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CENTRAL LIMIT THEOREMS FOR SUMS OF QUADRATIC

CHARACTERS, HECKE EIGENFORMS,

AND ELLIPTIC CURVES

M. RAM MURTY AND NEHA PRABHU

(Communicated by Amanda Folsom)

Abstract. We prove central limit theorems (under suitable growth condi-
tions) for sums of quadratic characters, families of Hecke eigenforms of level
1 and weight k, and families of elliptic curves, twisted by an L-function sat-
isfying certain properties. As a corollary, we obtain a central limit theorem
for products χ(p)af (p) where χ is a quadratic Dirichlet character and f is a
normalized Hecke eigenform.

1. Introduction

The elusive Riemann Hypothesis can be studied from the perspective of proba-
bility theory. In fact, this was the motivating impulse of Linnik and Renyi when
they conceived the notion of the large sieve inequality. Their investigations opened
the way for spectacular developments in analytic number theory leading to the the-
ory of zero-density estimates and ultimately the celebrated Bombieri-Vinogradov
theorem. The significance of this theorem is seen by its widespread application to a
host of problems that were hitherto solved conditionally using the generalized Rie-
mann Hypothesis but were now solved using the Bombieri-Vinogradov inequality.
A notable example of this is the problem of Hardy and Littlewood on the number
of representations of a natural number n as

n = p+ a2 + b2

with p a prime number. The asymptotic formula conjectured by a heuristic ap-
plication of the circle method was shown to hold by Hooley in 1957 assuming the
generalized Riemann Hypothesis. In 1960, Linnik observed that one could use his
dispersion method developed in the context of the large sieve inequality to show
that the Hardy-Littlewood formula holds unconditionally. We refer the reader to
Chapter 5 of the excellent monograph of Hooley [7]. Our present study is motivated
by this metaphor.
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2 M. RAM MURTY AND NEHA PRABHU

First, we look at classical quadratic sums of the form

∑
x≤p<2x

(
n

p

)

where the summation is over primes p and n is a fixed natural number. The
generalized Riemann Hypothesis predicts that the sum is O(x1/2 log nx) and we
want to view the Legendre symbol (n· ) as a “random variable” so that the above
sum can be viewed as a sum of random variables. This suggests the idea of a “central
limit theorem” and our goal is to formulate as precisely and as mathematically as
possible these poetic insights. We then look at families of holomorphic cusp forms
and elliptic curves and derive similar results.

Central limit theorems of this type have been obtained in various settings over
the last few years. See also [4] and [10] for central limit theorems in the case of
Artin L-functions and Kloosterman sums, respectively. We now describe the results
proved in this paper.

1.1. Quadratic characters. Let p denote a prime and

Sh(x) =
x+h∑

n=x+1

(
n

p

)
.

Let Mp(λ) denote the number of integers x with 0 ≤ x < p for which Sh(x) ≤ λh1/2.

Davenport and Erdős [5] showed that if h = h(p) satisfies log h
log p → 0 as p → ∞, then

1

p
Mp(λ) →

1√
2π

∫ λ

−∞
e−t2/2dt

as p → ∞.
One expects on the Generalized Riemann Hypothesis (GRH),

∑
x≤p<2x

(
n

p

)
� x1/2 log nx

when we fix n and average over primes p. It may be fruitful to study the problem
from this perspective. We prove the following theorem.

Theorem 1.1. Let π̃(x) denote the number of primes between x and 2x and let

χq be a quadratic Dirichlet character mod q. Let z = z(x) so that log z
log x → ∞ as

x → ∞. Then for any continuous real-valued function h, the following holds:

lim
x→∞

1

z

∑
n≤z

h

⎛
⎜⎝

∑
x≤p<2x

χp(n)√
π̃(x)

⎞
⎟⎠ =

1√
2π

∫ ∞

−∞
h(t)e−

t2

2 dt.

In particular, if h(x) = |x|, this says that the expected estimate on GRH holds
“on average”.

