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ON THE NUMBER OF GROUPS OF SQUAREFREE ORDER 

BY 

M. RAM MURTY AND S. SRINIVASAN 

ABSTRACT. Let G(n) denote the number of non-isomorphic 
groups of order n. We prove that for squarefree integers n, there is a 
constant A such that 

G(n) = O(0(«)/(log«)'41ogloêlog '1), 

where 0 denotes the Euler function. This upper bound is essentially 
best possible, apart from the constant A. 

1. Introduction. With the recent classification of finite simple groups, the 
number of non-isomorphic groups of order n affords a good estimate. Indeed, 
letting G(n) denote this number, it is known that [6], 

(1) log G(n) = 6>(log3 n). 

For squarefree integers n, the upper bound in (1) can be reduced, rather 
drastically. In [4], it was shown that 

(2) A « ) G ( « ) ^ <f(n), 

where <p denotes the Euler <p-function. In [2], the authors asked whether 

(3) G(n) = o(<f(n)), 

as n ranges over squarefree numbers. 
More generally, denote by C(n) the number of groups of order n, all of whose 

Sylow subgroups are cyclic. Then, is it true that 

(4) C(«) = <?(„(«)), 

as n tends to infinity? The purpose of this paper is to establish (4). In fact, we 
derive an upper bound for C(n) and show that it is apart from constants, best 
possible. 

THEOREM 1. There is a constant A > 0 such that 

C(n) = 0(<p(n)/(\ogn)Alogloglogn). 
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COROLLARY. For squarefree integers n, 

G{n) = 0(ç)(«)/(log«)^ logloglog"). 

REMARK. This corollary establishes (3). 

THEOREM 2. There is a constant B > 0 such that for infinitely many square-
free «, 

G(n) > <p(«)/(log n)mogloè]^n. 

COROLLARY. 

C(n) = O(v(/i)/(log A ) * 1 0 ^ 1 0 ^ ) . 

REMARK. Theorem 2 improves upon the O-result established in [2] and 
together with Theorem 1, shows that this is the best possible estimate, apart 
from values of A and B. 

NOTATION. For the sake of convenience in the proofs, we shall denote 
L2 = log log n, and L3 = log log log n. 

2. Preliminaries. The function C(n) was first introduced in [5]. There, an 
explicit formula was derived, which we utilise in our derivation of the upper 
bound. Define v(pJ, m) by the following formula: 

PHpJ'm) = I I (PJ, q - 1), 
q\m 

where p and q denote prime numbers (here and elsewhere in the paper). 

LEMMA 1. 

/ a v(pJ,n/d) _ v(pj-\n/d)\ 

c(n)= 2 IL(2P
 y .v

 p
 n — ) . 

d\n pa\\d V = i P (P - l) ' 
(d,n/d) = \ 

REMARK. The notationpa\\d means that pa\d and p"+' \d. When n is square-
free, we find an explicit formula for G(n), a classical result of Holder [3]. 

PROOF. The proof is given in [5]. 

Define f(n) as follows: 

(5) / ( « ) = n ( » , / > - 1 ) . 
p\n 

The function f(n) was introduced earlier in [4], in the context of enumerating 
finite groups, but is a function of interest in its own right. 

LEMMA 2. 
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f(n) P\n P - 1 
v(/?,«)>0 

PROOF. We first note that 

fin) = n (n,P -1) = n n ̂ ,P - D = n ^v(<?>), 
/?|« /?|« qa\\n qa\\n 

by virtue of the definition of v(qa, n). By lemma 1, we deduce 

/ a
 nv(pJ,n) _ nv(pj~\n)\ 

cwsïï I + 2 S H T V 
Pall« v 7 = 1 />7 ( / > - ! ) 7 

as each summand in the resulting expansion of the product dominates the 
corresponding summand appearing in the formula for C(n). Dropping the /? 7 - 1 

in the denominator, we find that the telescoping sum in the product yields, 

C(n)SÏ n ( l + ^ 7 - 1 ) . 
Pa\\n V p - \ I 

v(p,n)>0 

In view of our initial observation concerning f(n ), the inequality stated in the 
Lemma follows. 

