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Let G be a finite abelian group. If f : G → C is a nonzero func-

tion with Fourier transform f̂ , the classical uncertainty principle

states that |supp(f )||supp(f̂ )| � |G|. Recently, Tao showed that,

if G is cyclic of prime order p, then in fact a stronger inequality

|supp(f )| + |supp(f̂ )| � p + 1 holds. In this paper, we use repre-

sentation theory of the unitary group and Weyl’s character

formula to derive a generalization of Tao’s result for arbitrary finite

cyclic groups.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a finite abelian group, and let Ĝ denote the set of irreducible characters of G. Given a

function f : G → C, its Fourier transform f̂ : Ĝ → C is given by

f̂ (χ) = 1

|G|
∑
x∈G

f (x)χ(x), ∀χ ∈ Ĝ.

The classical uncertainty principle for finite abelian groups states that, if f is nonzero, then

|supp(f )||supp(f̂ )| � |G|.
Recently, Tao [6] proved a substantial strengthening of the uncertainty principle for cyclic groups of

prime order. He showed that, for any prime number p and a nonzero function f : Z/pZ → C, we have

|supp(f )| + |supp(f̂ )| � p + 1.
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Central to Tao’s argument is a classical theorem of Chebotarev: given a primitive pth root of unity ω,

every minor of the matrix (ωij)1�i,j�p is nonzero. Many papers have been written on providing new

proofs of this result; see Section 5 for a particularly short proof.

In this paper,wedescribe anapproach toChebotarev’s theoremrelyingon the representation theory

of the unitary groupU(n), which allows us to generalize Tao’s theorem in the followingway. Letm > 1

be an integer with prime factorizationm = p
a1
1 · · · parr . For X ⊆ Z/mZ, let P(X) denote the property:

X is represented by integers κ1, . . . , κn satisfying

∏
1�i<j�n |κi − κj|∏
1�i<j�n(j − i)

/∈ Np1 + · · · + Npr .

Our main theorem is the following.

Theorem. Let m > 1 be an integer, and let f : Z/mZ → C be a nonzero function. If P(supp(f )) or

P(supp(f̂ )) holds, then

|supp(f )| + |supp(f̂ )| � m + 1.

Conversely, suppose A and B are subsets of Z/mZ satisfying |A| + |B| � m + 1. If P(A) holds, then there

is a function f : Z/mZ → C such that supp(f ) ⊆ A and supp(f̂ ) = B. If furthermore P(B) holds, then f

can be made so that supp(f ) = A.

(Here, we identify Ẑ/mZ with Z/mZ by fixing a primitive mth root of unity; see Section 4 for

details.)

For the convenience of the reader, we review the basic representation theory of U(n) necessary

for the proof. While the machinery involved is more complicated than the methods used in Tao [6], it

presents a different perspective on the non-vanishing phenomenon in Chebotarev’s theorem.

One of the referees has pointed out to us that this representation-theoretic approach had also

been found independently by Stanley [5, p. 505], who used it to give a short proof of Chebotarev’s

theorem.

2. Background

For an integer n � 1, let U(n) be the group of complex unitary matrices. Then U(n) forms a

compact, connected, real Lie group. It contains, as a maximal torus (i.e. a compact, connected, abelian

Lie subgroup maximal with respect to inclusion), the group T consisting of diagonal matrices

t = diag(ε1, . . . , εn) :=

⎡
⎢⎢⎢⎢⎣
ε1

. . .

εn

⎤
⎥⎥⎥⎥⎦ , εi = e2π

√−1θi .

Wherenoconfusionarises,weshallwrite f (ε1, . . . , εn) := f (diag(ε, . . . , ε))and f (1) := f (1, . . . , 1)
for any function f defined on T .