1.2. Modular forms. Let af (m) denote the mth Fourier coefficient of a normal-
ized Hecke eigenform f and let Fk be a basis consisting of normalized Hecke eigen-
forms of weight k with respect to Γ0(1). Denote the dimension of Fk by sk. In 2006,
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Nagoshi [8] proved that if k = k(x) so that log k
log x → ∞ as x → ∞, then for any

continuous real function h on R,

(1.1) lim
x→∞

1

sk

∑
f∈Fk

h

(∑
p≤x af (p)√

π(x)

)
=

1√
2π

∞∫
−∞

h(t)e−
t2

2 dt.

It is natural to ask if Nagoshi’s result and Theorem 1.1 can be combined in some
way to obtain a Gaussian distribution of the sequence of sums

∑
p≤x χ(p)af(p)

where χ is a quadratic Dirichlet character and f is a Hecke eigenform. To this end,
we consider the following.

Let L(s) =
∑∞

n=1
bL(n)
ns denote an L-function with real coefficients bL(n) satisfy-

ing the following conditions:

(i) For any fixed ε > 0, bL(n) = O(nε).(1.2)

(ii)
∑
p≤x

bL(p)
2

p
= log log x+O(1).(1.3)

We then have the following result.

Theorem 1.2. Fix n ∈ N and let k = k(x) so that log k
log x → ∞ as x → ∞. Suppose

L(s) is an L-function whose coefficients satisfy equations (1.2) and (1.3). Then for
any continuous real-valued function h and a fixed n ∈ N, the following holds:

lim
x→∞

1

sk

∑
f∈Fk

h

⎛
⎝ 1√

log log x

∑
p≤x

bL(p)√
p

af (p
n)

⎞
⎠ =

1√
2π

∫ ∞

−∞
h(t)e−

t2

2 dt.

The conditions (1.2), (1.3) are clearly satisfied by quadratic Dirichlet characters.
In the case of normalized Hecke eigenforms, condition (1.2) is the Ramanujan-
Petersson bound that is known to be true from the work of Deligne [6]. Moreover,
using the Rankin-Selberg theory for L-functions associated to a Hecke eigenform
f , we know that

(1.4)
∑
p≤x

af (p)
2

p
= log log x+O(1).

Theorem 1.2 therefore gives us the following corollaries.

Corollary 1.3. Let n ∈ N be fixed and let k = k(x) so that log k
log x → ∞ as x → ∞.

Let ag(p) denote the pth Fourier coefficient of a fixed Hecke eigenform g in Fk.
Then for any continuous real-valued function h the following holds:

lim
x→∞

1

sk

∑
f∈Fk

h

⎛
⎝ 1√

log log x

∑
p≤x

ag(p)af(p
n)

√
p

⎞
⎠ =

1√
2π

∫ ∞

−∞
h(t)e−

t2

2 dt.

If χ is a non-trivial quadratic Dirichlet character, then we have the following.

Corollary 1.4. Let n ∈ N be fixed and let k = k(x) so that log k
log x → ∞ as x → ∞.

Then for any continuous real-valued function h,

lim
x→∞

1

sk

∑
f∈Fk

h

⎛
⎝ 1√

log log x

∑
p≤x

χ(p)af (p
n)

√
p

⎞
⎠ =

1√
2π

∞∫
−∞

h(t)e−
t2

2 dt.
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4 M. RAM MURTY AND NEHA PRABHU

1.3. Elliptic curves. For (a, b) ∈ Z
2 with Δ(a, b) = 4a3 + 27b2 �= 0, let E(a, b)

denote the elliptic curve given in Weierstrass form by

y2 = x3 + ax+ b.

Let aE(a,b)(n) denote the nth coefficient of the Hasse-Weil L-function that is nor-
malized so that aE(a,b)(1) = 1. We have the following analogue of Theorem 1.2 in
the setting of elliptic curves.

Theorem 1.5. Let A = A(x), B = B(x) so that logA
log x ,

logB
log x → ∞ as x → ∞.