LEMMA 3. There is a constant C > 0 and a squarefree M ^ x such that 

2 1 > exp(C log x/log log x), 
p-\\M 
p prime 

where C is independent of x. 

REMARK. Prachar proved this result with M not necessarily squarefree, but 
subject to the generalised Riemann hypothesis. By utilising results from the 
large sieve theory, this restriction was removed in Adleman, Pomerance and 
Rumely [1]. The proof can be found in [1]. 

LEMMA 4. Let n be a positive integer and denote by M2 the set of prime divisors 
p of n such that (p — 1) \n. Let v2(n) denote the cardinality of M2 and set 

v3(n) = v(U (p - 1)) 

where v(n) denotes the number of distinct prime factors of n. Let n = nxn2 where 
nx is the product of the prime divisors of n. Then 

2vi(n)d(n2) ^ v2(n\ 

where d(n) denotes the number of divisors of n. 
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PROOF. For each/? e M2, p — 1 = Q\Q2 where Qx\nx and (?2|«2,
 a n d 

v (ô i ) = v(/> ~ 1) i n the factorisation. As v3(n) denotes the number of dis
tinct prime factors appearing in the factorizations, then 2V^ is the total 
number of possibilities for Qx and d(n2) is an upper bound for the possibilities 
for Q2. Hence, 

2v^d(n2) ^ v2(#i), 

as desired. 

3. The upper bound. In this section, we shall prove Theorem 1. Let us denote 
by V, the product: 

v= n p. 
p\n 

v(/?,«)>0 

Then, lemma 2 implies that 

(6) C(n) ^ <p(n)/Vl/2 

in view of the fact that f(n) ^ <JP(«). Let us write n = nxn2 where nx is the 
product of the primes dividing n. Then, for p\n, (n, p — 1) ^ Vn2, as primes 
not dividing V do not contribute to (n, p — 1). Therefore, 

(7) C(n) â (Vn2y
(n\ 

We first note the trivial estimate 

C(n) ^ <p(n)/n2, 

so that if n2 â Y = exp(eL2L3), for some e > 0, (to be chosen later), the desired 
estimate follows. We therefore suppose that 

n2 ^ exp(cL2L3). 

We consider two cases: 

CASE 1. v(n) ^ (log n ) v l . 

In this case, we find that if V > exp(L2L3), then the desired result follows 
immediately from (6). If V < exp(L2L3), then from (7) we find that 

C(n) = 0(«€), 

in this case. 

CASE 2. v(/i) > (log n)xn. 

Let vx(n) denote the number of prime divisors p of n such that (p — 1) \n. 
Then 
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(8) /(«) = U(n,p - 1) ^ 2-v'("V«), 
p\n 

because each prime/? enumerated by vx(n) can contribute at most (p — l ) /2 to 
the product îor f(n). Therefore, in the notation of lemma 4, 

vi(fl) + v2(n) = v(n)-

Thus, if Vj(>z) > i(log H ) 1 / 2 , then from (8), we deduce that, in this case, 

G(n) = O W H ) expC-QClog H ) 1 / 2 ) ) 

for some Cj > 0. We may therefore suppose that v2(n) ^ i(log «)1 / 2 , because 
v(«) > (log n)]/2. By lemma 4, (with the same notation for v3(n) ), 

2V^)J(«2) i= v2(n) i ^ ( l o g « ) 1 / 2 . 

At the outset of our proof, we stated that 

n2 = Y = exp(eL2L3). 

Now by an elementary estimate, due to Ramanujan, (see Prachar [8] ), 

d(n2) ^ exp(C log 7/log log Y) 

for some constant C > 0. Hence, 

d(n2) ^ exp(eL2), 

so that 

(9) v3(«) = 8 log log n 

for some 8 > 0 and a suitable choice of € > 0. 
Hence, for at least v3(n) primes q\n, we have v(q, n) > 0. If pt denotes the z-th 
prime, setting 

D = n \{Pi -1), 
i^v3(«) 2 

we find, utilising elementary estimates, that for some constant C0 > 0, 

Z> ^ exp(C0L2L3), 

in view of (9). From the inequality in lemma 2, we deduce that 

C(n) ^ <p(n) exp(-C1L2L3) 

for some constant Cx > 0, as desired. This completes the proof of the 
theorem. 
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4. The ^-estimate. We now prove Theorem 2. By lemma 3, there is a square-
free integer M ^ x2 such that 

