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Abstract We revisit the classical theorem of Euler regarding special values of the
Riemann zeta function as well as Hecke’s generalization of this to Dirichlet’s L-
functions and derive an elliptic analogue. We also discuss transcendence questions
that arise from this analogue.
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1 Introduction

It is a pleasure to dedicate this paper to Professor Marvin Knopp. Marvin’s 1970 book,
Modular Functions in Analytic Number Theory, was an influential and inspirational
book for many. He was also one of the founding fathers of the American school of
modular forms.

The notion of modularity is central to number theory. Even for the study of special
values of zeta and L-functions, the theme of modularity is a recurrent one. This may not
be evident when one considers special cases or classical zeta functions. In this paper,
we will revisit an old derivation of Euler regarding special values of the Riemann
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zeta function and Hecke’s generalization of this two centuries later, and highlight the
modular theme. This viewpoint allows us to generalize and derive an elliptic analogue
of the work of Euler and Hecke. It also raises some interesting transcendence questions
which we discuss at the end of the paper.

In 1734, Euler [2] used the infinite product for the sine function to compute the
values of the Riemann zeta function ζ(s) at the first few even positive integers. In
1740, he [3] obtained a closed form for ζ(2k), k an integer, k ≥ 1. A well written
exposition of these results has been given by Ayoub in [1].

It is surprising that only as late as 1940, Euler’s result was generalized to Dirichlet
L-series by Hecke [4]. We formulate and prove an elliptic analogue of Hecke’s result.
We apply these results to derive some new results on special values of Eisenstein
series.

2 The elliptic analogue

Let us first recall some classical functions. The Hurwitz zeta function is defined for
positive integers s as

ζ±(s, x) =
∑

n∈Z
sgn n=±

1

(n + x)s
,

where we adopt the convention that n = 0 is also included in the sum. (One can define
this also for complex values of s provided we fix the branch of the logarithm, but this
not needed for our discussion.) In the classical case, the lattice we are dealing with is
Z = {n.1 : n ∈ Z} and n runs over half of this lattice in the above expression. In order to
generalize this to elliptic curves, we consider the lattice L = {mω1 +nω2 : m, n ∈ Z}.
L will denote this standard lattice from now on. In analogy with the above, a natural
way to define the elliptic Hurwitz zeta function is as follows. We define

ZL(k, x, ε1, ε2) =
∑

m,n∈Z
sgn m=ε1,sgn n=ε2

1

(mω1 + nω2 + x)k
,

where ε1 = ±, ε2 = ±, k is a positive integer, again noting our convention that m = 0
and n = 0 are included in the sum. In the classical case, for χ a Dirichlet character
modulo q, where q is a positive integer, the L-function is given by (for positive integer
values of s)

L±(s, χ) =
∑

n∈Z
sgn n=±

′ χ(n)
ns

,

where the dash indicates that we sum over n �= 0. If we emulate this for the lattice
L , then we see that we have to introduce another character in the expression. Let χ and
ψ be Dirichlet characters modulo q1 and q2, respectively. Then, we get the following
L-functions:
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L(k, χ, ψ, ε1, ε2) =
∑

m∈Z
sgn m=ε1

′ ∑

n∈Z
sgn n=ε2

′ χ(m)ψ(n)

(mω1 + nω2)k
,

where ε1 = ±, ε2 = ± and k a positive integer as before. These L-functions are related
to classical Eisenstein series, and we discuss this relationship in the next section. We
define the elliptic L-function as

L(k, χ, ψ) := L(k, χ, ψ,+,+)+ L(k, χ, ψ,+,−).

To understand how the elliptic versions of the L-function and the Hurwitz zeta function
are related to each other, let us first inspect L(k, χ, ψ,+,−). Note that

L(k, χ, ψ,+,−) =
∞∑

m=1

−1∑

n=−∞

χ(m)ψ(n)

(mω1 + nω2)k

=
∞∑

m=1

∞∑

n=1

χ(m)ψ(n)ψ(−1)

(mω1 − nω2)k
.

