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SOME REMARKS ON ARTIN'S CONJECTURE 

BY 

M. RAM MURTY AND S. SR1NIVASAN 

ABSTRACT. It is a classical conjecture of E. Artin that any integer 
a > 1 which is not a perfect square generates the co-prime residue classes 
(mod p) for infinitely many primes p. Let E be the set of a > 1, a not a 
perfect square, for which Artin's conjecture is false. Set E(x) = card(? E 
E: e < x). We prove that E(x) = 0(log6 x) and that the number of prime 
numbers in E is at most 6. 

A conjecture of E. Artin f 1] asserts that any natural number a > 1, which is not a 
perfect square, is a primitive root (mod p) for infinitely many primes p. We shall 
abbreviate this conjecture of Artin as AC. Artin's conjecture was proved to be correct 
by Hooley [5] provided one assumes the generalized Riemann hypothesis for certain 
Dedekind zeta functions. The first unconditional result was obtained by Gupta and Ram 
Murty in [2], where it was shown that there is a finite set S, consisting of thirteen 
elements, such that for some a E S, AC is true for a. Subsequently, S was replaced 
by another finite set of seven elements in [3]. In this paper, we consider the exceptional 
set for Artin's conjecture. More precisely, let 

E = {a: a > 1, a ^ n2, n E Z, AC is false for a} 

and put E(x) = card(a: a E E, a < x). 

THEOREM 1. 

E(x) = 0(log6 x) 

This theorem will follow from the following: 

PROPOSITION 2. The number of multiplicatively independent elements in E is at 
most 6. 

Our method has its genesis in [2]. We consider the quantity (p — 1) for p a rational 
prime p. By using a lower bound sieve technique, we ensure that all the odd prime 
factors of (p — 1) are large. Indeed, the lower bound Selberg sieve, coupled with the 
Bombieri-Vinogradov theorem on primes in arithmetic progressions ensures many 
primes p such that all the odd prime factors of p — 1 are >p 1 / 6 ~\ Rosser's sieve as 
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modified by Iwaniec [6] yields a corresponding result with the odd prime factors of 
p - 1 greater than pl/4~\ An improvement in the exponent 1/2 appearing in the 
Bombieri-Vinogradov theorem yields a commensurate improvement in our main 
theorem. To make this precise, let TT(X, q) denote the number of primes p < x, p = 
l(mod q). Consider the hypothesis: 

v I ]i x I ( x \ 
Hd: 2 U(jt,$) = 0 ^ -

q<x« I <p(<?)' Mog^x7 

for any A > 0. 
This is a conjecture of Halberstam and Richert [4] asserting that 7/e is true for every 

6 < 1. 

THEOREM 3. If H e is true for some 6 > 2/3, then E(x) = 0(log x) and E consists 
of at most the powers of a single number. 

It is natural to investigate which additional hypothesis is necessary for Artin's 
conjecture. The following theorem provides the answer. 

THEOREM 4. Let fa(p) be the order of a(moà p). 

(i) Suppose that 

1 - ^ = <X*e) 
P < x fa(p) 

for some 9 < 1/2. Then AC is true for a on the assumption of Hp where p = 1 — e. 

(n) If 

S -*— = 0(x]/4) 
P < x fa(p) 

then AC is true for a (independent of any additional hypothesis). 

REMARK. It is probably true that 

v X 

1 = 0(xe) 
P < * fa(p) 

for every e > 0. 

COROLLARY. Either AC is true for a or 

P(a" - 1) 
lim sup — > 0, 

where P(m) denotes the greatest prime factor of m. 

The essential ingredients in the proofs of these theorems are the following lemmas. 

LEMMA 1. Let Y be a subgroup of Qx of rank r. Then, if Tp denotes the image of 
T(mod /?), the number of primes p such that 
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| r , |<3> 

is 

o(y + , / r ) 

PROOF. The proof of this lemma is similar to lemma 2 of [2] and is therefore 
suppressed. 

LEMMA 2. Let a be a non-square and b a natural number which is not a square or 
a power of a. Then, 

(i) the number of primes p ^ x such that p — 1 = 2qxq2q3, qt> x* + e, andfa(p),fh(p) 
even is » x/log2 x. 
(ii) If the hypothesis HQ is true with 6 = 2/3 + e, then the number of primes p < x such 
thatp — 1 = 2qxq2, withq{ > x1/3 + €, andfa{p),fh{p) even is » x / l o g 2 x . HX-ewould 
yield qt > x[/2~e. 

PROOF, (i) is essentially Lemma 1 of [21. The condition that/a(/?) and fh(p) be even 
forces an extra congruence condition (mod 4ab) on p , by quadratic reciprocity. The 
lower bound sieve then yields the result, as described in [2] and [3]. (ii) is deduced 
similarly. 

We begin with the proof of Theorem 3. 