Suppose L(s) is an L-function whose coefficients satisfy equations (1.2) and (1.3).
Then for any continuous real-valued function h and a fixed odd, positive integer n,
the following holds:

lim
x→∞

1

4AB

∑
|a|≤A

∑
|b|≤B

h

⎛
⎝ 1√

log log x

∑
p≤x

bL(p)√
p

aE(a,b)(p
n)

⎞
⎠=

1√
2π

∫ ∞

−∞
h(t)e−

t2

2 dt,

where in the double summation above, the pairs (a, b) for which Δ(a, b) = 0 are
excluded.

All the results in the paper are proved using the method of moments which,
along with other known results used in the proofs, is briefly described in the next
section. Sections 3 and 4 describe the proof of Theorems 1.1 and 1.2, respectively,
in detail. The proof of Theorem 1.5 is sketched in Section 5. Minor modifications
to the proof of Theorems 1.1, 1.2, and 1.5 lead to some variants and generalizations
of known results. These are listed in Section 6.

2. Preliminaries

In this paper we will mostly concern ourselves with two families of L-functions
namely, L-functions associated to quadratic characters and L-functions associated
to a modular form. Some well-known results involving these two families are given
below and will be used in the proofs of the results in this paper.

2.1. Pólya-Vinogradov inequality. Suppose χ is a non-principal character
mod q. Since

∑q
n=1 χ(n) = 0, it is clear that∣∣∣∣∣

M+N∑
n=M+1

χ(n)

∣∣∣∣∣ ≤ q

for any positive integers M and N . However, a sharper bound is desirable and in
1918, Pólya and Vinogradov independently gave the following bound.

Theorem 2.1 (Pólya-Vinogradov inequality). For any non-principal character
mod q, ∣∣∣∣∣

M+N∑
n=M+1

χ(n)

∣∣∣∣∣ � √
q log q.

Although there have been improvements on the bound assuming additional hy-
pothesis, the bound

√
q log q is still the best known unconditional bound.
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CENTRAL LIMIT THEOREMS 5

2.2. Hecke multiplicative relations. Let k be a positive even integer and let N
be a positive integer. Let S(N, k) denote the space of modular cusp forms of weight
k with respect to Γ0(N). For n ≥ 1, let Tn denote the nth Hecke operator acting on
S(N, k). We denote a basis of Hecke eigenforms in S(N, k) by FN,k. To be precise,
any f(z) ∈ FN,k has a Fourier expansion

f(z) =
∞∑

n=1

n
k−1
2 af (n)e

2πinz,

where af (1) = 1 and

Tn(f(z))

n
k−1
2

= af (n)f(z), n ≥ 1.

The Fourier coefficients of modular forms satisfy multiplicative relations. We state
it here in the form we require later, i.e., for prime powers.

Lemma 2.2. Let f ∈ FN,k. For primes p1, p2 and non-negative integers i, j,

af (p
i
1)af (p

j
2) =

{
af (p

i
1p

j
2) if p1 �= p2,∑min (i,j)

l=0 af (p
i+j−2l
1 ) if p1 = p2.

2.3. Eichler-Selberg trace formula. Averaging over a basis of normalized eigen-
forms would require us to use a trace formula. We describe the estimates for the
trace formula we shall be using repeatedly in the course of proving one of the main
theorems. For the sake of simplicity, we restrict ourselves to the case of level 1.
Henceforth, Fk = F1,k and the dimension of Fk will be denoted by sk.

Proposition 2.3. Let k be a positive even integer and let n be a positive integer.
We have ∑

f∈Fk

af (n) =

{
k−1
12

(
1√
n

)
+O(nc) if n is a square,

O(nc) otherwise.

Here, c = 1
2 + ε and the implied constant in the error term is absolute.

Proof. See, for example, Proposition 2.4 in [9]. �

2.4. The method of moments. A useful method to understand the underlying
limiting distribution of a given sequence of random variables is via the method
of moments. This technique works when the distribution is determined by its
moments. Since the normal distribution falls under this category (see Section 30
of Chapter 5 in [3]) it suffices to compute the moments of the random variable, in
cases where one expects a normal distribution for the random variable in question.
To be precise, the following theorem appears as Theorem 30.2 in [3].