In this paper, we shallmean by aweight a sequence κ = (κ1, . . . , κn) ∈ Zn. Aweight κ is dominant

if κ1 � · · · � κn, and strictly dominant if all of these inequalities are strict. Given a weight κ , define
the function eκ : T → C by setting eκ(t) = eκ(ε1, . . . , εn) = ε

κ1
1 · · · εκn

n for each t ∈ T . An element

s ∈ Sn of the symmetric group acts on the weight κ by s · κ = (κs−1(1), . . . , κs−1(n)).
It turns out that any element of a compact, connected Lie group is conjugate to an element of its

maximal torus. In our case, each element of U(n) is conjugate to some t ∈ T , so any character of

U(n), being a class function, is determined by its behavior on T . By the Weyl character formula, each

dominant weight λ corresponds to a unique irreducible character χλ of U(n), given by
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χλ(t) =
∑

s∈Sn
sgn(s)es·(λ+ρ)(t)∑

s∈Sn
sgn(s)es·ρ(t)

= det(ε
λj+ρj

i )

det(ε
ρj

i )
, ∀t ∈ T,

where we define ρ = (n − 1, n − 2, . . . , 1, 0). By the dimension formula, the degree of χλ, defined

as deg χλ := χλ(1), is given by the expression,

χλ(1) =
∏

1�i<j�n(κi − κj)∏
1�i<j�n(j − i)

, (κ = λ + ρ). (∗)

Note that the degree of χλ is equal to the dimension of the vector space Vλ underlying the represen-

tation (πλ, Vλ) of U(n) associated to χλ.
3

We remark that the assignment λ �→ χλ in fact sets up a bijection between the dominant weights

and all irreducible characters ofU(n). Formore about the representation theory of compact Lie groups,

see [1,4,9].

Finally, we recall the following result by Lam and Leung [2] on vanishing sums of roots of unity,

which we will use in order to generalize Chebotarev’s theorem in the next Section.

Lemma 1 (Lam and Leung [2]). Let p1, . . . , pr be the prime factors of m. The set W(m) of integers n � 0

for which there exists a vanishing sum ω1 + · · · + ωn = 0, where each ωi is an mth root of unity, is

precisely

W(m) = Np1 + · · · + Npr .

3. Minors of Vandermonde matrices

Let m > 1 be an integer, and let ω be a primitive mth root of unity. The connection between an

n × nminor of the Vandermonde matrix V(m) = (ωij)1�i,j�m and the irreducible representations of

U(n) is given by the following.

First, an n × n submatrix of V(m) is of the form (ωιiκj)1�i,j�n, where we can choose (ι1, . . . , ιn)
and (κ1, . . . , κn) to be strictly dominant weights, each having pairwise distinct entries modulo m. In

the arguments which follow, we will focus on the weight (κ1, . . . , κn), and suppress (ι1, . . . , ιn) by

denoting ωi = ωιi for each 1 � i � n.

Since κ is strictly dominant, λ = κ − ρ is a dominant weight, corresponding to an irreducible

character χλ of U(n). By the Weyl character formula, we obtain

det(ω
κj
i ) = χλ(ω1, . . . , ωn) det(ω

ρj

i ).

Butwe easily see that det(ω
ρj

i ) = ± ∏
1�i<j�n(ωi−ωj), which is nonzero. Hence, the vanishing of the

minor det(ω
κj
i ) is equivalent to the vanishing of the character χλ at diag(ω1, . . . , ωn) ∈ U(n). Using

this key observation, we now have the following generalization of Chebotarev’s theorem to composite

moduli.

Proposition 2. Let p1, . . . , pr be the prime factors of m. Let κ1, . . . , κn be integers distinct modulo m

such that∏
1�i<j�n |κi − κj|∏
1�i<j�n(j − i)

/∈ Np1 + · · · + Npr . (∗∗)

Then det(ω
κj
i ) 	= 0 for any distinct mth roots of unity ω1, . . . , ωn.

3 It is worth noting that the dimension formula leads to the following result: given distinct positive numbers κ1 > κ2 > · · · > κn ,

then (∗) implies that
∏

(j − i) | ∏
(κi − κj). It would be interesting to see if a proof using elementary number theory can be given

for this fact.
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Proof. By rearranging κ1, . . . , κn if necessary, we may assume that κ = (κ1, . . . , κn) is a strictly

dominant weight. Hence, it suffices to show that χλ(ω1, . . . , ωn) 	= 0, where λ := κ − ρ .

Let πλ be the representation of U(n) corresponding to χλ. For convenience, let us denote ω̃ =
diag(ω1, . . . , ωn) ∈ U(n). Since ω̃m = 1,we haveπλ(ω̃)m = 1, forπλ being a group homomorphism.

In particular, every eigenvalue of πλ(ω̃) is an mth root of unity. Hence, χλ(ω̃) = tr πλ(ω̃) is a sum of

mth roots of unity, and there are exactly deg(χλ) of them, counting multiplicity. Suppose χλ(ω̃) = 0.

