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Fix an integer a > 2. For each m > 1, let fo(m) be the smallest power f so that
af = 1 (mod m). We give explicit upper bounds for the series > 1/mfa(m)® and
Zp log(p)/pfa(p)®, generalizing and strengthening results of Romanoff, Landau, Erdés and
Turan. We also prove analogous results over number fields and for abelian varieties.

Introduction

Let @ > 2 be an integer, and for each positive integer m, let
fam)=min{f >1:af =1 (mod m)}.
(If ged(a,m) > 1, we set fo(m) = co.) Romanoff [12] proved that the series

zm?_l 1/mfo(m) converges. The dependence on a was made explicit by Landau [9],
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who proved an upper bound of the form C(logloga)?, and this was improved by
Erdés and Turan [6,7] who proved for every ¢ > 0,

Z m < Ci(e)logloga. (1)

m>1

(See also [4] for some related work of Erdds.) In this paper we will give a simplified
proof of the Erdos—Turan result (1) which leads to the more precise estimate

Z <e'logloga + 2¢7¢™ + Cy (2)
m>1 fa

with an absolute constant Cs. Here v =~ 0.577216 is Euler’s constant. We will also
show that the e” logloga cannot be improved, and we will give an estimate for an
analgous sum over primes:

log p -1
<logloga+2:7" +C5. 3
Xp:pfa(p)f =88 ’ ®

There are a number of ways to extend and generalize (2) and (3). For example,
we can replace the element a with a free subgroup I' C K* of rank r in a number
field K with ring of integers R. Then f,(m) becomes

fr(m) = # Image(I' — R/m).

(If some element of T is not relatively prime to m, set fr(m) = 00.) We will prove

1
E ———1———~ < e'kiloglog Hi(T) + (1 + —)e’nxa‘l + Cu(K,7),
me(oy V- fr(m)e 4 (4)
long ( 1) 1
<loglog Hg(T) + [ 1+ = )e™! + C5(K, 1), (5)

where s is the residue of (x(s) at s =1 and Hk(T') is a certain height associated
to I

We can also replace the multiplicative group K* with an abelian variety A/K.
Much of the argument is the same, so we will just prove the analogue of (5). Thus
let I' € A(K) be a free subgroup of rank r, and for each prime ideal p let

fr(p) = # Image(T' — A mod p).

(If A has bad reduction at p, one can either set fr(p) = oo or work on the Néron
model of A.) We will prove that

log Np 2\ _
% T oy < oehr(D) + +(1+2) 4 antarm), ©)
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where A k(T') is a certain canonical height associated to I'. Notice that the quantity
(1+1/r)e~! in (5) has been replaced by a (1 + 2/r)e~! in (6). This occurs because
the logarithm function log(af) is linear in f, while the canonical height hx (fP) is
quadratic in f.

We will now briefly describe the contents of this paper. In the first section we
prove (2). This serves to illustrate the general method in the simplest setting. In
Sec. 2 we work with finitely generated groups in number fields and prove (4) and
(5). Section 3 contains a proof of the abelian variety estimate (6). In the last section
we show how the explicit dependence on ¢ in (2), (3), (4), (5), and (6) can be used
to give density estimates. For example, we will use (2) and (3) to prove that for
any 6 > 0 the sets

{m>1: fo(m) <mf} and {p: fu(p) <1’}

have (upper) Dirichlet densities at most 576/16 and 26 respectively.

We close this introduction with a brief remark. An important application of
Romanoff’s theorem [12] is its use in the proof of Bilharz’ theorem [2] concerning
the function field analogue of Artin’s conjecture on primitive roots. Let Fy be
a finite field with ¢ elements, let A = F,[T], and let a € A be a non-constant
polynomial which is not an £th power for any ¢|g—1. Bilharz shows that the Dirichlet
density of the prime ideals in A for which a is a primitive root is given by the
sum Yy, p(m)/mf,(m). The absolute convergence of this sum is a consequence of
Romanoft’s theorem. That the sum is positive follows from a theorem of Heilbronn.
Bilharz’s full result is even more general than this.

1. A Refinement of Erdés—Turan
In this section we will prove the following refinement of the theorem of Erdos

and Turan [6,7].

Theorem 1.1. Let a > 2 be an integer, let € > 0, and for each integer m > 1,
define fo(m) by

(a) fa(m) =min{f >1: af =1 (mod m)}.
g“; Wl(m); < e"logloga +2e7e™! + O(1).