Theorem 2.4. Suppose the distribution of a random variable X is determined by
its moments. Then, if Xn is a sequence of random variables that have moments of
all orders and that limn→∞ E[Xr

n] = E[Xr] for r = 1, 2, . . ., then Xn converges in
distribution to X.

3. A central limit theorem for sums of quadratic characters

Theorem 1.1 follows by the method of moments, by showing the following.
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6 M. RAM MURTY AND NEHA PRABHU

Proposition 3.1. Let z = z(x) so that log z
log x → ∞ as x → ∞. Then

lim
x→∞

1

z

∑
n≤z

⎛
⎜⎝

∑
x≤p<2x

χp(n)√
π̃(x)

⎞
⎟⎠

r

=

⎧⎨
⎩

r!

2
r
2 (r/2)!

if r is even,

0 if r is odd.

Proof. We begin by writing the double sum on the left hand side of the above
equation as follows:

1

z

∑
n≤z

⎛
⎜⎝

∑
x≤p<2x

χp(n)√
π̃(x)

⎞
⎟⎠

r

=
1

zπ̃(x)
r
2

∑
x≤p1,p2,...,pr<2x

∑
n≤z

χp1p2···pr
(n),

where χp1p2···pr
(n) = χp1

(n)χp2
(n) · · ·χpr

(n) due to the (completely) multiplicative
nature of Dirichlet characters. We have two cases.

Case 1. The product p1p2 · · · pr is a square. Thus, r is even.
In this case, χp1p2···pr

(n) becomes a principal character. This implies∑
n≤z

χp1p2···pr
(n) =

∑
n≤z

gcd(n,p1p2···pr)=1

1.

Using a simple inclusion-exclusion argument, it can be seen that

(3.1)
∑
n≤z

gcd(n,p1p2···pr)=1

1 =
∑

d|p1···pr

μ(d)
[z
d

]
= z

φ(p1p2 · · · pr)
p1p2 · · · pr

+O(2r).

Observe that, since
φ(n)

n
=

∏
p|n

(
1− 1

p

)
,

using the fact that x ≤ p1, p2, . . . , pr < 2x, we conclude

φ(p1p2 · · · pr)
p1p2 · · · pr

= 1 +O

(
1

x

)
.

Thus, equation (3.1) becomes∑
n≤z

gcd(n,p1p2···pr)=1

1 = z

(
1 + O

(
1

x

))
+O(2r).

Therefore,

1

zπ̃(x)
r
2

∑
x≤p1,p2,...,pr<2x

p1p2···pr=�

∑
n≤z

χp1p2···pr
(n)

=
1

π̃(x)
r
2

∑
x≤p1,p2,...,pr<2x

p1p2···pr=�

(
1 + O

(
1

x

)
+O

(
2r

z

))
.

(3.2)

Now,

(3.3)
1

π̃(x)
r
2

∑
x≤p1,p2,...,pr<2x

p1p2···pr=�

1 =
1

π̃(x)
r
2

(
π̃(x)

r
2

)
r!

2
r
2
+Or

(
1

π̃(x)

)
,
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CENTRAL LIMIT THEOREMS 7

since the biggest contribution comes from terms where there are r
2 distinct primes

in the multiset {p1, p2, . . . , pr}. Clearly, the number of ways to write a sequence

of r primes which comprise of r
2 distinct primes is

r!

2
r
2

and there are
(
π̃(x)

r
2

)
ways

to choose r
2 distinct primes. The error term comes from multisets {p1, p2, . . . , pr}

that have at most r
2 − 1 many distinct primes. These terms will contribute at most

a constant multiple of π̃(x)
r
2−1, the constant depending only on r. Finally,(

π̃(x)
r
2

)
r!

2
r
2
=

π̃(x)(π̃(x)− 1) · · · (π̃(x)− r
2 + 1)

(r/2)!

r!