If we split this sum according to the residue classes of m and n, then the above
expression can be written as

∑

a(mod q1)

′ ∑

b(mod q2)

′
χ(a)ψ(b)ψ(−1)

∑

m≡a
(mod q1)

∑

n≡b
(mod q2)

1

(mω1 − nω2)k

=
q1∑

a=1

′ q2∑

b=1

′
χ(a)ψ(b)ψ(−1)

∞∑

t1=0

∞∑

t2=0

1

((t1q1 + a)ω1 − (t2q2 + b)ω2)
k
,

where the dash over the sum indicates that a runs over residue classes co-prime to q1
and b runs over residue classes co-prime to q2. Thus,

L(k, χ, ψ,+,−) =
q1∑

a=1

′ q2∑

b=1

′
χ(a)ψ(b)ψ(−1) {ZL ′ (k, aω1 − bω2,+,−)} , (1)

where L ′ is the lattice {m(q1ω1)+ n(q2ω2) : m, n ∈ Z} generated by q1ω1 and q2ω2.
Similarly, we get

L(k, χ, ψ,+,+) =
q1∑

a=1

′ q2∑

b=1

′
χ(a)ψ(b) {ZL ′ (k, aω1 + bω2,+,+)} . (2)
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In the classical case, to obtain an explicit expression for the L-function in terms of
known quantities, the following well-known cotangent expansion is used:

π cot π z = 1

z
+

∞∑

n=1

(
1

z + n
+ 1

z − n

)
, z ∈ C, z /∈ Z.

In the elliptic case, our analogue for the cotangent function is the Weierstrass zeta
function, defined as follows for the lattice L:

ζL(z) = 1

z
+

∑

ω∈L
ω �=0

(
1

z − ω
+ 1

ω
+ z

ω2

)
.

Using the convention ω = mω1 + nω2,

ζL(z) = 1

z
+

∞∑

m,n=−∞
(m,n) �=(0,0)

(
1

z − (mω1 + nω2)
+ 1

mω1 + nω2
+ z

(mω1 + nω2)2

)
.

(3)

We conclude this section by defining the parity of a Dirichlet character. Recall that
the parity of a character χ is said to be even if χ(−1) = 1; it is odd if χ(−1) = −1.

3 Results

Lemma 1 Let r be a positive integer, r ≥ 2. Let us denote by ZL(r +1, z) the quantity,

ZL(r + 1, ω1 + ω2 + z,+,+)+ (−1)r+1ZL(r + 1, ω1 + ω2 − z,+,+)
+ZL(r + 1, ω1 − ω2 + z,+,−)+ (−1)r+1ZL(r + 1, ω1 − ω2 − z,+,−).

Then, ZL(r + 1, z) can be computed explicitly in terms of the rth derivatives of the
Weierstrass zeta function and the cotangent function. Namely, it is equal to

1

zr+1 + Dr (ζL(z))

r !(−1)r
− π

r !(−1)r

(
1

ω2
Dr (cot(π z/ω2))+ 1

ω1
Dr (cot(π z/ω1))

)
.

Proof Consider Eq. (3) for the Weierstrass zeta function. Let us denote the second
term on the right-hand side of (3) by S, that is, ζL(z) = 1

z + S. If we restrict the value
of m to zero in S, then n ranges over the non-zero integers, giving us

Sn =
∞∑

n=−∞
n �=0

(
1

z − nω2
+ 1

nω2
+ z

(nω2)2

)
.
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Repeating this for the other variable gives

Sm =
∞∑

m=−∞
m �=0

(
1

z − mω1
+ 1

mω1
+ z

(mω1)2

)
.