Then by Lemma 1, deg(χλ) ∈ Np1 + · · · + Npr . But together with the dimension formula, our

hypothesis excludes this possibility; hence the result. �

Remark. In the casem = p is prime, the condition (∗∗) is automatically satisfied for any set of integers

κ1, . . . , κn distinct modulo p. Hence, we obtain Chebotarev’s theorem as an immediate corollary.

As another special case when m = q is a prime power, note that (∗∗) is satisfied if κ1, . . . , κn is

an arithmetic progression with common difference r, with (q, r) = 1. In Section 5, we show that a

version of Proposition 2 in this special case still holds when we replace q by any modulus.

4. Proof of the main theorem

Let m > 1 be an integer, and let ω be a fixed primitive mth root of unity. For each irreducible

character χ of Z/mZ, there is a unique i ∈ Z/mZ such that

χ(j) = ωij, ∀j ∈ Z/mZ.

The assignment χ �→ i is a bijection, and we shall identify Ẑ/mZ with Z/mZ by this map. Let

A ⊆ Z/mZ be a subset. As in Section 1, let P(A) denote the property: A is represented by integers

κ1, . . . , κn satisfying

∏
1�i<j�n |κi − κj|∏
1�i<j�n(j − i)

/∈ Np1 + · · · + Npr,

where p1, . . . , pr are the prime factors ofm. Also, let �2(A) denote the set of functions f : Z/mZ → C
which are zero outside of A. We present an immediate corollary of Proposition 2, following Tao [6].

Corollary 3. Let A, Ã ⊆ Z/mZ be nonempty subsets of equal cardinality. Suppose P(A) or P(̃A) holds.

Then the linear map T : �2(A) → �2(̃A) given by Tf = f̂ |Ã is an isomorphism.

The corollary follows immediately from Proposition 2. Indeed, the coefficient matrix of T above is

essentially of the form considered in Proposition 2. Below, we restate our main theorem and give its

proof.

Theorem 4. Let m > 1 be an integer, and let f : Z/mZ → C be a nonzero function. If P(supp(f )) or

P(supp(f̂ )) holds, then

|supp(f )| + |supp(f̂ )| � m + 1.

Conversely, suppose A and B are subsets of Z/mZ satisfying |A| + |B| � m + 1. If P(A) holds, then there

is a function f : Z/mZ → C such that supp(f ) ⊆ A and supp(f̂ ) = B. If furthermore P(B) holds, then f

can be made so that supp(f ) = A.

Proof. We proceed along the lines of Tao [6]. We first consider the case where P(supp(f )) holds.

Suppose |supp(f )| + |supp(f̂ )| � m for a contradiction. Then there exists a subset Ã ⊆ Z/mZ such

that |supp(f )| = |̃A| and supp(f̂ ) ∩ Ã = ∅. Let T be the linear map of Corollary 3 for A = supp(f ) and

Ã. By the corollary, Tf is nonzero since f is nonzero. But then we have supp(f̂ ) ∩ Ã = supp(Tf ) 	= ∅,
contradicting our hypothesis on Ã. Thus |supp(f )| + |supp(f̂ )| � m + 1.
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The case where P(supp(f̂ )) holds follows from the first case and the Fourier inversion formula. Let

g : Z/mZ → C be the function given by g(x) = f̂ (−x), ∀x ∈ Z/mZ. Then supp(g) = {−x : x ∈
supp(f̂ )}, so P(supp(g)) holds, and also |supp(g)| = |supp(f̂ )|. Then by the first case, we have

|supp(g)| + |supp(ĝ)| � m + 1.

But by the Fourier inversion formula, we have

F(ĝ)(x) = 1

m
g(−x) = 1

m
f̂ (x), ∀x ∈ Z/mZ,

where F(ĝ) refers to the Fourier transform of ĝ (cf. [7, p. 36]; note that their definition of Fourier

transform differs from ours by a multiplicative factor). This implies thatmĝ = f by the uniqueness of

the Fourier transform, so in particular we have |supp(ĝ)| = |supp(f )|. Then |supp(f )| + |supp(f̂ )| �
m + 1 by the inequality above, as desired.

