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1. Introduction. Let A denote the adele ring of the rational numbers Q 
and suppose that we have a cuspidal automorphic representation re of 
GL2(A). (For the terminology and the details, we refer the reader to 
Gelbart [3] and Jacquet and Langlands [5]). Langlands [9] has described 
how one can attach an L-function to ic. To describe this construction brief
ly, one can associate to 7r, a family of local representations np for each 
prime/? of Q. This family is uniquely determined by n such that 

(i) Tip is irreducible for every /?, 
(ii) for all but finitely many primes p, %p is unramified (that is, the 

restriction of %p to GL2(Z^) contains the identity representation exactly 
once), 

(iii) 7T can be factored as the restricted infinite tensor product % = 
®p7Cp. 

Let S denote the set of primes p for which %p is ramified. For p <£ S9 

it is known that np corresponds canonically to a semisimple conjugacy 
class ap in GL2(C), where op contains a matrix of the form 

lo ßp\-

If r denotes any finite dimensional complex representation of GL2(C), 
one can attach an L-series L(s, n, r) as follows. 

L(s, a, r) = \\L(s, %p, r), 
p 

where 

L(s, 7CP, r) = det(l - r(ap)p-^ 

whenever np is unramified. If %p is ramified, and r is standard, we refer 
to J-L [5] for the definition of L(s, np, r). It is known [9] that each L(s, n, r) 
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converges in some half-plane and we conjecture that it has an analytic 
continuation and satisfies a suitable functional equation. We also have the 
Ramanujan-Petersson conjecture 

\ctp\ = \ßp\ = I-

If r is p2, the standard representation, we shall simply write L(s, %) for 
L(s, 7T, p2). In fact, L(s, %) has classical origins. L(s, n) is the Mellin 
transform of either a cusp form or a Maass wave form on FQ(N), for some 
natural number TV. 
More precisely, let 

CO 

f(z) = 2 a(n)e^z 
w = l 

be a cusp form on r$(N) of integral weight k and Nebentypus % (mod N). 
Suppose further that / is a normalised eigenfunction for all the Hecke 
operators. Then there exists a cuspidal automorphic representation izf of 
GL2(A) such that 

L{s, TIf) = (2*)-<'+*-"» r(s + *-=l±) f; ^ L , 

where #w = n~{k~1)/2 a(n). Moreover, for this %/, we have 

<*pßp = x(p) a n d ocp + ßp = ap. 

The Ramanujan-Petersson conjecture in this case of holomorphic forms 
was settled by Deligne [2]. 

Now, let / b e a real analytic modular form on r${N) with character 
X (mod N). That is, / satisfies f((az + b)(cz + d)) = %(d)f(z). A Maass 
form (of weight 0) is an eigenfunction of the non-Euclidean Laplacian, 

- - - > < & + & > 
which also satisfies polynomial growth conditions at each cusp of r§{N)\ 
J), where r) denotes the upper half plane. Let/, satisfying Af = If, be an 
eigenfunction of the Hecke operators. Such an/necessarily has a Fourier 
expansion of the form 

f(z) = E < W T Kir{4a\n\y)e™»*9 

where Ks(u) = Jg° e~y/2{u+1/u) w5"1 du, and A = 1/4 + r2 is the eigenvalue. 
The Ramanujan-Petersson conjecture for Maass forms then reads 

\aH\ S M •</(*), 

where d{ri) is the number of divisors of n. This conjecture is still open. 
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As a consequence of recent developments. Serre has observed that one can 
show 

an = 0(n^d(n)). 

In connection with the eigenvalue À9 one knows that r is purely real, or 
purely imaginary. We have the conjecture (Selberg) 

Selberg showed [13] that X à 3/15. In [9], Langlands viewed the Selberg 
conjecture as the Ramanujan conjecture at the infinite prime and showed 
how one can deduce both of these conjectures if we had an analytic con
tinuation of L(s9 TT, rm)9 where rm denotes the ra-th symmetric power of the 
standard embedding p2 of GL2(C) into GL2(C). We describe Langlands 
conjectural approach below. 

2. Upper bounds for eigenvalues. If m = 2, 3 or 4, it is known that 
L(s, ft, rm) has a meromorphic continuation to the entire complex plane 
and satisfies a suitable functional equation. The case m = 2 (for which 
L(s, %, r2) is in fact proved to be entire) is due to Shimura [15], when % 
is associated to a holomorphic modular form, and the general case for 
m = 2 is due to Gelbart and Jacquet [4]. Shahidi [14] recently settled the 
cases of m — 3 and 4. These results are valid over any field and not just 
over Q. 