If we denote by S′ the sum

∞∑

m=−∞
m �=0

∞∑

n=−∞
n �=0

(
1

z − (mω1 + nω2)
+ 1

mω1 + nω2
+ z

(mω1 + nω2)2

)
,

then it is clear that S equals Sn + Sm + S′.
As we are concerned with the r th derivative of ζL(z), let us examine individually

the r th derivatives of Sn , Sm and S′. We have

Sn =
∞∑

n=1

(
1

z − nω2
+ 1

z + nω2
+ 1

nω2
+ 1

(−nω2)
+ 2z

(nω2)2

)

= 1

ω2

∞∑

n=1

(
1

z
ω2

− n
+ 1

z
ω2

+ n

)
+

∞∑

n=1

2z

(nω2)2

= 1

ω2

(
π cot(π z/ω2)− ω2

z

)
+ 2z

ω2
2

π2

6
.

Thus,for r ≥ 2, differentiating r times with respect to z gives us

Dr (Sn)

r !(−1)r
= π

(−1)r r !ω2
Dr (cot(π z/ω2))− 1

zr+1 . (4)

It is clear that for Sm , we obtain in a similar way,

Dr (Sm)

r !(−1)r
= π

(−1)r r !ω1
Dr (cot(π z/ω1))− 1

zr+1 . (5)

Now, as S′ involves m and n running over the non-zero integers, we note that this sum
involves four kinds of lattice points mω1 + nω2, according to whether m and n are
positive or negative. Thus, we can write

S′ =
∞∑

m=1

∞∑

n=1

1

z − (mω1 + nω2)
+ 1

z + mω1 + nω2
+ 1

z + mω1 − nω2

+ 1

z − mω1 + nω2
+ 2z

(mω1 + nω2)2
+ 2z

(mω1 − nω2)2
.
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Then, for r ≥ 2,

Dr (S′)
r !(−1)r

=
∞∑

m=1

∞∑

n=1

1

(z − mω1 − nω2)r+1 + 1

(z + mω1 + nω2)r+1

+ 1

(z + mω1 − nω2)r+1 + 1

(z − mω1 + nω2)r+1 .

Each of these terms is simply an elliptic Hurwitz zeta function. For example,

∞∑

m=1

∞∑

n=1

1

(z − mω1 − nω2)r+1 =
∞∑

m=0

∞∑

n=0

(−1)r+1

((m + 1)ω1 + (n + 1)ω2 − z)r+1

= ZL(r + 1, ω1 + ω2 − z,+,+).

Thus,

Dr (S′)
r !(−1)r

= ZL(r + 1, ω1 + ω2 + z,+,+)+ (−1)r+1ZL(r + 1, ω1 + ω2−z,+,+)
+ZL(r +1, ω1 − ω2 + z,+,−)+(−1)r+1ZL(r + 1, ω1 − ω2 − z,+,−)

= ZL(r + 1, z). (6)

As ζL(z) = 1

z
+Sn +Sm +S′, taking the r th derivative of ζL(z) and using the identities

(4), (5) and (6) concludes the proof. �	
Remark Recall that in the classical case, a suitable linear combination of the Hurwitz
zeta functions could be expressed in terms of derivatives of the cotangent function [8].
The above lemma expresses a linear combination of the elliptic Hurwitz zeta functions
in terms of derivatives of the classical cotangent function and its elliptic analogue—the
Weierstrass zeta function. This completes the analogy.

Theorem 2 Let k be a positive integer, k ≥ 3. Then. L(k, χ, ψ) can be com-
puted explicitly in terms of derivatives of the Weierstrass zeta function and the
cotangent function whenever k and χψ have the same parity, that is, whenever
(−1)k = χ(−1)ψ(−1).