We now prove the converse. For the first statement, it suffices to prove the case |A| + |B| = m+ 1,

for we can apply the claim to the pair A, B′ for varying B′ ⊆ B such that |A| + |B′| = m + 1, and take

generic linear combinations to obtain f .

So assume |A| + |B| = m + 1. For each ξ ∈ B, let Aξ be the complement of B \ {ξ} in Z/mZ.

Then since P(A) holds and |A| = |Aξ |, applying Corollary 3 there exists fξ ∈ �2(A) such that f̂ξ is zero

on Aξ \ {ξ} and nonzero at ξ . We thus have supp(f̂ξ ) ⊆ B for each ξ ∈ B. By taking generic linear

combinations of the functions fξ , we obtain a function f ∈ �2(A) such that supp(f̂ ) = B. This gives the

first statement of the converse.

For the second statement, we again use the Fourier inversion formula. So suppose furthermore that

P(B)holds. Then P(−B)holds, andhence by thefirst statement of the converse there exists g ∈ �2(−B)
such that supp(ĝ) = A. Let f1 = ĝ, so supp(f1) = A. From the Fourier inversion formula, we obtain

supp(f̂1) ⊆ B. Let f2 ∈ �2(A) be such that supp(f̂2) = B, as constructed in the first statement. Taking

a generic linear combination of f1 and f2, we obtain a function f : Z/mZ → C such that supp(f ) = A

and supp(f̂ ) = B, as desired. �

Motivated by the remark in Tao [6], we present the following application of our main result. Let

m > 1 be an integer, and let P(z) = ∑n
j=1 cjz

κj be a polynomial with n � 1 nonzero complex

coefficients, where the exponents κ1, . . . , κn are integers distinct modulom such that

∏
1�i<j�n |κi − κj|∏
1�i<j�n(j − i)

/∈ Np1 + · · · + Npr,

where p1, . . . , pr are the prime factors ofm. Then P(z) has at most n− 1 zeros which aremth roots of

unity. For, viewing P(ωj) as a function of j ∈ Z/mZ, its having n nonzero coefficients implies that the

support of its Fourier transform has cardinality n. Thus its support has cardinality at least m + 1 − n

by Theorem 4, and hence P has at most n − 1 zeros on the set of mth roots of unity.

Let p be a prime number. The Cauchy–Davenport inequality states that, for any two nonempty

subsets A and B of Z/pZ, we have the inequality

|A + B| � min(|A| + |B| − 1, p),

where A + B := {a + b : a ∈ A, b ∈ B}. Theorem 4 allows us to generalize the Cauchy–Davenport

inequality in the following way.

Theorem 5. Let m > 1 be an integer, and let A and B be subsets of Z/mZ such that P(A) and P(B) hold.
Then

|A + B| � min(|A| + |B| − 1,m).
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Proof. We proceed as in Tao [6]. Since A and B are nonempty, there exist X, Y ⊆ Z/mZ such that

|A| + |X| = |Y | + |B| = m + 1, and |X ∩ Y | = max(|X| + |Y | − m, 1). Furthermore, we may choose

X and Y so that P(X ∩ Y) holds, noting that P(X ∩ Y) holds if it is given by an arithmetic progression

with common difference 1. Then by Theorem 4, there exist functions f and g such that

supp(f ) ⊆ A, supp(f̂ ) = X, supp(g) ⊆ B, supp(ĝ) = Y .

Then supp(f ∗ g) ⊆ A + B and supp(f̂ ∗ g) = X ∩ Y . Since P(X ∩ Y) holds and f ∗ g is nonzero, by

Theorem 4 we have |A + B| + |X ∩ Y | � m + 1, which gives |A + B| � min(2m + 1 − |X| − |Y |,m).
Using the definition of X and Y , we obtain the desired result. �

5. Remarks

Below, we give a proof of Chebotarev’s theorem using only the rudimentary tools of algebraic

number theory. While the approach is not the one mainly explored in this paper, the proof is notable

in its particular simplicity and short length.

Theorem 6. Let p be a prime number, and let ζp be a primitive pth root of unity. Let A, B ⊆ {0, . . . , p−1}
such that |A| = |B|. Then det(ζ

ij
p )i∈A,j∈B 	= 0.

