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Abstract. We extend Euler’s celebrated theorem evaluating ζ(2k). We replace the terms n−2k

in the infinite sum for ζ(2k), with (n2 + Bn + C)−k where B, C are complex and k is a positive
integer. We explicitly evaluate these sums and also briefly discuss their transcendence.

1. INTRODUCTION. An important example from the theory of special functions is
that of the Riemann zeta function defined as

ζ(s) =
∞∑

n=1

1

ns

for �(s) > 1. The story of how Euler proved that

ζ(2) =
∞∑

n=1

1

n2
= π2

6

and more generally that

ζ(2k) =
∞∑

n=1

1

n2k
= (−1)k−1 B2k(2π)2k

2(2k)!
,

where Bk denotes the kth Bernoulli number, is fascinating and can be found in many
places (for example, [1], [2], [15], etc.). The transcendental nature of these special
values of the Riemann zeta function, ζ(s), is determined by the transcendence of π ,
first proved by Lindemann [5]. The allure of these results is eternal and is evidenced
by the numerous papers written by many mathematicians giving simpler and elegant
derivations. For example, in this MONTHLY alone, we have the papers by Apostol [1]
and Williams [15].

In this note, we focus on evaluating the convergent series∑
n∈Z

1

n2 + Bn + C
(1)

and more generally ∑
n∈Z

1

(n2 + Bn + C)k
(2)

for parameters B, C ∈ C and positive integer k. We take summation over Z to be
defined as in [14] as

http://dx.doi.org/10.4169/amer.math.monthly.123.1.53
MSC: Primary 33E20, Secondary 11J81

January 2016] A GENERALIZATION OF EULER’S THEOREM FOR ζ(2K ) 53



∑
n∈Z

an = lim
N→∞

∑
|n|≤N

an.

To examine sums of the forms (1) and (2) we will introduce some methods from
Fourier analysis. The specific results of this paper are contained in the more general
works [7] and [13]. The methods there are elaborate and we present here a shorter and
more elegant derivation.

2. FOURIER ANALYSIS. We assume the reader is familiar with the properties of
the Fourier transform and Fourier series. If not, we refer the reader to [9] for an intro-
duction to the subject. To keep this article self-contained, we review some basic facts.
For a function f (x) ∈ L1[0, 1], the collection of 1-periodic, Lebesgue integrable func-
tions with ∫ 1

0
| f (x)|dx < ∞,

we define the nth Fourier coefficient by

fn =
∫ 1

0
f (x)e−2π inx dx .

With this definition we have the Fourier series associated with f (x),∑
n∈Z

fne2π inx .

It is well known that if f is differentiable, then the Fourier series for f converges to
f . Also, if f is piecewise smooth, then the Fourier series of f at x converges to

f (x+) + f (x−)

2
.

As described in [12], such a function is said to satisfy Dirichlet’s conditions. We take
piecewise smooth to mean that the function f can be broken into distinct pieces for
which both f and f ′ are continuous and where jump discontinuities are the only allow-
able discontinuities. Determining exactly when the Fourier series for a given func-
tion f converges to f is not such an easy task. We refer the interested reader to [6]
(Appendix D) for a discussion of convergence for functions with bounded variation.

Related to Fourier series is the notion of a Fourier transform. For convergence pur-
poses we examine piecewise smooth functions f ∈ L1(R) which are the Lebesgue
integrable functions satisfying ∫ ∞

−∞
| f (x)|dx < ∞.

For such functions we define the Fourier transform as

f̂ (u) =
∫ ∞

−∞
f (x)e−2π i xudx .

For f ∈ L1(R), such that f̂ ∈ L1(R), we have an inversion formula in which we can
relate f to the Fourier transform of f̂ . The proof of the following inversion formula is
not obvious and we refer the reader to [9] for a full treatment.

