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Some Remarks on the Riemann Hypothesis*

M. Ram Murty

1 Polya and Turan conjectures

The Liouville function A(n) is defined as (—1)%=) where fi(n) is the total
number of prime factors of n counted with multiplicity. It is a completely
multiplicative function and it is easy to see that

ca

Aln) _ {(2s)
mm v = 0 (1.1)
for Re(s) > 1. H.w we define
5(x) =" A(n) (1.2)
n<z

then, by partial summation, we have

m \,Ma =5/ wmw dt. (1.3)

Based on numerical data, Pélya [Po] conjectured that
S(z) <0

for all & > 2. Tt should be noted that Pdlya’s conjecture implies the Rie-

mann hypothesis. Indeed, by a well-known theorem of Landau, the integral

expression in (1.3) converges to the right of Re(s) > oy where gg is the first -
real singularity of ((2s)/((s). For Landau’s theorem, see for example, [EM,

Theorem 10.4.2, p. 132, where the proof is given for Dirichlet series with

non-negative coefficients. However, the proof also works, mutatis mutandis,

for Dirichlet integrals of the form

o
2

S $a+1
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where S(t) is of fixed sign for ¢ sufficiently large. In the case under discus-
sion, ((s) has no real zeros in 1/2 < s < 1, and so the first real singularity
is at 5 = 1/2 coming from the pole of ((2s) on the numerator. Thus,
€(25)/¢(s) is regular for Re(s) > 1/2 which implies that there are no zeros
of ((s) in Re(s) > 1/2 since ((2s) is regular and non-vanishing in that
region.

Even if we have 5(x) < 0 for = sufficiently large, a similar argument
allows us to deduce the Riemann hypothesis. Unfortunately, Haselgrove
[Ha] has shown that S(z) changes sign infinitely often and so the Pélya
conjecture is false. The smallest counterexample is = 906, 150, 257 for
which S(z) = 1.

It is to be noted that the estimate

5(z) = O(z'/**) (1.9)

for any € > 0 (where the implied constant may depend on e would also
allow us to deduce the Riemann hypothesis. Indeed, (1.4) implies that the
integral expression in (1.3) is regular for Re(s) > 1/2. Thus, ((25)/((s)
is regular in that half-plane and by the same reasoning, we deduce the
Riemann hypothesis. In fact, it is not hard to show that (1.4) is equivalent,
to the Riemann hypothesis.

Our goal in this paper is to formulate automorphic generalizations of
the Pélya conjecture and (1.4) and then investigate when we can expect
them to be true.

There is a related conjecture of Turan [T], namely that the sum

> A 5

n<z

for = sufficiently large. This too has bieen disproved by Haselgrove [H].
Below, we shall also investigate modular analogues of the Turdn conjecture.
In an appendix by Nathan Ng, we present some numerical evidence related
to the modular versions of the Pélya and Turdn conjectures.

Acknowledgement I would like to thank Michael Rosen for his com-
ments on preliminary version of this paper. I also thank Nathan Ng for
doing the computations recorded in the Appendices.
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2 Modular analogues of Pélya’s conjecture

Let f be a normalized eigenform of weight k and level N and trivial nehen-
typus. Let us write

f(2) =) a(n)n’ e(nz)

where e(z) = e®™=, as usual. Then,

ag(m)as(n) = M ar(mn/d®).

d|m,n

It is easy to prove the following:

Lemma 2.1 Let
F(m,n) = MU G(m/d,n/d).

dlm,n

Then
G(m,n) = > u(d)F(m/d,n/d)

dim,n

and conversely.

We can apply Lemma 2.1 to deduce that

as(mn) = 3 p(d)ay(m/das(n/d). (2.1)

dlm,n

Now, let us observe that from (1.1),

1 ifnisa mn:.ﬂm
Ald) = 2.2
w (d) 0 otherwise. (2:2)

Then,

(=]

S asmtynt = 502 (53

n=1 n=1 ’ din

by (2.2). Interchanging summations, using (2.1) and observing that A is
completely multiplicative, we find that

