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ON THE ASYMPTOTIC FORMULA FOR THE
FOURIER COEFFICIENTS OF THE j -FUNCTION
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Abstract. We derive the asymptotic formula for the Fourier coefficients of the j -function
using an arithmetic formula given by Kaneko based on Zagier’s work on the traces of singular
moduli. The key ingredient along with the Kaneko–Zagier formula is Laplace’s method.

1. Introduction

Let H denote the upper half-plane {z ∈ C : �(z) > 0}. The j -function defined by

j (τ ) = (1 + 240
∑∞

n=1 σ3(n)qn)3

q
∏∞

n=1(1 − qn)24 , q = e2πiτ , τ ∈ H

is an SL2(Z)-invariant modular function on H whose q-expansion at i∞ is

j (τ ) = q−1 + 744 + 196884q + 21493760q2 + 864299970q3 + · · · .

For definitions and basic facts about modular forms, see [11] or [12]. On the one hand, the
values of the j -function at quadratic irrationalities, called singular moduli, generate Hilbert
class fields while on the other, the coefficients c(n) (n � −1, n �= 0) in the q-expansion of
j (τ ) appear as dimensions of the head representations of the largest sporadic finite simple
group, the Monster group. In what can be described as a marriage between these values and
coefficients, Kaneko [8] discovered a closed formula for c(n) based on Zagier’s work [14] on
traces of singular moduli.

Using the circle method introduced by Ramanujan and Hardy [6] to study the partition
function p(n), Petersson [9] and later Rademacher [10] independently derived the following
asymptotic formula for c(n):

c(n) = [qn]j ∼ e4π
√

n

√
2n3/4

as n → ∞. (1)

Here we use the convenient notation [qn]f for the coefficient of qn in a q-series f .
In 2005, Brisebarre and Philibert [1] revisited this classical work to derive effective upper

and lower bounds (as opposed to mere asymptotic formulas) more generally for powers of
the j -function. In their paper, using Ingham’s Tauberian theorem [7], they indicate a quick
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proof of the following asymptotic formula:

[qn]jm ∼ m1/4e4π
√

nm

√
2n3/4

as n → ∞. (2)

In 2013, Dewar and Ram Murty [4] derived the asymptotic formula for [qn]jm (and more
generally, coefficients of weakly holomorphic modular forms) without using the circle
method. They applied an algebraic formula due to Bruinier and Ono [2].

In this short note inspired by the earlier work [4], we derive the asymptotic formula for
the coefficients of the j -function using the arithmetic formula of Kaneko [8] and Laplace’s
method.

2. Preliminaries

In this section, we shall set up the notation and review the key ingredients necessary for the
proof.

The first fact we need is a well-known fact about binary quadratic forms (see [5,
Chapter 6] for an introduction). We shall write [a, b, c] for the form aX2 + bXY + cY 2.
The discriminant of the form [a, b, c] is b2 − 4ac, consequently, the discriminant of any
form is 0 or 1 mod 4 according to whether b is even or odd.

Definition 2.1. (Principal form of discriminant D) The binary quadratic form

ID =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
1, 0, −D

4

]
, D ≡ 0 mod 4

[
1, 1,

1 − D

4

]
, D ≡ 1 mod 4

(3)

is a form with discriminant D and is called the principal form of discriminant D.

Recall that a form P is said to represent an integer m if there are x, y ∈ Z such that
P(x, y) = m. The following lemma offers a key simplification to our proof.

LEMMA 2.2. The following are equivalent for a form P of discriminant D:
(i) P represents 1;
(ii) P is SL2(Z)-equivalent to [1, B, C] for some B, C ∈ Z; and
(iii) P is SL2(Z)-equivalent to the principal form of discriminant D.

Proof. (i) �⇒ (ii). Suppose that x and y are integers such that P(x, y) = 1. Then, we have
that (x, y) = 1, so there are integers r, s such that xr − ys = 1. Putting p for the matrix
corresponding to P , we see that

(
x s

y r

)t

p

(
x s

y r

)
=

(
P(x, y) ∗

∗ P(s, r)

)
=

(
1 ∗
∗ P(s, r)

)

as required.
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(ii) �⇒ (iii). The equations⎛
⎝ 1 0