(b) Let N > 2 and a =1+ LCM[1,2,... ,N]. Then

=]

1
— > Y .
E o e”logloga + O(logloglog a) as N -

m=1

(In both parts, v =~ 0.577216 is Euler’s constant and the O(1) constants are absolute
and effectively computable.)
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Remark. Notice that f,(m) < m for all m with gcd(a, m) = 1, so we have

— 1 1 1
Sammrz Lol

ged(a,m)=1

This shows that the series grows at least like C(a)e™! as ¢ — 0. It would be
interesting to compute the exact value of €y 1/mf,(m)® as ¢ — 0 (if the limit
exists).

The first step in proving Theorem 1.1 is the following elementary consequence
of Mertens’ theorem.

Lemma 1.2. For all integers n > 2,

Z % < e"loglogn + O(1).
d|n

Proof. This follows from Mertens’ theorem [8, Theorem 429] and a standard
argument looking at large primes and small primes. (See also [8, Theorem 323].) We
will prove a more general number field version in the next section (Corollary 2.3),
so we do not include a proof here. O

During the proof of Theorem 1.1 we will need to consider the following two sums:

Lih= ¥ - Du() = 3 da(f).
m>1 f<e
fu(m)‘:f

Lemma 1.3. Forallxz > 1,

D.(z) < 2¢”logz + €” logloga + O(1).

Proof. Let

The trivial estimate

Az) = H(af -1)< H of < a®@EHD2 < g7
fLz fL=

gives
loglog A(z) < 2logz +logloga. (N



Int. J. Math. 1996.07:373-391. Downloaded from www.worldscientific.com
by INSTITUTE OF MATHEMATICAL SCIENCES on 08/14/17. For personal use only.

VARIATIONS ON A THEME OF ROMANOFF 377
We also observe that
fa(m) <z <= of =1 (mod m) for some f < z => m|A(z) . (8)

We compute

Do(z) =) da(f) = -71; by definition of D,, d,
f<= f<z m>1
fa{m)=f
1 1
= Z mgzm from (8)
m>1 m|A(z)
fa(m)<e

< e"loglog A(z) + O(1) from Lemma 1.2
< e"(2logz +logloga) + O(1) from (7).
This completes the proof of Lemma 1.3. ]

We are now ready to prove Theorem 1.1.

Proof (of Theorem 1.1). Let S, be the sum we are trying to estimate. We
rewrite S, as

= 1 1 1 Xdo(f)
Sa.—_- ———— —_— —_—= .
A PV R

fa(7n—)=f

Lemma, 1.3 tells us that

lim — S d(f) = lim L - Dy(z) =0,
z—00 L€ r—o0 I
f<

80 we can apply Abel summation to compute
e €
S, = / Do (t) - e dt (Abel summation {1, Theorem 4.2])
1

R 2 2
S/ (2¢7logt + ¢ tli)felogaﬁ-O(l))e dt (from Lemma 1.3)
1

=2e7e™! + e logloga+ O(1) (elementary calculus).

This completes the proof of Theorem 1.1(a).
To prove (b), we let a = 1 + LCM]1, ..., N]. Notice that f,(m) = 1 for all m
dividing @ — 1, so we have

1 1
S, 2 Z = Z E:e’logN+O(loglogN),
mla—1 m|LCM[1,...,N]
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where the last equality is an exercise using Mertens’ theorem. On the other hand,
the prime number theorem says that

P(N) =1logLCM[1,... ,N]~ N,
so log N = log(a — 1) + o(1). Substituting this in above gives the desired result. O

Remark. Erdés [4] has proven estimates of the form

Z % < Cyla)loglog f .

dlaf-1

Such estimates are clearly closely related to the results in this paper. He also
conjectures (in our notation) that

D,(z) ~ Cs(a)logz and proves that flim d.(f) =0.
—00

More precisely, Erdos only considers the case a = 2, but the general case should fol-
low similarly. Pomerance (private communication) has suggested that the constant
Cs(a) should equal ¢(a)/a.

Remark. Sometimes it is useful to have estimates like those in Theorem 1.1
for sums involving f,(m) over squarefree integers m, see for example [12]. Using
exactly the same methods, it is not hard to show that

o0 2 2

where the notation is as in Theorem 1.1. We will leave the details to the reader.