Uo w w....l H
Wea Wi = Zagy Lo N 1Y) (2.3)
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where L(s, f) = 3507 as(n)/n* and L(s, fA) = = ar(n)A(n)/n°. Since
L(s, f)L(s, fA) = L{2s,Sym"(f)) /¢(2s), (2.4)

as is easily seen by examining Euler factors, we deduce the identity
¢*(s) D ag(n®)/n® = L(s,Sym*(f)), (2.5)
n=1

which is of independent, interest. Thus, from the previous equation, we
have

L(s, f) = LC8,8ym(F)

2.6)
(LGS, ) A
Now suppose that a;(n) are real and consider the hypothesis

> ar(n)A(n) > 0. (2.7

n<z

Then, writing the left hand side of (2.6) as an integral via partial summa-
tion, we find that the right hand side of (2.6) converges for Re(s) > oo where
oo is the first real singularity of L(2s,Sym®(£))/¢(2s)L(s, f). Since L(s, f)
has infinitely many zeros on Re(s) = 1/2, and because L(2s, Sym*(£))/¢(2s)
doesn’t vanish in the half-plane Re(s) > 1/2, we deduce that this singularity
must occur in the half-plane Re(s) > 1/2. This leads to:

Theorem 2.2 Suppose that L(s, f) # 0 for 1/2 < 5 < 1 and that

Qﬁabﬁm,b < 1.

Then,
S5@) = 3 as(m)A(n)

n<e

changes sign infinitely often.

Proof Let us first consider the case L(1/2, f) £ 0. If Sy (z) is of constant
sign for x sufficiently large, then

L(2s,8ym®(1))/¢(25)L(s, f)

is regular for Re(s) > o where « is the first real singularity of the right
hand side of (2.6). By hypothesis, L(s, f) does not. vanish for any real s
between 1/2 and 1. Also, {(2s) has no real zeros between 1/4 and 1 and the
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numerator is regular by a celebrated theorem of Shimura [Sh]. Thus, the
right hand side of (2.6) is regular for Re(s) > & witha < 1 /2. We also know
that L(2s,Sym*(f)) does not vanish on Re(s) = 1/2. Thus L(s, f) has no
zeros for Re(s) > 1/2 which is a contradiction. This deals with the case
L(1/2,f) # 0. If now, L(1/2,f) =0, and s = 1/2 is a simple zero, then
C(2s)L(s, f) is non-zero at 5 = 1/2. Thus, L(2s,Sym*(f))/¢(2s)L(s, f)
is regular for Re(s) > 1/2. But this is a contradiction since L{s, f) has
infinitely many zeros on Re(s) = 1/2.

O
It is easy to give examples of f which satisfy the hypothesis of Theo-
rem 2.2.

Thus, the modular analogue of Pélya’s conjecture is false in general. A
necessary condition for it to be true is that L(1/2, f) = 0 for then the right
hand side of (2.6) will have a singularity at s = 1/2.

It is quite possible that if E is an elliptic curve with large Mordell-Weil
rank, then

Se(z) =) a(m)A(n)/va >0
n<r
for all x sufficiently large.

Gonek [Go] and Hejhal [He] have independently conjectured that for
Riemann zeta function, we should have

1
2 oiE <7 Al
IFm(p)l<T 15 VP
where the summation is over zeros of the zeta Function. If we suppose that

all the zeros of L(s, f) are simple (apart from the zero at s = 1/2), then
the analogue of the above is

1
5 < T. (2.9)
cn_?mv_me 1L (p)[2

Murty and Perelli [MP] have shown that almost all zeros of L(s, f)
are simple if we assume the Riemann hypothesis for L(s, f) and the pair
correlation conjecture for it. For the discussion below, we do not need an
estimate as strong as the above estimate. If r is the order of the zero at
$ = 1/2, what is actually nceded is that the order of every zero on the
critical line have order < r — 1 and one would need a similar estimate for

. Ha
Y |Res———<T. (2.10)
0<|Im(p)|<T =E h?. .3

In fact, one can prove the following.
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Theorem 2.3 Assume the Riemann hypothesis for L(s, f) and suppose
that L(s, f) has a zero at s = 1/2 of erder r. Suppose further that all
zeros of L(s, f) on Re(s) = 1/2 are of order < v — 1 apart from s = 1/2
and that the enalogue of (2.10) is satisfied. Then,

M aj(n)A(n) = 2/ *p._s(logz) + O(z*/*(log =)*/*)
n<e
where p,—; i5 ¢ polynomiel of degrec v — 2.