2
r
2
=

π̃(x)
r
2

(r/2)!

r!

2
r
2
+O

(
π̃(x)

r
2−1

)
.

Thus, equation (3.3) becomes

1

π̃(x)
r
2

∑
x≤p1,p2,...,pr<2x

p1p2···pr=�

1 =
r!

2
r
2 (r/2)!

+ Or

(
1

π̃(x)

)
.

Putting all the estimates together in equation (3.2), we have

(3.4)
1

zπ̃(x)
r
2

∑
x≤p1,p2,...,pr<2x

p1p2···pr=�

∑
n≤z

χp1p2···pr
(n) =

r!

2
r
2 (r/2)!

+Or

(
1

π̃(x)

)
+Or

(
1

z

)
.

Taking limits, we obtain

(3.5) lim
x,z→∞

1

zπ̃(x)
r
2

∑
x≤p1,p2,...,pr<2x

p1p2···pr=�

∑
n≤z

χp1p2···pr
(n) =

r!

2
r
2 (r/2)!

.

Case 2. The product p1p2 · · · pr is not a square. In this case, using the Pólya-
Vinogradov inequality, we have∑

n≤z

χp1p2···pr
(n) � √

p1p2 · · · pr log(p1p2 · · · pr).

Using the trivial estimate pi � x,

(3.6)
1

zπ̃(x)
r
2

∑
x≤p1,p2,...,pr<2x

p1p2···pr �=�

∑
n≤z

χp1p2···pr
(n) = Or

(
x

r
2 π̃(x)

r
2 log x

z

)
.

Observe that the estimate on the right hand side of (3.6) is � xr+1

z .

The hypothesis on z, i.e., z = z(x) so that log z
log x → ∞ as x → ∞ implies that for

any real number a, we have z > xa provided x is sufficiently large. Thus, for any
a ∈ R,

lim
x→∞

xa

z
= 0.

Using the hypothesis on the growth of z in (3.6), we can therefore write

(3.7) lim
x→∞

1

zπ̃(x)
r
2

∑
x≤p1,p2,...,pr<2x

p1p2···pr �=�

∑
n≤z

χp1p2···pr
(n) = 0.

Combining the two cases, the proof is complete. �
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8 M. RAM MURTY AND NEHA PRABHU

Remark 3.2. Assuming the Generalized Riemann Hypothesis, it can be shown that
if χ is a non-principal character mod q, then∑

n≤x

χ(n) �ε x
1
2 qε.

This would improve the estimate in equation (3.6) to Or

(
π̃(x)

r
2 xrε

z
1
2

)
. However, this

would not weaken the growth condition on x required for the error terms to be
small enough to ensure convergence of all moments simultaneously. This seems to
indicate that the hypothesis in Theorem 1.1 is, in a sense, optimal.

4. Proof of Theorem 1.2

Analogous to the case of quadratic characters, the result in the case of modular
forms follows by showing that, if log k

log x → ∞ as x → ∞, then

1

sk

∑
f∈Fk

⎛
⎝∑

p≤x

bL(p)√
p

af (p
n)

⎞
⎠

r

=

⎧⎨
⎩

r!

2
r
2 (r/2)!

(log log x)r/2 + o(log log x)r/2 if r is even,

o(log log x)r/2 if r is odd,

(4.1)

under the assumption that∑
p≤x

bL(p)
2

p
= log log x+O(1).

We proceed to compute the moments

1

sk

∑
f∈Fk

⎛
⎝∑

p≤x

bL(p)√
p

af (p
n)

⎞
⎠

r

.

4.1. First moment. When r = 1,

1

sk

∑
f∈Fk

∑
p≤x

bL(p)√
p

af (p
n) =

∑
p≤x

bL(p)√
p

1

sk

∑
f∈Fk

af (p
n)

=
∑
p≤x

bL(p)√
p

(
δ(n/2)

pn/2
+O

(
pnc

k

))
,

where δ(n/2) is equal to one if n is even and zero otherwise.
Let ε < 1

2 . Noting that bL(p) �ε pε and pn/2 ≥ p for n even, we deduce the
following:

1

sk

∑
f∈Fk

∑
p≤x

bL(p)√
p

af (p
n) �ε

∑
p≤x

1

p3/2−ε
+ π(x)

xnc−ε

k
.