Proof Consider Eq. (2) for L(k, χ, ψ,+,+). Noting that

χ(q1 − a) = χ(−1)χ(a)

and

ψ(q2 − b) = ψ(−1)ψ(b),

we pair the residue class a with q1 − a and b with q2 − b in (2). This gives us an
expression identical to (2), except for the fact that a and b now run over co-prime
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residue classes only up to 
q1/2� and 
q2/2�, respectively, and the elliptic Hurwitz
zeta function in (2) is replaced by

ZL ′ (k, aω1 + bω2,+,+)+ χ(−1)ψ(−1)ZL ′ (k, q1ω1 + q2ω2 − aω1 − bω2,+,+)
+χ(−1)ZL ′ (k, q1ω1 − aω1 + bω2,+,+)+ ψ(−1)ZL ′ (k, aω1 + q2ω2 − bω2,+,+) .

The entire argument repeats for L(k, χ, ψ,+,−), and the expression we derive is
identical to (1), except that in this case, the elliptic Hurwitz zeta function in (1) is
replaced by

ZL ′ (k, aω1 − bω2,+,−)+ χ(−1)ψ(−1)ZL ′ (k, q1ω1 − q2ω2 − aω1 + bω2,+,−)
+χ(−1)ZL ′ (k, q1ω1 − aω1 − bω2,+,−)+ ψ(−1)ZL ′ (k, aω1 − q2ω2 + bω2,+,−) ,

and a and b again run over half the co-prime residue classes as before. Now, we use
the notation

z1 := aω1 + bω2 − q1ω1

2
− q2ω2

2

z2 := aω1 − bω2 − q1ω1

2
+ q2ω2

2

and add the expressions obtained above for L(k, χ, ψ,+,+) and L(k, χ, ψ,+,−).
If k and χψ have the same parity, then letting r + 1 = k and replacing the lattice L
by L ′ in Lemma 1, we can write

L(k, χ, ψ) =

q1/2�∑

a (mod q1)
(a,q1)=1


q2/2�∑

b (mod q2)
(b,q2)=1

χ(a)ψ(b)
(
Z 1

2 L ′(k, z1)+ ψ(−1)Z 1
2 L ′(k, z2)

)
.

(7)

Here, Z 1
2 L ′(k, z) is the quantity defined in Lemma 1, attached to the half lattice 1

2 L ′

:= {m q1ω1
2 + n q2ω2

2 : m, n ∈ Z}. Applying Lemma 1 to this quantity completes the
proof. �	

The explicit closed form for L(k, χ, ψ) in terms of derivatives of the Weierstrass
zeta function and the cotangent function can be obtained from (7) by applying Lemma
1.

4 Relation to Eisenstein series

In section 7.1 of [6], Miyake defines Eisenstein series of weight k ≥ 3 as

Ek(z;χ,ψ) =
∞∑

m,n=−∞
(m,n) �=(0,0)

χ(m)ψ(n)(mz + n)−k, (z ∈ H),
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where χ and ψ are Dirichlet characters modulo q1 and q2, respectively. As discussed
in [6], Ek(z;χ,ψ) is a holomorphic function on H. We can relate this Eisenstein series
to our elliptic L-function as

Ek(ω2/ω1;χ,ψ) =
{

2ωk
1L(k, χ, ψ) i f χ(−1)ψ(−1) = (−1)k,

0 i f χ(−1)ψ(−1) �= (−1)k .

We then have the following result on special values of Eisenstein series.

Theorem 3 Let k be a positive integer, k ≥ 3. Then, Ek(ω1/ω2;χ,ψ) can be com-
puted explicitly in terms of derivatives of the Weierstrass zeta function and the cotan-
gent function whenever (−1)k = χ(−1)ψ(−1).

Proof This follows directly from Theorem 2 and the above relation between the Eisen-
stein series and our elliptic L-function. �	

5 Transcendence questions

These results lead to natural questions of transcendence. In particular, we are interested
in the transcendence of special values of Eisenstein series. It is clear from (7) that the
values of Z 1

2 L ′(k, z) at z1 and z2 determine the arithmetical nature of L(k, χ, ψ) and

hence of Ek(ω1/ω2;χ,ψ). By Lemma 1, we have

(k − 1)!(−1)k−1Z 1
2 L ′(k, z) = 1

(k − 1)!(−1)k−1zk
− 2π

q2ω2
Dk−1

(
cot

(
2π z

q2ω2

))

− 2π

q1ω1
Dk−1

(
cot

(
2π z

q1ω1

))
+ Dk−1(ζ 1

2 L ′(z)). (8)

We will examine each term of the above expression for the CM case. Let us first note
a few facts. It is known that for an elliptic curve with complex multiplication, the ratio

τ = ω1

ω2

of the fundamental periods is an imaginary quadratic number. In this case, the field of
endomorphisms of E is k = Q(τ ) = Q(

√
D) for some negative integer D.