−B

2
1

⎞
⎠

⎛
⎜⎝ 1

B

2
B

2
C

⎞
⎟⎠

⎛
⎝1 −B

2
0 1

⎞
⎠ =

⎛
⎝1 0

0
4C − B2

4

⎞
⎠ when B is even,

⎛
⎝ 1 0

−B − 1
2

1

⎞
⎠

⎛
⎜⎝ 1

B

2
B

2
C

⎞
⎟⎠

⎛
⎝1 −B − 1

2
0 1

⎞
⎠ =

⎛
⎜⎜⎝

1
1
2

1
2

1
4

+ 4C − B2

4

⎞
⎟⎟⎠ when B is odd,

establish the claim.
(iii) �⇒ (i). Let iD (respectively p) denote the matrix corresponding to the principal

form (respectively P ). Then, there exists S ∈ SL2(Z) such that St iDS = p. We note that

(
1 0

)
(S−1)tpS−1

(
1
0

)
= (

1 0
)
iD

(
1
0

)
= 1

so that P represents 1 as claimed. �

We now review Kaneko’s arithmetic formula for c(n), one of the key ingredients in our
proof.

2.1. Kaneko–Zagier arithmetic formula for c(n)

Let d be a positive integer with d ≡ 0, 3 mod 4. Let Qd denote the set of all positive definite
(not necessarily primitive) binary quadratic forms of discriminant −d . Associated to each
quadratic form Q ∈ Qd is an imaginary quadratic irrationality in H given by the root of the
quadratic equation Q(t, 1) = 0 with positive imaginary part. This correspondence satisfies
the property that αStQS = S−1αQ for S ∈ SL2(Z) so that the modularity of j implies that
the value of j (αQ) depends only on the SL2(Z)-equivalence class of Q. It is classical [3] that
j (αQ) is an algebraic integer of degree h(−d) over Q, where h(−d) is the number of SL2(Z)-
equivalence classes of primitive positive definite binary quadratic forms of discriminant −d .

In [14], inspired by the question of determining the absolute trace of j (αQ), Zagier
introduced the modular trace function t:

t(d) :=
∑

Q∈SL2(Z)\Qd

2
|Aut(Q)|J (αQ), d > 0, d ≡ 0, 3 mod 4, (4)

for the normalized Hauptmodul J (τ) := j (τ ) − 744 for SL2(Z). Also, for convenience,
define t(0) = 2 and t(−1) = −1 and set t(d) = 0 if d ≡ 1, 2 mod 4 or if d < −1.

Recall the well-known fact about automorphs of binary quadratic forms [5,
Theorem 6.1.9]:

|Aut(Q)| =

⎧⎪⎪⎨
⎪⎪⎩

6, Q ∼ [a, a, a]
4, Q ∼ [a, 0, a]
2, otherwise.

(5)

Based on Zagier’s theorems, Kaneko [8] gave a closed form expression for the
coefficients c(n) of the j -function as follows.
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THEOREM 2.3. (Kaneko) For any n � 1, we have that

c(n) = 1
n

{∑
r∈Z

t(n − r2) +
∑

r�1, r odd
((−1)nt(4n − r2) − t(16n − r2))

}
. (6)

We conclude this section with the statement of Laplace’s theorem in a formulation that
is required in our proof.

2.2. Laplace’s method

Laplace’s method is one of the most fundamental methods useful in deriving asymptotic
expansions of integrals of the form (7). We need the following key theorem.

THEOREM 2.4. (Laplace’s method [13, p. 57]) Suppose that h is a real-valued C2-function
defined on the interval (a, b) (with a, b ∈ R). If we further suppose that h has a unique
maximum at ξ = c with a < c < b so that h′(c) = 0 and h′′(c) < 0, then, we have∫ b

a

eλh(t) dt ∼ eλh(c)

( −2π

λh′′(c)

)1/2

(7)

as λ → ∞.

3. Asymptotic formula for j(τ )

In this section, we shall prove (1) using Kaneko’s arithmetic formula (6). We begin by noting
that the contribution to t(d) comes only from I−d .

LEMMA 3.1. With the same notation as before, we have the following asymptotic formula:

c(n) ∼ 1
n

∑
1�r�√

16n−1
r odd

eπ
√

16n−r2
(8)

as n → ∞.

Proof. In view of Kaneko’s formula (6), let us analyse the modular trace t(d), d > 0, to get
started: recall from (4) that

t(d) =
∑

Q∈SL2(Z)\Qd

2
|Aut(Q)|J (αQ).