54 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 123



Lemma 1. For f, f̂ ∈ L1(R), we have the inversion formula

f (x) =
∫ ∞

−∞
f̂ (u)e2π i xudu,

which implies that ̂̂f (x) = f (−x).

Using what we have developed thus far, we now state and prove a version of
Poisson’s summation formula. There are stronger versions of the theorem, though
the version presented here is particularly useful for our purposes, and has a proof
that is concise and elementary. See [3] (Theorem 3.1.17) for a stronger version of
the following theorem where the assumptions taken on the function f are simply that
f, f̂ ∈ L1(R) and satisfy

| f (x)| + | f̂ (x)| ≤ C(1 + |x |)−1−δ

for some C, δ > 0.

Theorem 1 (Poisson Summation). If f ∈ L1(R) is continuous and piecewise smooth
where the sum ∑

n∈Z
f (n + v)

converges absolutely and uniformly in v, and if∑
n∈Z

| f̂ (n)| < ∞,

then ∑
n∈Z

f (n + v) =
∑
n∈Z

f̂ (n)e2π inv.

Proof. Set F(v) = ∑
n∈Z f (n + v). By the assumption of absolute and uniform con-

vergence, F is a continuous and piecewise smooth periodic function in v with period
1. Thus we can view F as a function on [0, 1] and compute the Fourier coefficients
directly:

Fn =
∫ 1

0
F(v)e−2π invdv

=
∑
m∈Z

∫ 1

0
f (m + v)e−2π invdv.

Replacing x = m + v we obtain

Fn =
∑
m∈Z

∫ m+1

m
f (x)e−2π inx dx

=
∫ ∞

−∞
f (x)e−2π inx dx = f̂ (n).
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Since
∑

n∈Z | f̂ (n)| < ∞, the Fourier series for F converges and we have that∑
n∈Z

f (n + v) = F(v) =
∑
n∈Z

Fne2π inv =
∑
n∈Z

f̂ (n)e2π inv.

The components of Fourier analysis introduced here will allow us to find explicit
finite closed forms for the sums (1) and (2).

3. EVALUATING THE SUM
∑

N∈Z 1/(N 2 + B N + C)K . We begin with an example
calculation which will prove very useful.

Lemma 2. If �(c) > 0, and we let g(x) = e−c|x |, then

ĝ(u) = 2c

c2 + 4π2u2
.

Proof. It is clear that g ∈ L1(R), therefore we compute the Fourier transform. We have

ĝ(u) =
∫ ∞

−∞
e−c|x |e−2π iux dx

=
∫ ∞

0
ex(−2π iu−c)dx +

∫ 0

−∞
ex(−2π iu+c)dx

= 1

2π iu + c
+ 1

−2π iu + c

= 2c

c2 + 4π2u2
.

By making use of Lemma 2, as well as Poisson summation, we now evaluate the
sum

∑
n∈Z 1/(n2 + Bn + C).

Theorem 2. For B, C ∈ C with −D = B2 − 4C such that n2 + Bn + C 	= 0 for any
integer n, we have

∑
n∈Z

1

n2 + Bn + C
= 2π√

D

(
e2π

√
D − 1

e2π
√

D − 2 cos(Bπ)eπ
√

D + 1

)
.

Proof. Suppose that D = 4C − B2 such that �(D) > 0. Let g be as in Lemma 2 with
c = π

√
D so that we have

ĝ(u) =
√

D

2π

(
1

u2 + D/4

)
.

The sum in question can be written∑
n∈Z

1

n2 + Bn + C
=
∑
n∈Z

1

(n + B/2)2 + D/4

= 2π√
D

∑
n∈Z

ĝ(n + B/2).
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By the Weierstrass M-test, this sum converges uniformly as a function of D and will
yield an analytic function on �(D) > 0 as its uniform limit. By Poisson summation,
with v = B/2, this last sum is equal to

2π√
D

∑
n∈Z

̂̂g(n)e2π in(B/2).