Here is an indication of the proof. For the sake of simplicity we shall
suppose all zeros of L(s, f) apart from s = 1/2 are simple. The sum

> ar(m)A(n)
n<e
can be written for ¢ > 1,
1 [ L(2s, Sym®(f))z*ds
2mi Jooir 8C(25)L(s, f)
by Perron’s formula. We will choose T' = T} with Tj—oo0 along an appro-
priate sequence that doesn’t coincide with any ordinate of a zero of L(s, f).

Moving the line of integration to the left and picking up the residues arising
from the zeros of L{s, f), we obtain

+0@/T)

.v L(2p, Sym®(f))
Bl ;) - P T
.m.uaﬁu.u - P nﬁ_OmPv ' _m:_w“ﬁA.ﬁ bﬁﬁmbv.ﬁhcnqtv "

1 [ L(2s,Sym*(f))z*
2mi Je o s((2s)L(s, f)
where C denotes the semi-rectangular path beginning at ¢ + T} to a + iT;
and then to a —iT; ending at ¢ —iT;. The horizontal and vertical integrals

are easily estimated by the functional equation. For the sum over zeros one
can use

1
—  &T
2 ToE <

0<|Im(p)|<T

or the more general (2.10), which is a modular analogue of a conjecture of
Gonek [Go]. Breaking up the sum over the zeros into dyadic intervals of
type [U, 2U] we obtain an error term of

O(z'*(log x) /).
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3 Modular analogues of the Turan conjecture

If we expect that

Sp(x) = 3" ar(n)An) ~ ez’ (log z)7 2

n<r

for » > 4, then by partial summation we deduce that

CL Ry LT

as £ — oo, for some constant ¢ > 0, so that the sums

1y = 3 A 5
n<s

for sufficiently large . Unlike the Turdn case, these sums are not partial
sums of the corresponding series at the edge of the critical strip. They have
the disadvantage of being the partial sums of the series at the center of the
critical strip. It is not difficult to show that these series actually converge
at the center of the critical strip (see for example, [KM]).

Thus, we see that if the modular analogue of the Pdélya conjecture is
true, then so is the modular analogue of the Turan conjecture.

n<zc

4 Automorphic analogues

Let L(s,w) be an automorphic L-function on GL(n). If 7 is self-dual, then
it is reasonable to ask if

Sq(z) = MU ap(m)A(n) > 0.

n<zr
Certainly the Riemann hypothesis for L(s, ) follows from
Sxlal= Bty

since an easy calculation shows that

d
L{s, w)L(s,m® \) = U—‘“_” zﬁ — & p iy,

poi=1

The above reasoning suggests that if there is a high-order zero at, s = 1/2,
then the analogue of the Pélya conjecture should be true for a function
which is “primitive” in the sense of Selberg. It would be interesting to test
the conjecture for automorphic forms of higher dimension.
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5 Certain sums of Fourier coefficients

In this section and the next, we indicate an approach to proving a quasi-
Riemann hypothesis. To this end, we will need some estimates on averages
of Fourier coefficients of modular forms. We use the notation m ~ M to
mean M < m < 2M. We will need to consider sums of the form

> ag(my)
me M

for j fixed. We will prove that

Theorem 5.1 We have

Y ag(mj) = O(M'359),

m~ Al

where the implied constant is independent of M.

Proof We have

> ap(mg) DS wdyap(m/d)as(j/d)

m~M m~M dlm,j

> owldar(i/d) S ag(t)

dj t~MJd

and the inner sum is by an estimate of Rankin [Ra], O((M/d)'/3) from
which we easily deduce the stated estimate.

a

The interest in knowing the asymptotics of such sums is due to the
following:

Theorem 5.2 Suppose that

M A M E&VDZSE = O(XY mVe)

k<X dlkd<V

then L(s, f) has no zcros for Re(s) > 3/4.

Remark We say a few words about the hypothesis in Theorem 5.2. Firstly,
if V =1, then the hypothesis holds by Theorem 5.1. If V is bounded then
the same is true. If V' = X, then the sum is just a;(m) which is clearly
m*. If we write k = dt in the inner sum and interchange the sums, we
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can estimate the inner sum by Theorem 5.1 to get an upper bound of
O(m*X'/*V*/3). This means that the hypothesis is satisfied for V < X1/4.
In fact, if even we can replace the above upper bound by O(m* X 1/31/2/3-6)
for some small § > 0, then we will be able to deduce some quasi-Riemann
hypothesis for L(s, f). Thus, the hypothesised estimate {which can be
viewed as a generalization of Theorem 5.1) seems to lie deeper. We make
some further remarks about it in the final section.