Observe that the sum
∑

p≤x p
3/2−ε is convergent. Moreover, the second term is

� xnc+1

k and using the growth condition log k
log x → ∞ as x → ∞, we see that this

quantity is negligible as x → ∞. In particular, (4.1) is true for r = 1.
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4.2. Second moment. When r = 2,

1

sk

∑
f∈Fk

⎛
⎝∑

p≤x

bL(p)√
p

af (p
n)

⎞
⎠

2

=
1

sk

∑
f∈Fk

⎛
⎝∑

p≤x

bL(p)
2

p
af (p

n)2 +
∑

p1 �=p2

bL(p1)bL(p2)√
p1p2

af (p
n
1p

n
2 )

⎞
⎠

=
∑
p≤x

bL(p)
2

p

⎛
⎝ 1

sk

∑
f∈Fk

af (p
n)2

⎞
⎠+

∑
p1 �=p2

bL(p1)bL(p2)√
p1p2

⎛
⎝ 1

sk

∑
f∈Fk

af (p
n
1p

n
2 )

⎞
⎠

=
∑
p≤x

bL(p)
2

p

(
1 + O

(
δ(n/2)

p
+

p2nc

k

))

+
∑

p1 �=p2

bL(p1)bL(p2)√
p1p2

(
δ(n/2)

(p1p2)n/2
+O

(
(p1p2)

nc

k

))

=
∑
p≤x

bL(p)
2

p
+O(1) + O

(
x2nc

k

)
.

Using the hypotheses that L(s) satisfies equations (1.2) and (1.3), and k grows
sufficiently fast with respect to x, we deduce (4.1) in the case r = 2. The above
calculation shows that asymptotically, the variance is, in fact, log log x.

4.3. Higher moments. Using the multinomial formula, we have

1

sk

∑
f∈Fk

⎛
⎝∑

p≤x

bL(p)√
p

af (p
n)

⎞
⎠

r

=
r∑

u=1

(1)∑
(r1,...,ru)

r!

r1! · · · ru!
1

u!

(2)∑
(p1,...,pu)

b(p1)
r1 · · · b(pu)ru

p
r1/2
1 · · · pru/2u

⎛
⎝ 1

sk

∑
f∈Fk

af (p
n
1 )

r1 · · · af (pnu)ru
⎞
⎠,

where,

(a) The sum
∑(1)

(r1,r2,...,ru)
is taken over tuples of positive integers r1, r2, . . . , ru

so that r1 + r2 + · · ·+ ru = n, i.e., a partition of n into u positive parts.

(b) The sum
∑(2)

(p1,p2,...,pu)
is over u-tuples of distinct primes not exceeding x.

Using the Hecke multiplicative relations, for each i = 1, . . . , u, we expand each
af (p

n
i )

ri . More precisely, we have

af (p
n
i )

ri =
∑

ti∈I(n,ri)
Dn,ri(ti)af (p

ti
i ),

where I(n, ri) is a finite set consisting of non-negative integers that occur as a
power of pi in the expansion of af (p

n
i )

ri and Dn,ri(ti) denotes the coefficient of
af (p

ti) so obtained. These coefficients are clearly independent of the prime pi. In
particular, the following holds; see Proposition 7.2 in [9] for a more general result.
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10 M. RAM MURTY AND NEHA PRABHU

Lemma 4.1. Assuming the notation given above,

Dn,ri(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if ri = 1, t = 0,

1 if ri = 1, t ≥ 1,

1 if ri = 2, t ≥ 0,

O
(
nri−2

)
if ri ≥ 3, t ≥ 1,

O
(
nri−3

)
if ri ≥ 3, t = 0.