2. Bounds for G, over Number Fields

In this section we are going to generalize Theorem 1.1 by estimating an analogous
sum for finitely generated subgroups of the multiplicative group of a number field.
We set the following notation, which will be used throughout the remainder of
this paper.

K a number field of degree d.

R the ring of integers of K.

kKK  the residue of (x(s) at s = 1. Thus kg = 2™ (27r)’2hKRK/wKD}{/2,
where 71, o are the number of real and complex embeddings of K, hg
is the class number of K, Rk is the regulator of K, wx is the number

of roots of unity in K, and Dg is the absolute discriminant of K/Q.
Hg  Weil height on K (see [10, Ch. 3, Sec. 1]).
r a free finitely generated subroup of K* of rank r > 1.
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Hg (') the minimum value of 3Hk(a1)--- Hi(a,) over all sets of generators
{ai,...,a.} for T. (The factor of 3 is included merely to ensure that
Hy(T) > 3, so the quantity loglog Hg(T') will be positive.)

For each non-zero integral ideal m of K, we define

fo(m) { # Image(I' — R/m) if ordy(a) =0 for allpimand alla €T,
rim)=

00 otherwise .
Finally, we will use functions which have the following four properties:
(i) G:[1,00)—[0,1].
(ii) G is continuously differentiable and non-increasing.
(i) G(1)=1.
(iv) f°G(z)/zdr < .

For example, the functions z7° and (1 + logz)~!~¢ satisfy condition (x).
We are now ready to state our main result.

Theorem 2.1. With notation as above, let G(z) be a function satisfying (x).
Then the following estimates hold, where the first sum is over non-zero integral
ideals of K and the second sum is over prime ideals of K :

G(fl“(“l)) < log log H 1 * G(z)
—_— <L 7 (]_“) +e” 14+ = —Zdx+ 0O ( )
m;(o) N e'Ki loglog i € IiK( ’I’>/1 o X k(T ©)

z:c;(fr(n))lojg\,i:r‘J < loglog Hy (T) + (1 + %) /1 ” @dx +Ok(r). (10)
p

Remark. We observe that if we take G(z) = ¢, then (9) and (10) become
the inequalities (4) and (5) stated in the introduction. If we further take K = Q
and I' = (a), then (9) and (10) become (2) and (3). So Theorem 2.1 contains all of
the inequalities stated in the introduction except for the estimate (6) dealing with
abelian varieties which we will prove in the next section.

We begin with a number field version of Mertens’ theorem and a useful corollary.

Proposition 2.2. For allz > 1,

1\"!
H (1————-) =e"kKxlogz + Ok (1) (Mertens’ theorem) (11)
Np
Np<Lz
1
) °va” =logz + Ox(1). (12)
Nyp<z

Here v =~ 0.577216 is Euler’s constant.
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Proof. These are standard results over Q, although Mertens’ theorem is usually
stated merely as an asymptotic estimate instead of with the O(1). See for example
[8, Theorem 429] for (11) and [8, Theorem 425] for (12). These proofs can be
adapted to the number field case and the stronger Mertens’ estimate proven by
making use of well-known properties of the Dedekind zeta function (x(s). See [13]
for details. O

Corollary 2.3. Let n be a non-zero integral ideal in K with norm Nn > 2.
Then

Z—l— < e'kkloglog Nn + Ok (1) (13)
o No
Z log Np < loglog Nn+ Og(1). (14)
pln Np

Proof. Let
F(n) = #{p : pjn and Np > log Nn}.

We begin with the “large” primes. Thus

log Nn

> > f(m) < 27

Nn > I I Np > (log Nn)''™ | so f(m) < oglog Nn
Np>pl|ongNn

This allows us to estimate

-1 ~f(n)
1I 1- L < (1 - )
Np log Nn

pin
Np>log Nn

1 —log Nun/loglog Nn
(- )

B logNn

1
= — . 15
1+O<loglogNn> (15)

Similarly we estimate
log Np loglog Nn
E < ——<1. 16
Ny < fm) log Nu =1 (16)
Np>pl|c:‘g Nn

Next we consider the “small” primes. Using Mertens’ theorem (11), we compute

1 -1 1 -1
H (1—N_p) < H (1—‘ﬁ;) =67I€K10g10gN11+0K(1). (17)
pin Np<log Nn

Np<log Nn
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Similarly using (12) we find

log Np log Ny
< =loglog N 1). 18
> NS 2 Np = loglogNn+ Ox(1) (18)
pin Np<log Nn
Np<log Nn

Now multiplying (15) and (17) gives

1 1\7* 1
[ —_ — v -
§a| 73 < p||| (1 Np) < (kg loglogNn+OK(1))<1+O(loglogNn>>
n n

= e"kk loglog Nn + Ok(1),

which is exactly (13). Similarly, adding (16) and (18) gives (14). This completes
the proof of Corollary 2.3.