M == ql...qr 

and the set 

E = {p:p - \\M) 

has size at least 

exp(C log x/log log x) 

for some C > 0. If for some qt\M9 there is no p e E such that qt\ (p — 1), 
then we may remove it from M, without any loss. Therefore we may suppose 
that for every q\M, there is ap e E such that q\p — 1. Choose a subset £* of E 
such that 

lcm (/? — 1) = M, 

and set n = M(YLP^EP)- We first note that/» — \\n for all/? e E. Clearly, 

\E*\ ^ r, 

as M has r prime factors. Also, 

\E\ ^ {p\n:p - \\n} ^ \E\ + r. 

For this particular choice of n, we find 

(10) G(n)^U(- ». 
p\M V /? ~ 1 7 

We utilise the inequality (pv — l)/(/? — 1) = pv~X for v ^ 1 to deduce from 
(10) that 

G(n) ^ M~x Ylpv{p"/M\ 
p\M 

Since, 

we obtain 

Pv(p'm) = U(p,q~ D, 
q\m 

G(n) ^ M ' l l I I (P,q~ 1) 
p\M q\nlM 

= M~] IT (M, q - 1). 
q\nlM 
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We note that every q\n/M satisfies q — \\M. Hence, 

G(n) ^ M~\(n/M) = <p(")M_1/<p(M) 

^ <p(n)/M2. 

As M = x , we deduce 

G(n) ^ <p(n)/x4. 

We now need an upper bound for JC. As E has size at least exp(C log xl 
log log x) = T (say), n is at least the product of the first T primes, so 
that log n ^ C3T log T for an appropriate constant C3 > 0. Hence, 

C log x/log log x ^ log log n, 

which implies that for some constant C4 > 0, 

log x ^ C4L2L3. 

Hence, the £2-estimate follows from this. 

5. Concluding remarks. Our result shows that 

(11) 2 C(n) = o(x2). 

Of independent interest is the behaviour of the function 

/(«) = H(n,p - 1). 
p\n 

Is it true t ha t / (« ) = o(<p(n) )? We cannot answer this at present though we can 
show that for odd values of n, f(n) = o(<p(n) ). 

In this connection, let 

A(n) = card(p\n:p — 1 f n). 

Then, it is easy to see that 

/ ( « ) § 2 - ^ " V « ) -

Is it true that A(n) —» oo as v(n) —> co? If so, this would establish that 
/(«) = oW»)). 

It is not difficult to show that 

(12) 2 ' f(n) = 0( (x log log x/log x)2), 

where the dash on the summation indicates that n is squarefree. Indeed, in [4], it 
was proved that 
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2 li\n) log2/(#i) = 0(x(log log x)2) 

so that 

cardO ^ *: / (") > x1/2) = 0(jc(log log jc/log JC)2). 

From this, (12) is easily deduced. 
Of course, the behaviour of f(n) now has no relevance to G(n) or C(n) in 

view of Theorems 1 and 2. But we record our remarks here as the function f(n) 
is of interest in its own right. 

Recently Pomerance proved that the question concerning the order of 
magnitude of the sum appearing in (11) is intimately connected with the 
Halber s tarn- Elliott conjecture concerning the distribution of the primes in 
arithmetic progressions. More precisely, he showed in [9] that 

(13) 2 ii\n)G(n) > xXM 

n^x 

by utilizing a key theorem of Balog-Fouvry-Rousselet asserting the existence 
of at least x/log x primes p < x such that all the prime factors of p — 1 are 
<x . If a corresponding result could be established for an arbitrary expon
ent c > 0, rather than .32 appearing in the above cited result, we would 
obtain 

(14) 2 li\n)G{n) > x2~c. 
n=x 

Similar results naturally hold for the summatory function involving C(n). 
Pomerance conjectures that 

(15) 2 li\n)G(n) = -x2/exp[ (1 + o(l) ) log x log3 x/log2 JC] 
n=x 

where log2 x denotes log log x and log3 x = log(log2 JC). The upper bound in 
(15), with C(n) replacing JLI2(«)G(«), has been shown by Pomerance in [9]. 
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