The Euler factors of L(s9 n, rm) are easy to describe. We have, for un-
ramified np, 

From the analytic properties of L(s, TT, rm), we would like to infer the size 
of the a p. 

The philosophy behind this idea can be revealed by the following sim
ple observation. Suppose an ^ 0 and f(s) = £ïLi an\

n$ respresents an 
analytic function for Re s > 1. Then, it is almost immediate that an = 
0(nl+e). To see this, we first note that 

1 f2+fOO 

e-1'* = -±r r(s)x* ds. 
iTZl J 2-IOO 

Therefore 
00 I f 2+100 

2 < ,„*-* '»=* [ r(s)f(s)x* ds. 
«=1 l%l J2-ÌOO 

Moving the line of integration to a = 1 4- e, we obtain E ^ ane~n/x = 
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0(x1+£), as the /"-function decays exponentially as t -» oo in any half-
plane and f(s) is bounded for a ä 1 + s. It follows that an = 0(nl+£). 

We remark that this result cannot be substantially improved. Indeed, 
consider 

&ks - k + 0 = 2 V -

This series converges for Re s > 1 and an = J0(«1 _ 1 / Ä) AS /C can be arbi
trarily large, we find that there exist series with an ^ 0 and an = Q{nl~£). 

Now, suppose L(s, TU, rm ® fm) is analytic for Re s > 1, where rw de
notes the contragredient representation of rm. Then it follows from the 
above that 

= o(/>1+e). 

Since \apß^ = 1, we must have one of |a^| or |/3^|, bounded. Suppose 
without loss, ßp = 0(1). Then, we see that 

follows from the preceding discussion. In an analogous fashion, consider
ing L(s, Tip, rm ® fm) when p = 00, we find that |Re r\ ^ \\m as 
L(^, 7T, rm ® rm) is analytic for Re s > 1. Letting m -> 00, we deduce 
both the Ramanujan-Petersson conjecture and the Selberg conjecture. 
These considerations are due to Langlands [9]. Analogous ideas were uti
lised by Deligne [2] in his proof of the Ramanujan-Petersson conjecture 
for the case of holomorphic forms. In that case, the /7-Euler factor can be 
identified as an L-function of a certain algebraic variety over the 
rational function field over the finite field of /7-elements. The necessary 
analytical properties are deduced by the etale cohomology theory of such 
varieties. 

It is a result of Jacquet, Piatetskii-Shapiro and Shalika (see H. Jacquet, 
From GL2 to GL„, 1975 U.S.-Japan Seminar on Number Theory, Ann 
Arbor) that L(s, %, r2 ® f2) has an analytic continuation to the entire 
complex plane except for a simple pole at s = 1 arising from £(.s). By our 
earlier remarks, it follows that ap = <9(/?1/4+£) and that A ^ 3/16. 

Utilising a general lemma on Dirichlet series with functional equa
tions, one can improve the above exponent of 1/4 to 1/5, as was noticed by 
Serre. Such a lemma was first proved by Landau [7] and generalized 
by Chandrasekharan and Narasimhan [1]. We state a specialization of 
their theorem for future reference. 

LEMMA 1. Let an ^ 0 and set f(s) = ££Li ajns. Suppose f(s) is con
vergent in some half-plane and that it has analytic continuation, except for 
a simple pole at s = 1 of order k, to the entire complex plane and it satis
fies afunctional equation 



HECKE OPERATORS 525 

C°d(s)f(s) = C!-SJ(1 - S)f(l - S) 

where c is a certain positive constant and A(s) = IT&i Aa> s + /3,). Then 

S a„ = xP^log x) + 0(x{2A-1H2A+1) log*-**), 

where A = 2J£=i a:,-, and Pk_i is a polynomial of degree k — 1. 

REMARK. If, instead of a„ ^ 0, we assume that E *<;„£*/ Kl = 0(*ö)> 
then the conclusion of the lemma still holds with an error term of 

0( j c (2 i l - l ) (2 i l+ l ) l o g *- l x + **) . 