The next result provides the crucial estimate needed for the proof of
Theorem 2.1.

Proposition 2.4, For allz > 1,

1 1
Z N <e'kiloglog Hi (') + ek (1 + ;) logz + Ok(r)

m#£(0) (19)
fr(m)<z
Z 10}5\[];7;3 <loglog Hx(T) + (1 + %) logz + Ok(r). (20)
fr(%zj)Sz

Proof. Fix generators a,,... ,a, for I so that Hx(T') = 3Hk(a1) - -- Hx(a,).
Fory > 1, let
I(y)={a}*---a™ €T : |ni,... ,|n.] < y}.

For any a € K*, write the ideal (a — 1) as a quotient of integral ideals,
(a—1)=ag0;?t.

We define an ideal %r(y) by

Ar(y)= [
a€l(y), a#l
Our first job is to prove the following claim.
Claim 1: If fr(m) < z, then m|Ap(z'/" + 2).

Note that if fr(m) < oo, then every element of I is relatively prime to m, so we can
reduce them modulo m. Consider the map
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I'ly) — R/m, a+—amodm.

The image has order

(T mod m) = fr(m)
by definition. On the other hand, if y > 1, then I'(y) has order
#O(y) = #{a* --aym €Tt s e Sy} 2 2y~ )7

Hence if we set y = %xl/ "+ 1, then we have a strict inequality

#DT(y) > #(I mod m),

so we can find distinct elements a,b € I'(y) with the same image. Then
ableT(2y) and @b '=1 (modm),

80 m|ags-1. Therefore m|Ar(2y), which completes the proof of Claim 1.
Using Claim 1 and the inequalities (13) and (14) of Corollary 2.3, we find that

1 1 1/r
Z N < z N <e'kiloglog NAr(z™ /" + 2) + Ok (1) ,
m£(0) m|Ar(c1/7+2) (21)
JSr(m)<z

> loier < ) )Ovap < loglog Nr (2" +2) + O (1).
p P plor(zt/7+2) P (22)

fr(p)<s=

To complete the proof of Proposition 2.4, we need an upper bound for N2r(y)
as described in our second claim.

Claim 2: N2p(y) < 24069 Hy (D)™,

To prove this claim we use elementary properties of height functions. Let a € K
with a # 1. Then [10, pp. 51,53] tells us that

1
HK(a—l)zHK(-a—:—I):Naa IT max{tlla- 1.} > Na,. (23)
vEME

We will also need the triangle inequality in the form

Hy(u+v) < 2°Hyg(u)Hg (v) for all u, v € K. (24)
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Hence

Nor(y)= [] Moo (definition of 2r(y))

a€T'(y), a#1

< [I Hx(@-1) (from (23))
a€T(y)

< H 2¢Hy(a) (from (24))
a€l(y)

H H 2¢H(a}* ---a™) (definition of I(y))

ma|<y  [nr|<y

< H - H 29 H g (ay)™! .. Hy(a, )™
In1|<y ""r'sy

< 24+ (Hy(ay) - - - HK(a,))("’y"'l)"ly(y“)

)r+1

< 2d(3y)’HK(F)(3y

This completes the proof of Claim 2.
We now apply Claim 2 with y = 2'/7 4+ 2 and take the double logarithm of both
sides to obtain the estimate

loglog NAr (/"™ + 2) < log{d(3z/" + 6)"log 2 + (3z'/" + 6)"* log Hx (')}

dlog?2

- 1r _dlog2

= (r+1)log(3z" /" + 6) + log (3:1:1/’ 6 + log HK(I’))

< (1+ %) log z + loglog Hx(T') + Ok (7). (25)

Substituting (25) into (21) gives (19), and substituting (25) into (22) gives (20).
This completes the proof of Proposition 2.4. O

We have now assembled all of the tools needed to prove Theorem 2.1.