By Lemma 1 we have that ̂̂g(n) = g(−n), which is equal to g(n) since g is even. Our
sum now becomes

2π√
D

∑
n∈Z

e−π
√

D|n|eBπ in,

which is a combination of two geometric series

2π√
D

( ∞∑
n=0

(
eBπ i−π

√
D
)n

+
∑
n<0

(
eBπ i+π

√
D
)n
)

.

Evaluating these geometric sums we obtain

∑
n∈Z

1

n2 + Bn + C
= 2π√

D

(
1

eBπ i+π
√

D − 1
− 1

eBπ i−π
√

D − 1

)
, (3)

which simplifies to the desired result. By the theory of analytic continuation, this
closed form holds for all D ∈ C such that n2 + Bn + C 	= 0 for any n ∈ Z.

Remark. The methods demonstrated here give us a general approach for attempting
to find closed forms of infinite sums. We need only recognize the terms of a series
as the Fourier transform of a particular function and then invoke Poisson summation.
Here Poisson summation leads to summation of a geometric series, however, in general
something more complicated may arise.

From the closed form given in (3), we can derive an evaluation of the more general
sum (2). We write

∑
n∈Z

1

(n2 + Bn + C)k
=
∑
n∈Z

1

((n + B/2)2 + D/4)k
,

which can be computed by treating the sum in Theorem 2 as a function of D and
differentiating k − 1 times. That is,

∑
n∈Z

1
(n2+Bn+C)k is equal to

2π(−4)k−1

(k − 1)!

[
1√
D

(
1

eBπ i+π
√

D − 1
− 1

eBπ i−π
√

D − 1

)](k−1)

. (4)

Writing

f (D) = 1√
D

, g(D) = 1

eD − 1
, h±(D) = Bπ i ± π

√
D, (5)

January 2016] A GENERALIZATION OF EULER’S THEOREM FOR ζ(2K ) 57



we see that we must evaluate higher derivatives of f · g(h+) − f · g(h−). We will
require the derivatives of f , g, h+, and h− explicitly and it is easy to see for m ≥ 0
and n ≥ 1 that

f (m) = (−1)m(2m)!D−(2m+1)/2

4mm!
, h(n)

± = ±2π(−1)n−1(2n − 2)!D−(2n−1)/2

4n(n − 1)!
.

The following lemma characterizes the form of all derivatives of g. These derivatives
involve the Stirling numbers of the second kind, S(n, j), which are defined to be the
number of ways to partition a set of n objects into j nonempty subsets. These Stirling
numbers of the second kind satisfy the recurrence relation

S(n + 1, j) = j S(n, j) + S(n, j − 1)

and with the convention that S(0, 0) = 1 and S(n, 0) = 0 for n > 0. They are explicitly
given by

S(n, j) = 1

j!

j∑
k=0

(−1) j−k

(
j

k

)
kn ∈ Z

for 0 ≤ j ≤ n, while S(n, j) = 0 for j > n. Note that the previous sum surprisingly
gives the correct value for S(n, j) for all nonnegative values n and j , even for j > n,
where S(n, j) is 0.

Lemma 3. For m ≥ 0,(
1

ex − 1

)(m)

= (−1)m
m+1∑
j=1

( j − 1)!S(m + 1, j)

(ex − 1) j
,

where S(m + 1, j) ∈ Z is a Stirling number of the second kind.

Proof. We induct on m with the case m = 0 being clear since S(1, 1) = 1. Assume
the equality is true for all m < t . By induction we have

((
1

ex − 1

)(t−1)
)′

= (−1)t−1

⎛⎝ t∑
j=1

( j − 1)!S(t, j)

(ex − 1) j

⎞⎠′

,

which equals

(−1)t
t∑

j=1

j!S(t, j)
ex

(ex − 1) j+1
= (−1)t

t∑
j=1

j!S(t, j)
ex − 1 + 1

(ex − 1) j+1
.