Proof. We use the well-known fact that (1 − ζp) is a prime ideal with norm p in the p-th cyclotomic

field (see [8]). Note that det(ζ
ij
p )i∈A,j∈B = 0 is equivalent to saying that there exist cj , j ∈ B, not all zero,

such that P(x) = ∑
j∈B cjx

j vanishes at x = ζ i
p, for all i ∈ A. We can choose cj ∈ Z[ζp] and assume

that not all cj are divisible by 1 − ζp. Since P(x) = ∏
i∈A(x − ζ i

p)G(x) where G(x) ∈ Z[ζp][x], we see

that P(x) mod (1 − ζp) has a zero of order |A| at x = 1. Thus

∑
j∈B

cj(j)t ≡ 0 mod (1 − ζp), ∀t = 0, . . . , |A| − 1,

where (j)t := j(j − 1) · · · (j − t + 1). By easy induction, this implies that

∑
j∈B

cjj
t ≡ 0 mod (1 − ζp).

But since the Vandermonde determinant det(jt)j∈B,t∈{0,...,|A|−1} is nonzero, it follows that cj ≡ 0

mod (1 − ζp) for all j ∈ B, contradicting our assumption. It follows that det(ζ
ij
p )i∈A,j∈B 	= 0. �

The connection between minors of the Vandermonde matrix and representations of the unitary

group, considered in themain sections of this paper,may be exploited further. Herewepresent another

result exemplifying this idea, weakly analogous to Chebotarev’s theorem.

Proposition 7. Let m > 1 be an integer. For 1 � n � m, let ω1, . . . , ωn be distinct mth roots of unity.

Let κ1, . . . , κn be an arithmetic progression of integers with common difference r, where (m, r) = 1. Then

det(ω
κj
i ) 	= 0.

Proof. Since (m, r) = 1,we have rs ≡ −1 mod m for some integer s. Recalling the notationωi = ωιi

where ιi are distinct modulom, we have

(ω
κj
i ) = (ωιi(κ1+r(j−1))) = (ω−rsιi(κ1+r(j−1))) = ((ω−rιi)sκ1−(j−1)).

Since ωr is also a primitive mth root of unity, it follows that ω−rι1 , . . . , ω−rιn are distinct. Replacing

κ1, . . . , κn by sκ1, sκ1 − 1, . . . , sκ1 − (n − 1), we may therefore assume that r = −1. Then κ is a

strictly dominant weight, so it suffices to show that χκ−ρ(ω1, . . . , ωn) 	= 0. But we see that
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deg(χκ−ρ) =
∏

1�i<j�n(κi − κj)∏
1�i<j�n(j − i)

=
∏

1�i<j�n(j − i)∏
1�i<j�n(j − i)

= 1

by the dimension formula, so χκ−ρ is a group homomorphism from U(n) to C×; in particular, it is

zero nowhere. The desired result follows. �

Arguing as in the proof of the main theorem, we obtain the following result as an immediate

corollary of Proposition 7. For any subset X ⊆ Z/mZ, let Q(X) denote the property: X is represented

by an arithmetic progression κ1, . . . , κn with common difference coprime tom.

Corollary 8. Let m > 1 be an integer, and let f : Z/mZ → C a nonzero function. If Q(supp(f )) or

Q(supp(f̂ )) holds, then

|supp(f )| + |supp(f̂ )| � m + 1.

Arguing as before, one may obtain a partial converse to the corollary above and results on zeros of

scarce polynomials and the Cauchy–Davenport inequality, analogous to those derived in Section 4.

Based on the connection we have expounded in this paper, it seems evident that nonvanishing

results for irreducible characters of U(n) on points of finite order may lead to further generalizations

of Tao’s theorem for finite cyclic groups.

A different generalization of Tao’s theorem was given by Meshulam [3] for arbitrary finite abelian

groups. Let G be a finite abelian group of orderm, and let f : G → C be a nonzero function. If d1 < d2
are consecutive divisors of m such that d1 � |supp(f )| � d2, then Meshulam’s result states that

|supp(f̂ )| � n

d1d2
(d1 + d2 − |supp(f )|).

In the case of cyclic groups, our results give more precise bounds in certain cases, especially when

|supp(f )| is near a divisor of the group order. It seems reasonable to conjecture that, for general finite

abelian groups, there will be conditions similar to those in Theorem 4 or Corollary 8 which imply

inequalities of Tao’s type.
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