(See [1] or[ 7] for a proof.) 
It is known that if we set r(s, n, rm) to be the product If the .T-factors 

appearing in L(s, ic, rm), then 

r(s, n, rm) = n / " ( s ^ y ) / 2 r(±=^L)' 

where Ay are certain real numbers. If 7T corresponds to a Maass wave form 
with eigenvalue A = 1/4 -f- r2, then Ay = /(m — 2j)r in the above product. 
With this definition of the /^-factors, we have the functional equation 

L(s, TT, rm) = L( l - S,TT, rm), 

where rm is the contragredient of rm, for m = 2, 3 and 4. 
Applying the above lemma to the Dirichlet series f(s) = L(s9 n, r2 ® 

r2), we find that 

\ap\ ^ /?1 /5 + p~1/5 

since f(s) has a simple pole at s = 1. 
We can ask if there is a corresponding improvement at the infinite 

prime. That is, can we obtain a better lower bound for Ai? 
To this end, let us define 

^m(^) = IT Us, 7Cp, rm) 
p--£oo 

and write 

L2(s)L,(s) = Ç %-, 

for Re s > 1. We have the following 

THEOREM 1. The Dirichlet series E T aJnS converges for Re s > 9/11 
and therefore the function 

g(s) = L2(s)Li(s) 
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has an analytic continuation for Re s > 9/11. Ifg(s) has no real zeroes for 
s > 9/11, then we have Xx ^ 403/1936 = .208 

REMARK. If, in addition, we assume the Ramanujan-Petersson con
jecture, we obtain X\ > .21. 

PROOF. We have that if 

n—\ n 

then an ^ 0 and 

2 an = ex + 0(x^\ 

by our earlier remarks. We would like to apply Lemma 1 to g(s) and 
obtain information concerning partial sums of the coefficients. In view of 
the remark following Lemma 1, we need to obtain an estimate for 

x<n<x+x±/5 

Since cn = J^dln /Lt(d)an/d, where ft is the familar Möbius function, we have 
the majorization 

k„l ^ S ad-
d\n 

Applying Lemma 1 to the series ^(s)f(s), we find that 

x<n<x+xi'5 

Therefore, applying Lemma 1 to g(s) yields 

E cn = O(x^ii). 
n^x 

This establishes that the Dirichlet series defined by g(s) converges for 
Re s > 9/11 and hence defines an analytic function there. If now, we 
suppose that g(s) has no real zeroes in this half-plane, then 

Us, TI, r2 ® f2) _ r( ~ - x ^ ^ - - / (s9 n, r2 ® r2) 

is analytic for Re s > 9/11. Therefore, the Afactors are analytic there. 
It follows that 

|Rer| ^ £ , 

and the corresponding lower bound for Xi follows from this. 

3. ß-theorems for Fourier coefficients. We begin with the following lem
ma. 
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LEMMA 3, Suppose that 
(l)f(s) is an analytic function for Re s ;> 1, except for a simple pole at 

s= 1; 
(2) log f(s) = Zn=i cjn* with cn 2; 0. 

Thenf{\ + it) ^ Ofor any real t. 

PROOF. Suppose f(\ + it) = 0. Then we consider the classical com
bination 

g(s) = P(s)f*(s + it)f(s + 2it\ 

and note that g(s) has a zero at s = 1. Then, as usual, log gO) is a Diri-
chlet series with non-negative coefficients and so log g(a) ^ 0, for a > 1. 
Thus, |g(er)| ^ 1, for a > 1. Letting o -• 1+ gives a contradiction. 

We apply the lemma to the function/(s) = C>(s)L2(s)Li(s). 
Since LO, TT, /^ ® r2) = ^O, ^, r2 ® r2)f(s), w e finc* tha t /0 ) has a simple 
pole at s = 1 and is analytic for Re s ^ 1, s 7* L By the lemma, it does 
not vanish on the line o = 1. The Wiener-Ikehara Tauberian theorem 
implies 

THEOREM 2. J^p^x \ap\* log/? = (2 + Ö(1))X, as x -* 00. 

PROOF. From the Tauberian theorem, we have 

L |tr| + a,j8, + i3?|2 = (1 + o(l))x/log x. 
pax 

Now, a^ = a^ + ßp and so 

| a / = \cc2
p + 2 ^ 0 , + ßj\* 

= laj + <r,j8, + ^ |2 + 1 + 2 Re(x(/7)(a| + ßj + *,&)). 

Now, LO, TT, r2 ® £) and LO, ft, f2 ® x) do n o t vanish on the line o = 1 
since £(s)L(s, K, r2 ® #) has non-negative coefficients in its defining 
Dirichlet series and an easy application of Lemma 3 gives the non-vanish
ing result. It therefore follows, by the Tauberian theorem, that 

S Re(*O0 (al + ccpßp + /3|)) = o(x/log *) 

as x -^ 00. Combining this with our earlier derivation gives us the desired 
result. 

COROLLARY 1. For a positive proportion of the primes, \ap\ ^ 1.189. . . 

COROLLARY 2. an = Q(exp(c log n)(j\og log n)) for some constant c > 0. 

PROOF. AS an is multiplicative, we set N to be the product of the primes 
p ^ x such that \ap\ ^ 1.189. Then, by a familiar argument, 



528 M. R. MURTY 

l«"1 = e x p ( i o Ä ) ' 
for some c > 0, which proves the result. 