We also note for future reference the following result of Nesterenko [9]

Proposition 4 Let ℘(z) be the Weierstrass elliptic function with algebraic invariants
g2 and g3 and complex multiplication by the field k. Ifω is any period of℘ and τ ′ ∈ k,
Im τ ′ �= 0, then the set

{π,ω, e2π iτ ′ }

is algebraically independent over Q.
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Proof See Corollary 1.6, chapter 3 of [9]. One may also refer to Proposition 15 and
section 7 of [7], which not only gives the desired algebraic independence but also
imparts additional insight by relating the periodω to a suitable product of
-functions.

�	
Recall that the Weierstrass ℘-function associated to L is defined by the series

℘(z) = 1

z2 +
∑

ω∈L
ω �=0

{
1

(z − ω2)
− 1

ω2

}
.

It is known that ℘(z) is analytic in C\L
We then have the following lemma about the arithmetical nature of certain linear

combinations of elliptic Hurwitz zeta functions.

Lemma 5 Let the elliptic curve E corresponding to the lattice 1
2 L ′ be parametrized

by the Weierstrass ℘-function of 1
2 L ′ as y2 = 4x3 − g2x − g3. We assume that g2 and

g3 are algebraic and that E has complex multiplication by k. Then, for each pair of
residue classes a and b modulo q1 and q2, respectively, the quantity

Z 1
2 L ′(k, z1)+ ψ(−1)Z 1

2 L ′(k, z2)

is of the form (up to algebraic factors)

1

ωk
1

f (π, e2π i
√

D/qa,b )

g(e2π i
√

D/qa,b )
,

for some qa,b ∈ Q, where g and f are polynomials with algebraic coefficients, in one
and two variables, respectively.

Proof We examine the value of each term on the right-hand side of (8) for z = z1 and
z = z2. Plugging in z = z1 for the first term and using q2(ω2/2) = τq1(ω1/2) give
us (up to an algebraic factor)

1

aω1 − q1(ω1/2)+ q1
q2

bτω1 − q1τ(ω1/2)
.

Recall from (7) that a and b are residue classes modulo q1 and q2, respectively. Thus,
a, b, q1, q2, τ ∈ Q, and we get an expression of the form

1

ωk
1

,

up to an algebraic factor. It is clear that this argument works for z = z2 as well, to
give us an expression of the same kind.
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For the second and third term, we inspect first the general form of the r th derivative
of the cotangent function. Let c be a constant. Then,

Dk−1(cot(2π z/c)) = Dk−1
(

i
e4π i z/c + 1

e4π i z/c − 1

)

= i Dk−1
(

1 + 2

e4π i z/c + 1

)

= (k − 1)!(−1)k−1 2ki kπk−1

ck−1(e4π i z/c)k
.

To obtain the second term of (8) for z1, we let z = z1 and c = q2ω2. Using the
algebraic ratio of the periods and the fact that z1/q2ω2 ∈ k, we get that

2π

q2ω2
Dk−1

(
cot

(
2π z1

q2ω2

))

equals (up to an algebraic factor)

πk

ωk
1

1

(c1e2π i
√

Dd1 − 1)k
,

for some c1 ∈ Q and d1 ∈ Q. A similar argument works for the third term and then
for z2 instead of z1, giving us like terms with different constants ci ∈ Q and di ∈ Q