Proof (of Theorem 2.1). To ease notation, we let

1 1
dr(f) = ;}) N’ Dr(x)—);dr(f)— z(:) N
m ST m#(0
fo(m)=f fr(m)<z

Proposition 2.4 tells us that Dr(z) < logz, so the fact that G(x) satisfies (x)
implies that
zlim G(z)Dr(z)=0.
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This allows us to apply Abel summation in the following calculation:

5 SUrm) -y ¥ ) ZG(f)dr(f)

m#(0) f=1 m#(O)
fr(m)=f

/ Dr(t)G'(t)dt (Abel summation [1, Theorem 4.2])
< —/ {e”nkloglogHK(I‘)+e7nK<1+ )logt
1

+ OK(r)}G’(t) dt (from (19). Note G'(t) < 0.)

G(t)

=e"kyloglog Hx(T) + €6k <1 + ) / ——=dt + Og(r)
1

(properties () of G and integration by parts)

This completes the proof of the first inequality (9) of Theorem 2.1. The proof of
the second inequality (10) is entirely similar, so we just briefly sketch. Thus we let

i)=Y EE h@=Yan= ¥ 5 @)
f<=

P p
fr(p)=f fr(p)=r

Then

St 0) 5" = S 6(Ndr(f) = - [ e ar
f=1

< - /loo {loglogHK(I‘) + <1 + %) logt+ OK(T)}G’(t) dt

= loglog Hx(T') + (1 + %) /100 EYY-it—)dt + Ok(r). a

3. Bounds for Abelian Varieties

In this section we will prove an estimate for series associated to abelian varieties
analogous to the series (26) of Theorem 2.1. We let K be a number field and R its
ring of integers as in Sec. 2, and we set the following additional notation for this
section.

A/K  an abelian variety defined over K.
A/R  a Néron model for A/K.
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hx  the logarithmic canonical height on A(K), relative to K, associated to
a very ample symmetric divisor.

r a free finitely generated subgroup of A(K') of rank r > 1.

hx(T) the minimum value of hx (P1)+-- -+hi(P.)+1 over all sets of generators
{Py,...,P.} for T. (Note hg(I') > 1.)

For each prime ideal p of K, let
fr(p) = #Image(T — A mod p).

Theorem 3.1. With notation as above, let G(x) be a function satisfying the
properties (x) described in Sec. 2. Then

log Np
p

ot <toghm)+ (142) [T it 0. 0

We begin with an abelian analogue of Proposition 2.4.

Proposition 3.2. For allxz > 1,

log N - 2
Z Oifpp$loghx(1")+<1+;) logz + Oa/k(r). (28)

p
fr(p)<z

Proof. Fix generators Py,... , P, for " so that ﬁK(F) = fLK(Pl)+~ . '+iLK(P,-)+
1. Fory > 1, let

Fly)={mPr+ - +n.P €T : |nq|,...,|n| <y}.
For any point P € A(K), P # O, define an ideal ap by
ap = H p.
P=0 (pmod p)

That is, ap is the product of all prime ideals such that P reduces to the identity
element on .4 mod p. Then we define another ideal

Ar(y) = H ap.

Pel'(y), P#0
We begin with the following claim.
Claim 1: If fr(p) < x, then p|Ar(z'/" + 2).

We consider the map

F(y)——».AmOdp, Pt+— Pmodyp.
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The image has order #(I"mod p) = fr(p) by definition. But for y > 1, T'(y)
has at least (2y — 1)” elements. Hence if we set y = %xl/’ + 1, then there is a
strict inequality #I'(y) > #(I’ mod p). Therefore we can find distinct elements P,
Q € I'(y) with the same image modulo p. Then

P-Qel(y) and P-Q@=0 (modyp),

so plap—g. Therefore p|Ar(2y), which completes the proof of Claim 1.
Using Claim 1 and inequality (14) of Corollary 2.3, we find that

log N log N
S P O—ng—-‘fg1og10gN2tp(x1/T+2)+oK(1). (29)

Np ~—
p plAr(zt/r+2)
fr(p)<e

To complete the proof of Proposition 3.2, we need an upper bound for N2r(y) as
described in our second claim.

Claim 2: log N9r(y) < (6y) *2hx(T) + O/ ((3y)").