REMARKS. A version of Theorem 2 was proved for holomlrphic modular 
forms in [11], without Nebentypus. The non-vanishing of L^s) on a = 1 
and the ö-result for the Fourier coefficients was established there only in 
this case also. 

Corollary 2 has an interesting application to modular forms of half 
integral weight. 

COROLLARY 3. Let g(z) = S T cne
2ltinz be a modular form of weight 

k + 1/2 for FQ(4N) with character % and k an integer ^ 3. Then 

cn = Û(nk/2~1/A exp(c log n/log log «)), 

for some c > 0. 

PROOF. Shimura and Niwa have constructed a lifting of cusp forms of 
weight k + 1/2 on r0(4N), with character %, to cusp forms of weight 2k 
on r0(2N), with character #2, for each squarefree integer N. If g is an 
eigenfunction of Tk+1/2(p

2), then defining, for every D, 

CD^n = Edk-lC„2D/d2[^-j 

we find/(z) = £ T ane
2ninz is a modular form of weight 2k. If the stated 

ö-result is false, then we would get 

\cn\ S e /2*/2-i/4 exp(c log «/log log n) 

for all n sufficiently large. Substituting into the above formula yields 

\an\ = e nk~V2 exp(c log n/log log n) 2 d~1/2. 

The last sum is <?(exp(c(log n)V2)) and, therefore, the above estimate 
contradicts Corollary 2. This completes the proof. 

4. The Selberg-Linnik conjecture. Let us define the Kloostermann sum 

S(n, m, c) = 2 e2ni/c{ma+nä) 

The estimate 

a (mode) 
aa~\ (c) 

|S(/i, m, c)| g d(c)c1/2(m, n, c)l/2 

is well-known and due to Weil [17]. Many problems in additive number 
theory reduce to estimating sums of the type 
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G(x)-Z S(m,n,c) 
c^x C 

One expects considerable cancellation to occur in the sum. Selberg [13] 
and Linnik [10] independently conjectured that for x ^ (m, /?)1/2+£, 

s S(m,n,c) = 0(xc) 

c^x C 

Our fl-result for the Fourier coefficients gives us that G(x) = £?(exp(c log x)j 
(log log x)) for some c > 0. This was proved in [11]. 

Selberg's original motivation for this conjecture was that it could yield 
a proof of the Ramanujan-Petersson conjecture in the holomorphic case 
corresponding to the full modular group. With this in view, we prove the 
following result, which was certainly known to Selberg. 

THEOREM 3. Suppose that 

oo 

f(z) = 2 a(n)e^'nz 

x=l 

is a modular form of weight k for the full modular group. lfG(x) = 0(x$+£), 
then 

a(n) = 0(nk~l+ß/2+s). 

REMARK. If in particular /3= 0, then the Ramanujan conjecture follows. 
It was shown by Kuznetsov [6] that G(x) <£>m>w x1/6+e, but, unfortunately, 
the constant depends on m and n. 

PROOF. Let us define the t-th Poincaré series 

Gt(z) = 4 - ZI (cz + rf)-*e2«-< («+«/(«+«/), 
^ {c,d)=l 

for 1 g t rg /*, where r is the dimension of the space of cusp forms of 
weight k for the full modular group. It is a result of Petersson that G^z), 
. . ., Gr(z) span this space of cusp forms. Expanding Gt(z) in a Fourier 
series, we find that the /2-th Fourier coefficient of Gt(z) is given by 

where ôt„ is the Kronecker delta function and Jk is the Bessel function 
defined by 

•/*(z) = ^ - — r v f * sin2* 0 cos(z cos 0)dd. 
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An easy partial summation reveals that 

H(x) = H S(n, m, c) = 0(x^ß^). 

In estimating the Fourier coefficient, it suffices to estimate 

vi S(t9 n, c) j (4n^m\ 

ä c Jk-l\~c-r 
We easily find that 

c><Tn C \ C / c>Sn \ \C + 1 / \ C JI 

« V^ E - ^ - / ^ i ( f c ) . 
c>Vn C 

for some £.e i^n^~ntl{c + 1), An ̂  Title). Since y^_i(x) < x_1/2, we find that 
the above sum is 

« «™ £_ - ^ 
It remains only to show that 

G(c)\ 

j , , S(t,n,c) Jk_ /4rçyW\ = 0 ( wc^)/2 ) # 

We show this by induction on /:. For /c = 10, there are no cusp forms of 
weight 10, therefore the estimate is valid in view of our earlier bound. 
By induction, we must therefore show 

In view of the identity 

2U*{X) = Jt+i(x) + / M W . 

it suffices to estimate 

-kr S s(r, «, c W 4 ^ ' ) . 