Writing (ex − 1 + 1)/(ex − 1) j+1 = 1/(ex − 1) j + 1/(ex − 1) j+1, we can write our
sum as

(−1)t

⎛⎝ 1

ex − 1
+

t∑
j=2

( j − 1)!( j S(t, j) + S(t, j − 1))

(ex − 1) j
+ t!

(ex − 1)t+1

⎞⎠ .
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Making use of the recurrence for the Stirling numbers, S(t + 1, j) = j S(t, j)
+ S(t, j − 1), which implies that S(t + 1, 1) = 1 and S(t + 1, t + 1) = 1, we have
the desired result.

The following lemmas will be helpful for evaluating derivatives of the expression
f · g(h+) − f · g(h−).

Lemma 4. If f and g are functions with a sufficient number of derivatives, then

( f g)(m) =
m∑

i=0

(
m

i

)
f (m−i)g(i).

Proof. We induct on m with the case m = 0 being clear. For m > 0 write ( f g)(m)

= (( f g)′)(m−1), which is equal to

(
f ′g
)(m−1) + (

f g′)(m−1) =
m−1∑
i=0

(
m − 1

i

) (
f (m−i)g(i) + f (m−1−i)g(i+1)

)
by induction. This last sum can be written

f (m)g +
m−1∑
i=1

((
m − 1

i

)
+
(

m − 1

i − 1

))
f (m−i)g(i) + f g(m),

which simplifies to the result by Pascal’s identity for binomial coefficients.

The following result commonly credited to Faà di Bruno gives a method of explic-
itly evaluating higher derivatives of a composition of functions. We state the result
without proof, and refer the reader to [4] of this MONTHLY for proofs and history of
the result.

Lemma 5 (Faà di Bruno’s Formula). If g and h are functions with a sufficient num-
ber of derivatives, then

(g(h))(m) =
∑

b1,...,bm

m!g(b1+···+bm )(h)

b1! · · · bm!

m∏
j=1

(
h( j)

j!

)b j

,

where the sum is over all nonnegative integers b1, . . . , bm such that b1 + 2b2 + · · · +
mbm = m.

We now have all components in place to explicitly compute the value of the sum
(2). The explicit evaluation involves the Catalan numbers Cm , which count the number
of ways of dividing a regular m + 2 sided polygon into m triangles. The Catalan num-
bers, with initial convention C0 = 1, C1 = 1, are explicitly given by

(2m
m

)
/(m + 1).

The reader may be interested in seeing six different interpretations of Cn in Corollary
6.2.3 of [10], an additional 66 interpretations in exercise 6.19 of [10], and many more
interpretations on Stanley’s website [11].
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Theorem 3. For B, C ∈ C with −D = B2 − 4C such that n2 + Bn + C 	= 0 for any
integer n, and k a positive integer, we have that

∑
n∈Z

1
(n2+Bn+C)k is equal to

2π
√

D

Dk

k−1∑
r=0

(
2k − 2 − 2r

k − 1 − r

) ∑
b1,...,br

(2π)R D
R
2 Cb1

0 · · · Cbr
r−1

b1! · · · br !

×
R+1∑
s=1

(
(s − 1)!S(R + 1, s)

(eBπ i+π
√

D − 1)s
− (−1)R(s − 1)!S(R + 1, s)

(eBπ i−π
√

D − 1)s

)
,

where the summation in bi is over all nonnegative solutions to b1 + 2b2 + · · · + rbr = r
and where R = b1 + · · · + br , Cm is the mth Catalan number and S(R + 1, s) is a
Stirling number of the second kind. The sum lies in πQ(

√
D, eπ

√
D, eBπ i )[π], with π k

being the largest power of π present.

Proof. We proceed with f , g, h+, and h− defined in (5). From (4) our sum is equal to
2π(−4)k−1

(k−1)! times

[ f · g(h+) − f · g(h−)](k−1) .