Remark 4.2. For a given n, ri, the set I(n, ri) consists of non-negative integers
which have the same parity as nri. It is also easy to see that

(1) I(n, 1) = {n}.
(2) I(n, 2) = {0, 2, 4, . . . , 2n}.

In view of the trace formula and the growth condition imposed on k, we isolate
the main term by collecting the term af (1) in the product

af (p
n
1 )

r1 · · · af (pnu)ru =
∑

(t1,...,tu)

(∏
i

Dn,ri(ti)

)
af (p

t1
1 · · · ptuu ).

Clearly,

1

sk

∑
f∈Fk

af (p
n
1 )

r1 · · · af (pnu)ru

=
∑

(t1,...,tu)

(∏
i

Dn,ri(ti)

)(
δ(t1/2) · · · δ(tu/2)

p
t1/2
1 · · · ptu/2u

+O

(
(p1 · · · pu)nrc

k

))
.

(4.2)

Since the primes become arbitrarily large and the constant
∏

iDn,ri(ti) is in-
dependent of p, if ti �= 0 for some i, the contribution of such tuples (t1, . . . , tu) is
negligible. Therefore, the main term arises from the tuple (t1, . . . , tu) = (0, . . . , 0).

Case 1. If ri = 1 for some i = 1, . . . , r, then because I(n, 1) = {n} and n ≥ 1, the
term af (p

t1
1 · · · ptuu ) can never be equal to 1. Using (4.2), we deduce that in this

case,

(2)∑
(p1,...,pu)

b(p1)
r1 · · · b(pu)ru

p
r1/2
1 · · · pru/2u

⎛
⎝ 1

sk

∑
f∈Fk

af (p
n
1 )

r1 · · · af (pnu)ru
⎞
⎠

�n,r

(2)∑
(p1,...,pu)

|bL(p1)r1 · · · bL(pu)ru |
p
r1/2
1 · · · pru/2u

(
1

p1 · · · pu
+

(p1 · · · pu)nrc
k

)

= On,r(1) + O

(
xD

k

)
,

where D is a constant that depends only on n, r, c. Using the growth condition
log k
log x → ∞ as x → ∞, we see that the contribution from such partitions is certainly

o(log log x).

Case 2. If ri = 2 for each i = 1, . . . , u, then Dn,2(ti) = 1 for every ti ∈ I(n, 2) =
{0, 2, . . . , 2n}, as observed earlier.
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CENTRAL LIMIT THEOREMS 11

Separating the term coming from (t1, . . . , tu) = (0, . . . , 0) as the main term, we
have

(2)∑
(p1,...,pu)

b(p1)
r1 · · · b(pu)ru

p
r1/2
1 · · · pru/2u

⎛
⎝ 1

sk

∑
f∈Fk

af (p
n
1 )

r1 · · · af (pnu)ru
⎞
⎠

=

(2)∑
(p1,...,pu)

bL(p1)
2 · · · bL(pu)2

p1 · · · pu

+Or,n,c

⎛
⎝ (2)∑

(p1,...,pu)

bL(p1)
2 · · · bL(pu)2

p1 · · · pu

(
1

p1 · · · pu
+

(p1 · · · pu)nrc
k

)⎞⎠ .

Observing that u = r/2 in this case and using the growth condition on k, we deduce
that the contribution from this case is (log log x)r/2 + o(log log x)r/2.

Case 3. If ri > 1 for all i and ri ≥ 3 for at least one i we have the following.
Now we have Dn,ri(0) = O(nri−3) for ri ≥ 3, making it complicated to write

down the exact constant
∏

i Dn,ri(0). However, we use the fact that in this case,
u < r/2, so the main term in this case is

(2)∑
(p1,...,pu)

b(p1)
r1 · · · b(pu)ru

p
r1/2
1 · · · pru/2u

∏
i

Dn,ri(0) �n,r,u (log log x)u + o(log log x)u.

Therefore, we obtain an estimate of

(log log x)r/2−1 + o(log log x)r/2−1

as the contribution from this case.