By partial summation and the estimate J'k(x) < x~V2, we find that the 
above sum is 

« _ L v nmi<<n 
^ J M Ai_ „Q/o ^ n n^cth c3/2 

(/3+e)/2 

as desired. 



HECKE OPERATORS 531 

REMARK. It would be of interest to have an alternate proof of the above 
which avoids the induction step, for this would have application to other 
congruence subgroups of the modular group. In connection with Ai, Sel-
berg [13] has shown that the Dirichlet series 2 ^ S(m, n, c)/c2s admits an 
analytic continuation to Re s > <j0 > 1/2 if and only if X\ ^ <70(1 — <?o)-
Weil's estimate therefore gives Ai ^ 3/16. 

5. Concluding remarks and conjectures. In this section, we explore the 
possibility of improving the error terms in Lemma 1. Certainly this would 
lead to better estimates for the eigenvalues. But, as we shall discover, the 
method has limitations. 

Suppose fis) is an analytic function for Re s > 0, except for a pole 
of order k at s = 1, and that, for Re s > 1, it is given by the Dirichlet 
seriesfis) = H^iCiJnK Define 

via) = inïL:VT\f(a + it)\2 dt = 0 ( 7 ^ ) 1 . 

THEOREM 4. Suppose that, for some a > 0, via) > 1. Let 

£(*) = H an ~ x/Vi(log x) 

be o(x)for a suitable polynomial of degree k — 1. Then 

E(x) = O(x*/log x). 

PROOF. It is clear that 

2n J . ^ a + it 

for any a > 0. By Parseval's formula, 

Jo W'+1/2~/ 2TT J_«,I a + it 
2 , 
rff. 

If £(*) = 0(jc*/log x), then 

27T J T I cr 4- it 
dt < oo, 

for all T. Therefore, via) S U contrary to our assumption. This completes 
the proof. 

Now, suppose that f(s) satisfies a suitable functional equation, i.e., 
cA{s)f(s) = <?i-'J(l - s)f(\ - s), where A(s) = U^n^s + &•). By 
Stirling's formula and the functional equation, we deduce 

v{a) = p(\ - 2a) + vil - a), 
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where p = £jLi Œj. Thus, we find p(ì - la) > 1 if a < (p - l)/2p, 
and so v{(p — 1)12p) > 1. It follows therefore from the theorem that 

E(X) = QixU-»'2P/log x). 

In analogy with the classical divisor and circle problems, we conjecture 

E(x) = 0(X<P-W*P+'). 

This would lead to an estimate of ap — 0(p1/9+£), for the eigenvalues. 
The above theorem, together with Lemma 1, easily yields the following 

corollary. In the holomorphic case, (1) was proved by Rankin [12] and (2) 
was proved by Walfisz [16]. 

COROLLARY. (1) £ an = OW*+'\ and 
n^x 

(2) 2 a„ = 0(*i'«-«) 
n^x 

for every e > 0. 

Indeed, it is easy to see that 

E(e^)-E(e«)_ 1 f M ^ - I W * * 
eua Ini J (C) s v 

Parseval's formula gives that 

Jo \ ?M<r / 2TT J_«, t a 4- it \ ' 

Utilising the fact that, for Ô = log (1 + Ì/T), we have, for \t\ ^ r , the 
estimate \eô(a+it) — 1| g \t\/T, we easily find, from the above formula, 

Jo \ e"ff / MJ2 
<^ 7T- l+y(a)+e i 

(7 4- /* 

.2 

If we let S(x) = Yln^x am w e deduce that 

/•ex 

Jo 
S[y+jr) -S(y) - -ffy-2*-1 dy « r-i+"<">+*. 

Choosing T = n and considering only the interval [>?,« + 1] in the in
tegral immediately gives that an < j^+^/s+e. i n particular, if we assume 
the mean value conjecture that v{a) = 0, for a ^ 1/2, then we deduce that 
an = 0(n1/2+£). For the eigenvalues, we find, on the mean value conjecture, 
for the L-function L{s, %, r2 ® r2), that ap = 0(pl/s+£). Under this general 
situation, one should be able to show that v(a) = 0, for a ^ p/(p + 1). 

In the case of the eigenvalues, it is not difficult to see that for the 
corresponding L-function, we indeed have that v(a) = 0, for a ^ 
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(p — l)/(p + 1). This fact equally implies the Serre bound of /?1/5. Con
sequently, any improvement in the range of vanishing of the v-function, 
yields a correponding improvement in the eigenvalue bound. 
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