To prove this claim, we first observe that since hx is defined relative to a very ample
symmetric divisor D, we may assume that this divisor contains the zero element O
of A. Then the canonical local height functions on A at a place p satisfies

Ap(P) > —¢p for all P € A(K). (30)
Ap(P)>logNp—c, if P=0 (modp). (31)

Here the c,’s are Mg-constants which depend on A/K. That is, they are non-
negative constants for each place p of K, and all but finitely many of them are zero.
Now adding (30) and (31) over all places of K and using the definition of ap, we
find that

he(P)=>_ NP> > logNp— > ¢y =logNap +O0a/k(1). (32)
p 4

p
P=0 (mod p)

Remark 3.2.1. For general facts about canonical local height functions, see
[10, Ch. 11]. The lower bound (30) is a general property of local heights relative
to positive divisors [10, Ch. 10, Proposition 3.1]. Further, (31) is an immediate
consequence of [10, Ch. 11, Theorem 5.1], since if P = O (mod p), then P mod p
lies on D mod p. Note that we are normalizing the local heights so that hg(P) =
> Xo(P). Also, we should mention that (30) is really only valid for points P not
on the support of D. So we should really choose divisors Dy, ... ,D, with D; ~ D
and N|D;| = {O} and consider (30) for each D;. We will ignore this technicality.

Remark 3.2.2. For elliptic curves, it is possible to prove (32) in a much more
elementary fashion. Thus let E/K be an elliptic curve and let z, y be coordinate
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functions for a Weierstrass equation for E/K. For any P € E(K), P # O, write the
fractional ideal (z(P)) as bpdp'. Then P = O (mod p) for all but finitely many
prime ideals p|op, so ap|op. (More precisely, this is true for all primes for which the
given Weierstrass equation is minimal.) Then standard properties of the canonical
height [14, VIII1.9.3] give

hx(P) = h(z(P)) + Og/k(1) > log Nop + Og/x(1) > log Nap + Og/x(1).

We now resume the proof of Claim 2. We compute

log N2p(y) = Z log Nap
PeT(y), P#O

< Z (hx(P) + Oa/k(1)) (from (34))
PeT(y)

= > o > (hk(mPr 4 +n.P) + O4/k(1))

[ni|<y  |nel<y

< Z Z (rnfﬁK(Pl)+-~~+rnfﬁK(Pr)+0A/K(1))

i€y Inel<y
(since hy is a positive definite quadratic form)

19y +1)(2y + 1)

5 (hx(Py) + -+ hi(Py))

<r(2y+1)7"
+O04/k((2y+1)7)

< (6y)"2hk (D) + O.a/k((3y)7) -

This completes the proof of Claim 2.
We now apply Claim 2 with y = /" + 2 and take the logarithm of both sides
to obtain

loglog Nr(z/™ +2) < log{(6x'/™ + 12)"*2hk(T) + O/ k(32" + 6)")}

“ 1
= (r + 2) log(6z/" + 12) + log (h,K(I") +Ou/k <2Ty2>>

2 .
< (1+ ;) logz +loghx(T') + O4/k(r). (33)
Substituting (33) into (29) gives (28), which completes the proof of Proposition 3.2.
O

We can now use Proposition 3.2 to prove Theorem 3.1 in exactly the same way
that Proposition 2.4 was used to prove Theorem 2.1.

Proof (of Theorem 3.1). Let dr(f) and Dr(z) be defined by the formulas (26) in
Sec. 2, although now I is a subgroup of A(K') rather than a subgroup of K*. Then
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Dr(z) < logz from Proposition 3.2, so lim, _.o, G(z)Dr(z) = 0. This justifies our
use of Abel summation in the following calculation:

SohEN B =Y T 6B = Y 6(drn(s)
P =1 f=1
fr(p)=f

= —/ Dr(t)G'(t)dt (Abel summation [1, Theorem 4.2])
1

< - /loo {1og hi(T) + (1 + %) logt + OA/K(T)}G'(t) dt

(from (28))

N 2 *® G(t
=log hg(T) + (1 + ;> / ——E ) at + Oa,k(r).
1
(properties (x) of G and integration by parts)
This completes the proof of Theorem 3.1. O

4. Application to Densities

In this section we will apply our earlier estimates to give bounds for the Dirichlet
density of various sets. We let K be a number field as usual. For any set S of
non-zero integral ideals of K, we define the upper Dirichlet density of S to be the

quantity
> Mo
s—1 1
6(8) = limsup mes = lim sup .
( ) s—1+ Z Nm_s s—1+ KK I’% Nms
m#(0)

{Here ki is the residue of (x(s) at s =1, see Sec. 2.)
We can use Theorem 2.1 to estimate the Dirichlet density of the ideals m for
which fr(m) is small.