We claim that the only class that contributes to this sum is the class [I−d ]. Indeed, if
Q = [a, b, c] is a form of discriminant −d , then, we have

e2πiαQ = exp
(

2πi

(−b + i
√

d

2a

))
= exp

(
−πib

a

)
exp

(−π
√

d

a

)
and consequently

J (αQ) = j (αQ) − 744

= q−1 + O(q)

= exp
(

πib

a

)
exp

(
π

√
d

a

)
+ O

(
exp

(−π
√

d

a

))
.
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In view of this, the contribution to t(d) comes only from classes that have forms with a = 1.
By Lemma 2.2, any such form is equivalent to the principal form I−d so that we have

t(d) = O(exp(−π
√

d)) +
{

exp(π
√

d), d ≡ 0 mod 4, d �= 4

− exp(π
√

d), d ≡ 3 mod 4, d �= 3.
(9)

Since eπ
√

n = o(e4π
√

n) and e2π
√

n = o(e4π
√

n), the contribution to c(n) comes only from the
last summand of the formula. Since 16n − r2 ≡ 3 mod 4 when r is odd, the claim follows
from (6) and (9) on a moment’s reflection. �

In view of this lemma, we consider the sum

Sn := 1√
n

∑
1�r�√

16n−1
r odd

e4π
√

n
√

1−r2/16n = 1
2
√

n

� 1
2 (1+√

16n−1)�∑
k=1

2e4π
√

n
√

1−(2k−1)2/16n

(10)

and view this sum as a Riemann sum for the function t �→ 2e4π
√

n
√

1−t2 : [0, 1] → R
corresponding to the following partition of [0, 1]:

0 =: x0 < x1 < · · · < xbn < xbn+1 := 1,

where bn := � 1
2 (1 + √

16n − 1)� is the upper limit in the sum Sn and

xk = 2k − 1
4
√

n
, 1 � k � bn. (11)

Our strategy is as follows. We shall show that Sn is asymptotic to the corresponding Riemann
integral Jn where

Jn := 2
∫ 1

0
e4π

√
n
√

1−t2
dt =

∫ 1

−1
e4π

√
n
√

1−t2
dt;

then, determine the asymptotic behaviour of Jn and finally deduce that the asymptotic formula
for c(n) is given by (1) using the fact that c(n) ∼ (1/

√
n)Sn as n → ∞.

The asymptotic behaviour of Jn is easily determined using Laplace’s method.

LEMMA 3.2. We have the asymptotic formula

Jn ∼ e4π
√

n

√
2n1/4

(12)

as n → ∞.

Proof. We apply Theorem 2.4 in this case to our integral with the obvious candidate function:
put h(t) = 4π

√
1 − t2 on (−1, 1). Then, the function h has a unique maximum at ξ = 0. Its

first two derivatives are given by

h′(t) = −4π
t√

1 − t2
and h′′(t) = −4π

(1 − t2)3/2

and (7) completes the proof. �
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COROLLARY 3.3. We have the asymptotic formula

1√
n
Jn ∼ e4π

√
n

√
2n3/4

(13)

as n → ∞.

This corollary leaves us needing to show that Sn ∼ Jn as n → ∞. This is done in the
following lemma.

LEMMA 3.4. With the same notation as before, we have that

lim
n→∞

∣∣∣∣Sn

Jn

− 1
∣∣∣∣ = 0. (14)

In other words, the sum Sn is asymptotic to the integral Jn.

Proof. Let f be the function defined on [0, 1] by f (x) = 2e4π
√

n
√

1−x2 . Then f is a
decreasing function. Let b := bn = �(1 + √

16n − 1)/2� denote the upper limit in Sn. We
estimate the difference Sn − Jn (with xk as in (11)) as

Sn − Jn = 1
2
√

n

b∑
k=1

f (xk) −
∫ 1

0
f (t) dt

=
(

1
2
√

n
f (x1) −

∫ x1

0
f (t) dt

)
+

b∑
k=2

∫ xk

xk−1

(f (xk) − f (t)) dt −
∫ 1

xb

f (t) dt

= �1(n) + �2(n) + �3(n) (say).

We shall show that |�1(n) + �2(n) + �3(n)| is bounded by a function in n of order lower
than that of Jn; then, as n → ∞, the claim will follow.

We begin with �1(n):

�1(n) = 1
2
√

n
f (x1) −

∫ x1

0
f (t) dt

= 1
4
√

n
f (x1) + 1

4
√

n
f (x1) −

∫ x1

0
f (t) dt.