Putting the three cases above together, the only non-trivial estimate comes from
the partition (2, 2, . . . , 2) of r, which can occur only if r is even. This proves (4.1),
completing the proof of the theorem.

5. Proof of Theorem 1.5

We shall only give a sketch of the proof since it is very similar to that of Theorem
1.2. The only difference lies in the way the averages work. Just as we had the
Eichler-Selberg Trace Formula at work in the case of modular forms, we have the
following average result in the case of elliptic curves; see Lemma 4.1 of [1].

Lemma 5.1. For all A,B ≥ 1 and n ∈ N,

(5.1)
∑
|a|≤A

∑
|b|≤B

(Δ(a,b),n)=1

aE(a,b)(n) = 4ABS(n) +O
(
d(n)s(n)2

)
+O (d(n)s(n)(A+B)) ,

where s(n) is the largest squarefree number dividing n, d(n) is the number of divisors
of n and

(5.2) S(n) :=
1

s(n)2

s(n)∑
a=1

s(n)∑
b=1

(Δ(a,b),n)=1

aE(a,b)(n).
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12 M. RAM MURTY AND NEHA PRABHU

Therefore in this case, S(n) plays the role of the main term. Using ideas from
[2], we have (see Lemma 8.2 of [1]) for m ∈ N and p prime,

(5.3) S(pm) =

{(
1− 1

p

)
1√
pσm+2(Tp) if m is even,

0 if m is odd,

where σm+2(Tp) denotes the normalized trace of the Hecke operator Tp acting on
the space of cusp forms of weight m+2 and level 1. Using the estimate S(pm) � m√

p

if m is even and 0 if m is odd, the nth moment can be calculated using a case-by-
case analysis for the partitions of n as in the proof of Theorem 1.2 to obtain the
result.

Remark 5.2. The reason we need n to be even is because the available estimates
on S(pm) for m even are not good enough to handle the case where the partition
of n has some part equal to 1.

6. Concluding remarks

(1) The ideas in the proof of Theorem 1.2 can be used to show that Nagoshi’s
central limit theorem [8] for Fourier coefficients of Hecke eigenforms holds
when prime power coefficients are considered as well. To be precise, the
following result holds.

Theorem 6.1. Fix n ∈ N and let k = k(x) so that log k
log x → ∞ as x → ∞.

Then for any continuous real function h on R,

lim
x→∞

1

sk

∑
f∈Fk

h

(∑
p≤x af (p

n)√
π(x)

)
=

1√
2π

∞∫
−∞

h(t)e−
t2

2 dt.

(2) Instead of varying the weight k, one could consider families of Hecke eigen-
forms with a fixed weight k and vary the level N as a function of x to
obtain a fixed prime power analogue of the central limit theorem in the
level aspect proved in [4].

(3) Making the appropriate simplifications in Theorem 1.5, we obtain an elliptic
curve analogue of Nagoshi’s central limit theorem for Hecke eigenvalues as
follows.

Theorem 6.2. Let A = A(x), B = B(x) so that logA
log x ,

logB
log x → ∞ as

x → ∞. Then for any continuous real-valued function h and a fixed odd,
positive integer n, the following holds:

lim
x→∞

1

4AB

∑
|a|≤A

∑
|b|≤B

h

(∑
p≤x aE(a,b)(p)√

π(x)

)
=

1√
2π

∫ ∞

−∞
h(t)e−

t2

2 dt,

where in the double summation above, the pairs (a, b) for which Δ(a, b) = 0
are excluded.

(4) The following variant of Theorem 1.2 can be obtained by making minor
changes to the proof of Theorem 1.1 as follows.
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Theorem 6.3. Let χq be a quadratic Dirichlet character mod q. Let

z = z(x) so that log z
log x → ∞ as x → ∞. Then for any continuous real-

valued function h, the following holds:

lim
x→∞

1

z

∑
n≤z

h

⎛
⎝ 1√

log log x

∑
x≤p<2x

af (p)√
p

χp(n)

⎞
⎠ =

1√
2π

∫ ∞

−∞
h(t)e−

t2

2 dt.
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