By Lemma 4 we have that this derivative expression is equal to

k−1∑
r=0

(
k − 1

r

)
f (k−1−r)

(
(g(h+))(r) − (g(h−))(r)

)
.

By Faà di Bruno’s formula, for each 0 ≤ r ≤ k − 1, we take all nonnegative integers
b1, . . . , br such that b1 + 2b2 + · · · rbr = r and we have

k−1∑
r=0

(
k − 1

r

)
f (k−1−r)

∑
b1,...,br

r !

b1! · · · br !

×
⎛⎝g(R)(h+)

r∏
t=1

(
h(t)

+
t!

)bt

− g(R)(h−)

r∏
t=1

(
h(t)

−
t!

)bt
⎞⎠ ,

where we write R in place of b1 + · · · + br . By Lemma 3, inserting the explicit deriva-
tives for f , g, h+, and h− and simplifying slightly, we have

(−4)1−k D(1−2k)/2(k − 1)!
k−1∑
r=0

(−4D)r (2k − 2 − 2r)!

((k − 1 − r)!)2

×
∑

b1,...,br

1

b1! · · · br !

R+1∑
s=1

(
(−1)R(s − 1)!S(R + 1, s)

(eBπ i+π
√

D − 1)s
− (s − 1)!S(R + 1, s)

(eBπ i−π
√

D − 1)s

)

×
r∏

t=1

(
2π(−1)t−1(2t − 2)!D−(2t−1)/2

t!4t(t − 1)!

)bt

.
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Note that the product with index t can be written

2R−2rπ R(−1)R−r DR/2−r
r∏

t=1

(
(2t − 2)!

t!(t − 1)!

)bt

,

where each factor (2t − 2)!/t!(t − 1)! can be recognized as the (t − 1)th Catalan num-
ber. Inserting this, our final evaluation of the sum (2) is equal to

2π
√

D

Dk

k−1∑
r=0

(
2k − 2 − 2r

k − 1 − r

) ∑
b1,...,br

(2π)R D
R
2 Cb1

0 · · · Cbr
r−1

b1! · · · br !

×
R+1∑
s=1

(
(s − 1)!S(R + 1, s)

(eBπ i+π
√

D − 1)s
− (−1)R(s − 1)!S(R + 1, s)

(eBπ i−π
√

D − 1)s

)

as desired. This value is clearly in πQ(
√

D, eπ
√

D , eBπ i )[π], with π k being the largest
power of π present.

Theorems 2 and 3 avoid cases when p(x) = x2 + Bx + C has an integral root, but
these cases can be handled as well. For instance, it is easy to see that if p(x) = (x − m)2

for some integer m, then

∑
n∈Z,n 	=m

1

(n − m)2k
= 2ζ(2k).

If p has two distinct integer roots, m1, m2, then by partial fractions there are rational
numbers ai , bi so that

∑
n∈Z,n 	=m1,m2

1

(n − m1)k(n − m2)k

=
k∑

i=1

ai

∑
n 	=m1

1

(n − m1)i
+

k∑
i=1

bi

∑
n 	=m2

1

(n − m2)i
−

k∑
i=1

ai + (−1)i bi

(m2 − m1)i
.

The sums
∑

n 	=m j
1/(n − m j )

i are zero for odd i and 2ζ(i) for even i , while the final
sum is rational. If p(x) = (x − m)(x − α) for integer m and α /∈ Z, then by partial
fractions there are ai , bi ∈ Q(α) such that

∑
n∈Z,n 	=m

1

(n − m)k(n − α)k

=
k∑

i=1

ai

∑
n 	=m

1

(n − m)i
+

k∑
i=1

bi

∑
n∈Z

1

(n − α)i
−

k∑
i=1

bi

(m − α)i
.