We now arrive at the final term on the right-hand side of (8). The first derivative of
ζL(z) is −℘L(z), the second is −℘′

L(z) and so on. It is clear that all the derivatives of
ζ 1

2 L ′(z) are elliptic functions attached to the half lattice 1
2 L ′ and are, hence, generated

by ℘ 1
2 L ′(z) and ℘ 1

2 L ′(z) over Q. Thus,

Dk−1(ζ 1
2 L ′(z1)) =

g

(
℘ 1

2 L ′(z1), ℘
′
1
2 L ′(z1)

)

h

(
℘ 1

2 L ′(z1), ℘
′
1
2 L ′(z1)

) ,

where g and h are polynomials in two variables with coefficients in Q. Now, notice that
z1 is a q1q2 division point for our lattice, that is, q1q2z1 ∈ 1

2 L ′.Using this observation
along with the condition of the theorem that the invariants g2 and g3 are algebraic,
we can deduce that ℘ 1

2 L ′(z1), ℘
′
1
2 L ′(z1) ∈ Q. Thus, the entire term Dk−1(ζ 1

2 L ′(z1)) is

algebraic, and can be neglected in our analysis of the arithmetical nature of (8). The
same argument works for z = z2 as it is also a division point.

Putting together our conclusion for each term and adding the terms, we find that
for each pair of residue classes a and b in the sum of (7),

Z 1
2 L ′(k, z1)+ ψ(−1)Z 1

2 L ′(k, z2)
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has the form

1

ωk
1

f (π, e2π i
√

D/qa,b )

g(e2π i
√

D/qa,b )
,

for some qa,b ∈ Q, g and f polynomials with coefficients in Q. �	
Recall that z1 and z2 depend on the pair a, b. Note that the quantity qa,b in the

lemma above depends upon a and b as well.

Theorem 6 We assume the same conditions on the elliptic curve E attached to 1
2 L ′ as

stated in Lemma 5. Then, for k ≥ 3, Ek(ω2/ω1;χ,ψ) and L(k, χ, ψ) are both either
zero or transcendental whenever (−1)k = χ(−1)ψ(−1).

Proof As a and b run over ‘half’ the co-prime residue classes modulo q1 and q2, respec-
tively, finitely many expressions of the form given in Lemma 5 are being summed.
Hence, we get for L(k, χ, ψ) an expression of the form

1

ωk
1

P(π, e2π i
√

D/q̃)

Q(e2π i
√

D/q̃)
,

for some q̃ ∈ Q and P, Q polynomials with algebraic coefficients. If the above
expression is non-zero and algebraic, then it gives a non-trivial algebraic dependence
for the set {π,ω1, e2π i

√
D/q̃}, thereby contradicting Proposition 4. Hence, L(k, χ, ψ)

is zero or transcendental. As

Ek(ω2/ω1;χ,ψ) = 2ωk
1L(k, χ, ψ),

whenever the parity condition of the theorem is met, we see that

Ek(ω2/ω1;χ,ψ) = 2.P(π, e2π i
√

D/q̃)

Q(e2π i
√

D/q̃)
.

Now, one does not have to use the full strength of Proposition 4 and the algebraic
independence of π , and e2π i

√
D/q̃ is enough to conclude that Ek(ω2/ω1;χ,ψ) must

be zero or transcendental. �	

6 Concluding remarks

In the preceding discussion, we have assumed k ≥ 3. It would be interesting to study
the case k = 2. Since the corresponding series do not converge, we are forced to
study an appropriate limit of our elliptic L-function (using what is called ‘Hecke’s
trick’). This naturally leads to higher level analogues of the Eisenstein series E2, a
topic discussed in some detail in chapters 7 and 8 of Schoenberg [10]. In this context,
Marvin Knopp [5] gave a ten page review of Schoenberg’s book in which he highlights
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the importance of the study of period polynomials arising initially from the study of the
transformation formula for E2. We thank the referee for pointing this out and relegate
this study to a future paper.
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