Since x1 = 1/4
√

n, we may introduce the integral sign

�1(n) = 1
4
√

n
f (x1) +

∫ x1

0
f (x1) dt −

∫ x1

0
f (t) dt

|�1(n)| � 1
4
√

n
f (x1) +

∫ x1

0
|f (t) − f (x1)| dt. (T1)

The first term in (T1) is evaluated and seen to have an order lower than that of Jn:

1
4
√

n
f (x1) = 1

4
√

n
eπ

√
16n−1 = O

(
exp(4π

√
n)√

n

)
.

To estimate the integral in (T1), we use the following bound from the mean value theorem:

|ex − ey | � e|x − y| for x, y ∈ [0, 1].
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We now look at the integrand (bearing in mind that t ∈ [0, x1] ⊆ [0, 1])

|f (t) − f (x1)| � 8πe
√

n

∣∣∣∣√1 − t2 −
√

1 − 1
16n

∣∣∣∣.
Since

√
1 − t2 is a decreasing function on [0, 1], we note that

|f (t) − f (x1)| � 8πe
√

n

(
1 −

√
1 − 1

16n

)
.

Thus, the integral in (T1) is O(1/n) and it follows that

�1(n) = O

(
exp(4π

√
n)√

n

)
.

This completes the analysis of the sum �1(n). We study the sum �2(n):

|�2(n)| �
b∑

k=2

∫ xk

xk−1

|f (xk) − f (t)| dt. (T2)

As before, we study the integrand

|f (t) − f (xk)| � 8πe
√

n|
√

1 − t2 −
√

1 − x2
k |

� 8πe
√

n(

√
1 − x2

k−1 −
√

1 − x2
k ).

Using the inequality 1 − x/2 − x2/2 �
√

1 − x � 1 − x/2, we obtain

|f (t) − f (xk)| � 4πe
√

n(x4
k + x2

k − x2
k−1).

In view of equation (T2), we have

|�2(n)| � 2πe

( b∑
k=2

x4
k +

b∑
k=2

(x2
k − x2

k−1)

)

= 2πe

(
1

256n2

b∑
k=2

(2k − 1)4 + x2
b − x2

1

)

� 2πe

(
1

256n2

b∑
k=2

(2k − 1)4 + 8n − 1
8n

)

which is indeed bounded by a rational function in n. Let us now consider �3(n):

�3(n) = −
∫ 1

xb

f (t) dt

|�3(n)| � 2
∫ 1

xb

e4π
√

n
√

1−t2
dt. (T3)

For x ∈ R, writing {x} for the fractional part x − �x� of x, we note that{
1 + √

16n − 1
2

}
� max

(
1
2

+ {√16n − 1}
2

,
{√16n − 1}

2

)

= 1
2

+ {√16n − 1}
2
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which gives us that

xb �
1

4
√

n
(�√16n − 1� − 1) >

1
4
√

n
(
√

16n − 1 − 2).

Now, we have

|�3(n)| � 2
∫ 1

(1/4
√

n)(
√

16n−1−2)

e4π
√

n
√

1−t2
dt.

Using Taylor’s theorem and the fact that the integrand is decreasing, we have

|�3(n)| = O

(
exp(

√
2
√

16n − 1 − 3)√
n

)
.

This shows that |�1(n) + �2(n) + �3(n)| is bounded by a function in n of order lower than
that of Jn and the proof is complete. �

Putting Lemmas 3.1, 3.2, 3.4 and Corollary 3.3 together, we have the following.

THEOREM 3.5. The Fourier coefficients c(n) of the j -function have the asymptotic formula

c(n) ∼ e4π
√

n

√
2n3/4

(15)

as n → ∞.

Remark 3.6. The asymptotic formula for j can now be used to deduce an asymptotic formula
for the sequence [qn]jm as n → ∞, where jm is the unique modular function holomorphic on
the upper half-plane whose q-expansion at i∞ is q−m + O(q). This is done by computing
the q-expansion of jm (see [11]) by noting that jm = j1 |0 Tm, where Tm is the normalized
mth Hecke operator and j1 = j − 744.

Concluding remarks

The method presented in this paper can perhaps be applied in other contexts. Whenever there
is an algebraic formula for a quantity that is derived via arithmetic methods, one can discuss
its asymptotic behaviour using this method.
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