The last sum lies in Q(α) and for each 1 ≤ i ≤ k, the first sums are zero for odd i , and
2aiζ(i) ∈ π iQ(α) for even i . We note that the sum
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∑
n∈Z

1

n − α
= −π cot(πα) (6)

and so each sum
∑

n∈Z 1/(n − α)i can be written in terms of derivatives of the cotan-
gent function. We refer the reader to exercise 4 on page 316 of [9] and section 2 of
[13] for a detailed derivation of equation (6). For each 1 ≤ i ≤ k, these sums lie in
π iQ(eπ iα). Sums of this form, related to derivatives of the cotangent function, have
been discussed extensively in [7] and [13] and we refer the reader to those works for
more details on computing explicit values in these cases.

4. TRANSCENDENCE OF THE SUMS. In some cases we can characterize the
sums (1) and (2) discussed in Theorems 2 and 3 as being transcendental. Namely, we
specify the case when B, C and therefore D = 4C − B2 are all rational with D > 0.
Writing D = p/q so that

√
D = √

pq/q, we have that the sum (1) lies in πQ(
√

pq ,

cos(Bπ), eπ
√

pq/q). By a theorem of Nesterenko [8], it is known that π and eπ
√

d are
algebraically independent for positive integer d. That is, π and eπ

√
d are each tran-

scendental over Q (or Q) and there is no polynomial relationship between them, with
coefficients from Q (or Q). Thus, the sums (1) in Theorem 2 are all transcendental in
this case. Similarly, in this special case, the sums (2) discussed in Theorem 3 are all
polynomials in π with coefficients from Q(

√
pq , eBπ i , eπ

√
pq/q) with zero being the

coefficient for π0. The final form given in Theorem 3 could be grouped over one com-
mon denominator involving integers and powers of eBπ i and eπ

√
pq/q , the former being

algebraic. The numerator would be a polynomial in π and eπ
√

pq/q with coefficients
in Q(

√
pq , eBπ i , eπ

√
pq/q) ⊆ Q. Again, by the algebraic independence given by the

theorem of Nesterenko, these expressions are transcendental when they do not vanish.
In particular, we immediately obtain a transcendental number for the sums (2) for any
even value of k. We now show for any positive integer k that these sums never vanish
and therefore are all transcendental. The following lemma will prove useful.

Lemma 6. For Stirling numbers of the second kind, S(k, s), and k ≥ 2 we have

k∑
s=1

(−1)s(s − 1)!S(k, s) = 0.

Proof. Inserting the recurrence for the Stirling numbers, we have that the sum is
equal to

k∑
s=1

(−1)s(s − 1)!sS(k − 1, s) +
k∑

s=1

(−1)s(s − 1)!S(k − 1, s − 1).

Since S(k − 1, k) = 0 = S(k − 1, 0), we have

k−1∑
s=1

(−1)ss!S(k − 1, s) +
k∑

s=2

(−1)s(s − 1)!S(k − 1, s − 1),

which is zero after shifting the second sum to match the index of the first sum.

We note that Lemma 6 can also be shown by one of the generating functions for
these Stirling numbers, which relates powers to sums of falling factorials. Namely,
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xk =
k∑

s=0

S(k, s)(x)s,

where (x)s = x(x − 1) · · · (x − s + 1). We leave the details to the reader, and now
focus on our main transcendence result.

Theorem 4. For any positive integer k and rational B, C, D = 4C − B2 > 0, the sum

∑
n∈Z

1

(n2 + Bn + C)k

is transcendental.

Proof. By Theorems 2 and 3, these sums are polynomials in π with coefficients in
Q(

√
D, eBπ i , eπ

√
D) and by the above remarks either vanish or are transcendental since

π and eπ
√

D are algebraically independent. The sum does not vanish for k = 1 or any
even k, and is therefore transcendental in these cases. Thus, we assume that k ≥ 3
is odd and we need only show that at least one coefficient for some power of π is
nonzero. In particular, we isolate the coefficient of π k . From the closed form given in
Theorem 3, it is easy to see that we obtain π k only when R = k − 1, which implies that
r = k − 1, which in turn implies that the terms of interest from the sum over b1, . . . , br

will be those in which b1 = k − 1 and bi = 0 for i = 2, . . . , r . Thus, the coefficient of
π k is

2
√

D

Dk

(
0

0

)
2k−1 D(k−1)/2Ck−1

0

(k − 1)!

