

φ(d)

∣∣∣
� max

(a,d)=1
max
y≤x

∣∣∣π(y, C, d, a)− |C|
|G|

li(y)

φ(d)

∣∣∣.
We make the standard change of function from the prime counting function π to
Chebyshev’s ψ function (see [10], for example) so that

|Rd| � max
(a,d)=1

max
y≤x

∣∣∣ψ(y, C, d, a)− |C|
|G|

y

φ(d)

∣∣∣.
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We use the following variant of the Bombieri-Vinogradov theorem for number fields
[10].

Theorem 3.4 (Murty-Petersen). Let L/M be a Galois extension of number fields,
and C a conjugacy class in G = Gal(L/M). Let A be an abelian subgroup of G so
that A ∩ C �= ∅, and let E be the fixed field of A. For every ε > 0 and A > 0,

∑′

d≤x
1
η

−ε

max
(a,d)=1

max
y≤x

∣∣∣∣ψ(y, C, d, a)− |C|
|G|

y

φ(d)

∣∣∣∣ � x

(log x)A
,

where η = max{[E : Q] − 2, 2}. The decoration ′ on the summation indicates that
the restriction is to those d such that L ∩Q(ζd) = Q.

If Artin’s holomorphy conjecture is true for L/M we can replace η by maxχ χ(1),
where the maximum is over irreducible characters of G.

Choosing ξ = x
1
2η−ε ≥ z and A = 3, Theorem 3.4 implies that∑

d≤ξ2

d|P (z)

|Rd| �
x

(log x)3
.

The error term |R| only counts the terms |Rd|, where d is coprime to tK . By
the construction of L, there are no prime factors of tL that are not factors of tK .
Therefore there are no d counted in |R| which are not counted in Theorem 3.4.
That is, the ′ on the summation eliminates only d which are not coprime to tL (or
equivalently, tK). In our estimate of |R| we require that d|P (z), and as P avoids
those primes dividing tK these conditions are compatible. �

We now prove Proposition 3.1, which is a stronger form of Lemma 3.3.

Proof of Proposition 3.1. We wish to reduce to the split prime case. Let SI(x) be
those elements pn − 1 ∈ S(A,P, z) such that pn = NM/Q(p) for a prime ideal p in
M that is not split. That is, NM/Q(p) = pn and n > 1. The number of such x,
|SI(x)|, is bounded by the number of prime ideals p in M lying over some p such
that NM/Q(p) = pn ≤ x with n > 1. This is, in turn, bounded by [M : Q] times
the number of rational prime powers pn ≤ x with n > 1. If pn ≤ x, upon taking
logarithms, n log p ≤ log x, so n ≤ log x. There are at most x

1
2 squares of primes

less than x and for each higher order power n > 2 there are at most x
1
n associated

prime powers. Therefore ∑
pn≤x
n>1

1 � x
1
2 +O(x

1
3 log x) � x

1
2 .

This term is absorbed in the error, so we can assume that p in M lying over p is
split. By construction of the conjugacy class C, if p in M is counted in S(A,P, z)
and q in K lies over p, then q splits completely over Q. As a result, we may assume
that p lies under a split prime in K.

Let p be a prime ideal in OK and G ∼= ϕp(OK)× be the cyclic group with
presentation G = 〈g : gp−1 = 1〉. Let � be a rational prime dividing p−1. The map
ψ� : G → G defined by g �→ g� has kernel consisting of the �th roots of the identity,
of which all � are in G since � divides the order of G. Therefore the elements of G
which are �th roots are a subgroup, H of G of index �.
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If � divides tK and also divides the index ϕp(OK)×/ϕp(O×
K), then as G is cyclic,

ϕp(O×
K) < H. Therefore, every element of ϕp(O×

K) has all �th roots in G. By defini-

tion K� is K adjoined with the �th roots of a set of representatives for (O×
K)/(O×

K)�.
If q ⊂ K� lies over p, then (OK�

/q)× is generated by the �th roots of some elements
of (O×

K/p). By the above, these are all inH < G. Therefore qmust split completely.
However, by construction all prime ideals q in M lying over p so that σL/M (q) =