PROOF OF THEOREM 3. Let a, b be as in Lemma 2. Suppose that fa(p) = fh(p) and 
let T = (a, b). In view of lemma 2(ii) and the assumption of HQy with 6 = 
2/3 + e, we infer that for ôx/log2 x primes p < JC, ô > 0, satisfying 

p - 1 = 2q]q2, q, > jt,/3 + €, 

the image of T(mod p) is <jc2/3_e if it is not the complete set of co-prime residue 
classes. By lemma 1, the number of such primes is 0(x] ~e). We may therefore suppose 
that for the primes described above, fa(p) ^ fb(p)- Suppose that/fl(p) = 2q]yfb(p) 
— 2q2 (without loss of generality). Then, by lemma 1, for r = 1, we deduce that 

q, > x]/2/\og* x 

for A > 2. As p — 1 is composite, we can suppose one of the primes is less than x]/2. 
Again without loss, suppose it is qx < xx/1. This means that 

p - 1 = 2qxq2 

with x 1/2/log^ x < q x < x1/2. By any sieve method, the number of such primes for fixed 

q\ is 

\ x log2 {x/qx)
J 

Thus, the total number of such primes, summing over the range for qx is 
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x log log x 
<<c ; — ' 

log x 
by a simple computation. 

As this is 0(x/log2 x)7 we may therefore suppose that at least one offa(p) or fh(p) 
= p — 1. That is, one of a or b is a primitive root(mod p). Let us therefore suppose 
that E has a single prime number a. If the above argument is repeated with a and b any 
natural number which is not a power of a or a perfect square, then we deduce that b 
must be a primitive root(mod /?) for infinitely many primes p. Therefore, the excep
tional set E can consist of at most, the powers of a single a. This proves that E(x) — 
0(log x) and completes the proof of Theorem 3. 

We can now prove Theorem 1. But first, we begin with a proof of Proposition 2. 

PROOF OF PROPOSITION 2. Let a,, a2,... ,a7 be any seven multiplicatively indepen
dent numbers. Suppose that 

fa{p)±p- 1, 1 < / < 7 

for the primes produced by lemma 2. (Here, as before, we can suppose that 2 \fai(p), 
1 < / < 7.). By applying lemma 1, with r= 1, we can also suppose, without loss, that 

fa,(p)>xl/2/\og"x 

for A > 2. Since g, < Jt1/2~e for the primes produced by lemma 2, we therefore have 

fai(p) = 2qxq2, 1 < i < 7 . 

That is, each order is composed of two odd primes. Amongst these seven orders, three 
of the orders must be the same. Hence, there are three distinct au a2, a3 such that 

T = (a]9 a2, a3) 

is of order (mod p) less than x3/4~€. Again, by lemma 1, with r = 3, the number of 
such primes is 0(x]~e). 

Therefore, by eliminating these exceptional primes, we find that at least one of the 
seven numbers is a primitive root (mod p) for infinitely many prime numbers p. This 
proves the proposition. 

PROOF OF THEOREM 1. Now let a \,..., a6 be the (possible) exceptional numbers of 
the proposition. If a is a natural number, which is not a perfect square, and not 
composed by only these six numbers a i , . . . , a6, then the argument of the proof of the 
proposition applied to the seven numbers ax,. . . , a6, a yields that a is a primitive root 
(mod/?) for infinitely many primes p. Hence E consists of only numbers composed of 
the possible six exceptional numbers. Therefore, E(x) = 0(log6x). This completes the 
proof of the theorem. 

PROOF OF THEOREM 4. We begin by observing that 

2 - ^ - = 0(x1/2). 
P<x fa(p) 
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Indeed 

2 — = 2 + 2 
p<* fa(p) fa(pXy fa(p)>y 

= 0(Y) + 0(x/Y) 

where the second estimate is trivial and the first estimate is from lemma 1 and partial 
summation. Setting Y = xl/2 gives the result. If we have 

(*) X = 0(xe), 6 < 1/2, 
P<* fa(p) 

then the hypothesis 7/p, p = 1 — e implies the existence of <k/log2 x primes p < x, 
8 > 0, such that 

p ~ 1 = 2q]q2,qi>x]/2-\ 

Then, iffa(p) = 2qx or 2g2, then 

fa(p)<xl/2~* 

From (*), the number of such primes is 0(jc1/2 + e + e). We now choose 6 + € < 1/2 to 
get the desired result. The result stated with 0(x]/4) can be deduced on a similar way 
from the unconditional result given by lemma 2. 

PROOF OF THE COROLLARY. Suppose that for some a, 

P(an - 1) 
lim sup = 0. 

Then, for any e > 0, and all n sufficiently large (depending on e), we have 

P(a" - 1) < ena. 

But then 

p < P(af°ip) - 1) < efa(pT 

so that,/a(/?) ^> p1/a for all p sufficiently large. If AC is false for a, then for the primes 
given by lemma 2, we would have 

fa(p)<pV4-\ 

so that this would contradict the above for the value a = 4/3. 
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