(
k∑

s=1

(s − 1)!S(k, s)

(
1

(αy − 1)s
− (−1)k−1

(αy−1 − 1)s

))
,

where we write α in place of the algebraic eBπ i and y in place of the transcendental
eπ

√
D . We need only show that the sum with index s is nonzero. This sum over s can

be written

k∑
s=1

(s − 1)!S(k, s)

(
1

(αy − 1)s
+ (−1)k ys

(α − y)s

)

and after finding a common denominator for this expression we have

k∑
s=1

(s − 1)!S(k, s)

(
(αy − 1)k−s(α − y)k + (−1)k ys(αy − 1)k(α − y)k−s

(αy − 1)k(α − y)k

)
.

The coefficient of y2k in the denominator is nonzero while the coefficient of y2k from
the numerator is

αk
k∑

s=1

(−1)s(s − 1)!S(k, s),

which is zero by Lemma 6. Thus, the degree of the numerator is less than the degree
of the denominator and this rational expression in y is in fact transcendental and
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algebraically independent from π if it does not vanish. To show nonvanishing, we
isolate the coefficient of y1 which is

αk−1 + (−1)k−1(α2 + 1)αk−1
k−1∑
s=1

(−1)s(s − 1)!S(k, s) − (k − 1)!αk−1.

Making use of Lemma 6 we have that

k−1∑
s=1

(−1)s(s − 1)!S(k, s) = (−1)k+1(k − 1)!

so that the coefficient of y simplifies to

αk−1(1 + α2(k − 1)!).

This coefficient is not zero for k ≥ 3 since |α| = 1, therefore the coefficient of π k is
not zero, and we have established transcendence.

Remark. In the case that D is algebraic, but not positive rational, eπ
√

D = (eπ i)−i
√

D

is transcendental by Gel’fond’s theorem. In this setting it is not known whether π and
eπ

√
D are algebraically independent, so we cannot conclude transcendence of the sums

(2). In a more general setting, there are conjectures of Gel’fond and Schneider that π

and the numbers αβ, . . . , αβd−1
are algebraically independent where α, β are algebraic

with β having degree d at least 2. If these conjectures are assumed to be true, then
we can conclude transcendence of the sum (2) in a more general setting. Details about
these conjectures and their implication on these as well as more general infinite series
can be found in [7] and [13].
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100 Years Ago This Month in The American Mathematical Monthly
Edited by Vadim Ponomarenko

The American Mathematical Society held its twenty-second annual meeting in New
York, December 27–28, 1915. There were seventy-two members present at the four
sessions and thirty-seven papers were presented. The total membership of the Society
is now 736. The number of members attending at least one meeting of the Society
or its sections during the year 1915 was 253. The total number of registrations at all
meetings during the year was 418.

There is a bill before Congress to make the use of the Centigrade thermometer
scale obligatory in all government publications, in the hope of bringing about its
adoption for all purposes in place of the Fahrenheit scale. This is a move in a good
direction, but it raises again the larger question of the metric system as a whole, and
we wonder whether the United States will be the last of the civilized nations to adopt
that system. An article in The Scientific Monthly for December, 1915, by Dr. Joseph
V. Collins, of Stevens Point, Wis., discusses the question under the title: “A metrical
tragedy,” showing that at least two thirds of a year for every child in the land is wasted
in the study of our cumbersome system of weights and measures, and that this waste
entails an economic loss of possibly three hundred millions of dollars annually.

—Excerpted from “Notes and News” 23 (1916) 65–68.
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