C do not split completely in OK�
. Restricting to primes p in K lying over p which

are split with σL/M (q) = C for q in M lying over p, we can assume that if � divides

tK , then � does not divide the index [ϕp(OK)× : ϕp(O×
K)]. Therefore, for these

primes p for any p in OK lying over p we may assume that p splits completely and

that if � is a prime divisor of (p− 1)/ϕp(O×
K), then � > x

1
2η−ε. �

4. Proof of the main theorem

We will use the following estimate from Gupta and M.R. Murty [3].

Lemma 4.1 (Gupta-Murty). Let S be a multiplicative set in OK , p a prime ideal
in OK coprime to the elements of S, and let r denote the rank of S. Then

#{p ⊂ OK : |ϕp(S)| ≤ Y } � Y
r+1
r .

Proof of Theorem 1.3. Consider p ∈ T (x) with the prime ideal p in OK lying over

p. If the prime � divides the index of ϕp(O×
K) in ϕp(OK)×, then � > x

1
2η−ε by

Proposition 3.1. For these primes, the index [ϕp(OK)× : ϕp(O×
K)] is either 1 or is

greater than x
1
2η−ε. Consequently, if the index is not one, the order of ϕp(O×

K) is

less than x1− 1
2η+ε. Choosing Y = x1− 1

2η+ε in Lemma 4.1, we see that

#{p ⊂ OK : |ϕp(O×
K)| ≤ x1− 1

2η+ε} � (x1− 1
2η+ε)

r+1
r .

There are � x/(log x)2 primes p in T (x), where the index [ϕp(OK)× : ϕp(O×
K)] is

one when

O(x(1− 1
2η+ε) r+1

r ) = o

(
x

(log x)2

)
.

This occurs when 2η < r + 1.
We have M ⊂ K ⊂ K� ⊂ L and a conjugacy class C in G = Gal(L/M). We wish

to rephrase this in terms of M and K alone. Let N = Gal(K/M) and A < N be
an abelian subgroup. By Lemma 3.2, A lifts to an abelian subgroup of G satisfying
A ∩ C �= ∅. Therefore, the fixed field of A is the same as the fixed field of the lift.
Let E be this field. We have η = max{nE − 2, 2}, where nE = [E : Q]. If this
maximum is 2, then the inequality is satisfied when r > 3. It suffices to consider
the case when η = nE − 2. Let I = [K : E] so that nE = nK/I. With r1 and
r2 being the number of real and complex places of K, so that nK = r1 + 2r2 and
r = r1 + r2 − 1, the inequality is

r1
(
1− 2

I

)
+ r2

(
1− 4

I

)
> −3.

This is certainly satisfied when I ≥ 4. It suffices to consider the case when I =
[K : E] ≤ 3.
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With N = Gal(K/M), if |N | has a prime divisor which is at least 5, by Sylow
theory, there is an abelian subgroup A < N with |A| > 4, and we can use the above.
As a result, we need only consider the case where |N | = 2a3b. Likewise if a, b ≥ 2
there is an abelian subgroup of order at least 4. Therefore, it remains to deal with
the cases where |N | = 1, 2, 3 or |N | = 6 is not abelian.

A non-abelian group of order 6 is necessarily dihedral, and Artin’s holomorphy
conjecture is known to hold for these groups. By Theorem 3.4 the inequality is
satisfied in this case as well. �

Using Harper’s Criterion, Theorem 1.4 immediately follows.

5. Concluding remarks

If K is a totally real field, we can be more specific. In this case, the inequality
2η < r + 1 in the proof of Theorem 1.3 reduces to r1(1− 2

I ) > −3 and is satisfied
when I > 1. As a result, the theorem holds for all real K if r > 3 and there is some
M �= K such that K/M is Galois. If r = r1 − 1 ≤ 3 the index [K : Q] is at most
four. This is the statement of Corollary 1.5.

The authors plan to address fields of small degree in future work.
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