Theorem 4.1. With notation as in Sec. 2, for each real number 0 < 8 <1 we
let
Sr(8) = {ideals m # (0) such that fr(m) < Nm®}.

Then
8(Sr(8)) <e” (1 + %)9

In particular, if T' = (a) has rank 1, then 6(Sr(9)) < 2¢76 < 570/16.

Proof. We begin by applying inequality (9) of Theorem 2.1 with G(z) = ¢
to obtain the estimate

Z 1 1
m#(0) Nm - fp(m)e ~ © K (1 T)e wrll) (34)
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Notice that the big-O constant includes the term depending on I', but it is inde-
pendent of ¢.
Now we write s = 1 4+ ¢ and compute

1 11
> Nms 2 Nm  Nme

mese(@) T mésn(s)

1 1 . ]
< E | == ——— since fr(m) < Nm’ for m € Sp(9)
mes(6) Nm  fr(m)s/
1 1
< ———— i —
= /o
m;(o) Nm  fp(m)e/

< e€'kk (1 + %) 'z‘ + Og,r(1) from (34)

=e'KK (1 + —) -8—%0—-1 + OK,I‘(I) .

Now multiply both sides by (s — 1)/kx and take the limsup as s — 17. The
left-hand side gives the upper Dirichlet density, so we find that

5(5p(60)) < € (1 + %)a

This completes the proof of Theorem 4.1. (For the last statement, we just note that
2¢7 < 57/16.) ]

We can use Theorems 2.1 and 3.1 in a similar fashion to bound the primes
for which fr(p) can be small. In this case it is more convenient to use the upper
logarithmic Dirichlet density of a set of primes P, which is defined to be

Np®
= e pEP Y log Np
6(P) = llfisllip —Tog Ny = hsrisllip(s -1) ; No*
Nps

p

Theorem 4.2. With notation as in Sec. 2 or 3, let
Pr(8) = {primes p of K such that fr(p) < Np°}.

(a) Let T' C K* be a free subgroup of K* as in Sec. 2. Then

6(Pr(8)) < (1 + %)0.
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(b) Let T' ¢ A(K) be a free subgroup of the Mordell-Weil group of an abelian
variety as in Sec. 3. Then

6(Pr(8)) < (1 + %)0

Remark. Notice that if we take K = Q and I’ = {(a) in Theorem 4.2(a}, we
find that the set
{primes p such that f,(p) < p’} (35)

has upper logarithmic Dirichlet density at most 20. In particular, we can make
the density as small as desired by taking @ sufficiently small. Using more advanced
methods, Erdos and Murty {5] have shown that if # < 1/2, then the set (35) has
density 0.

Proof. Taking G(z) = z~° in inequality (10) of Theorem 2.1 gives
log Np 1y
zp:]—v—‘—'—; < <1+;)6 + Ok,r(1) (36)

for the multiplicative group case. Similarly, using G(z) = ~¢ in inequality (27) of
Theorem 3.1 gives

Z -ﬁk)-ﬂ‘-’—s < (1 + %) el 4 OA/K,I‘(I) (37)

for the abelian variety case. Now both parts of Theorem 4.2 can be proven in
exactly the same way as Theorem 4.1 by using (36) and (37) in place of (34). O

Addendum. After this article was accepted for publication, Carl Pomerance
was kind enough to draw our attention to his paper [11] and to another paper of
Erdés [3]. In [3], Erdds gives an argument which shows (in our notation) that

Dy(z) < (7" +0(1))logz.
Using this estimate in our Theorem 1.1 would allow us to replace the term 2e7e~!
with e”e~!. Using a more elaborate argument, Pomerance [11] proves the existence
of a positive constant ¢ so that

Dy(z) < (" —c+o(1))logz.

Pomerance suggests (private communication) that in this case the correct constant
is %, and more generally that one should have
¢(a)

Da(z)~—a—logz as T — 00,
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Pomerance’s article also contains much interesting information concerning the nor-
mal, minimal, and maximal orders of d,(f) as a function of f.
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