6 Proof of Theorem 5.2

We will apply the method of Vaughan to study sums of the form

M a(n)A{n)

n<e

where a(n) = a;(n). Vaughan's identity can be stated in the following way.
It is based on the formal identity:

A/B = (1-BG)(4/B)+ AG
= (F+(A/B-F))(1- BG) + AG
= F+AG - BFG+ (A/B - F)(1 - BG).

Suppose now we are given two Dirichlet series

and write

Set,

F(s)= ) cn)/n®, G(s) = > b(n)/n®.

n<U n<V

Then, we have

c(n) = ai1(n) + as(n) + az(n) + ay(n)
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where
ai(n) = ¢n) forn<U
= 0 otherwise

@o(n) = ) a(n/d)bd)

din,d<V
am = = 3 e D @)

et=n,e<lU df=t,f<V
aum) = - % %i 3 %Eav

de=n,d>Ue>V re=e,s<V

which is the essence of Vaughan’s identity. In the case of intetest, A(s) =
¢(2s) and B(s) = ((s) so that

Aln

~—

= a1(n) + aa(n) + asz(n) + a4(n),
where

a{(n) = An) ifn<U

= 0 otherwise

ax(n) = 3 p(d),

h2d=n

d<v

azg(n) = - M A(m)p(d),
aq(n) = - M A(m) m M _:‘Evu.
| watiiew dlk,d<V

Thus, we can write
M a(n)AMn)
n<z

as 51 + 82 + 53 + 84 with appropriate notation. We now stppose that,
the a(n) are the coefficients (normalized) of our eigenform f. By Cauchy-
Schwarz and Rankin-Selberg, we easily deduce that 51 < U. We can write

,m.m as
(X ad)am =T ud) S et

.._I ._
ZMH __..M.M—,I\: da<V h<(z/d)1/2

The inner sum can be estimated trivially by O((z/d)*/?). This gives
Sy « g1/?+<V1/2 For S;, we have

S=-3( X wdam) Y apo.

LEUV  md=tm<U,d<V r<z/t

<

T

RPN
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By Theorem 5.1, the inner sum is O((z/t)!/31¢), so we get casily Sy <
/3UV)?/3+¢ Finally, for S,, we have

M h M .:?uv M A(m)a(mk).
Vek<a/U  d|k,d<V U<m<z/k
this can be re-written as

Yo oam Y AM B&vﬁsz.

U<m<x/V Vk<z/m d|k,d<V

By hypothesis, the inner sum is <« (z/m)"/?m* so that we get Sy <
z'*/V/V. We choose V = z!/2 and U = X* to get a final estimate of
T3/1*¢ Thus, L(s, f) has no zeros for Re(s) > 3/4.

7 Concluding remarks

It is clear that the obstacle in proving a quasi-Riemann hypothesis is really
the estimation of the sum Sy. It is interesting to note that if the sum

> A(m)a(mk)
m<ez
are positive, then one can get the following estimate for Sy:
(z/UY M M Alm)a{mk)
V<o /U U<m<a/k

which is

< (z/U) > AMm) 3 a(mk)

U<m<z/V Vek<nfm

which by Theorem 5.1 gives a final estimate of 21+ /72/% which would give
a quasi Riemann hypothesis.
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8 Appendices: by Nathan Ng

8.1 Modular analogues of Polya’s conjecture

Let E be an elliptic curve. The coefficients of its L-series will be denoted
a(n). The normalized coefficients will be denoted ag(n) where ag(n) =
a(n)/n?. The Liouville function is denoted A(n) where An) = (-1)%®) and
Q(n) is the total number of prime factors of n (counted with multiplicity)
Let Sg(z) = 3_,<; ae(n)A(n) be the generalized Polya sum.

Note In the tables, only the integer part for Sy is given. We write S for
SE(n - 105) in the tables below.
8.1.1 El:y*=x3+x2—7x+ 36

(rank(E1) = 4)

_ n _ S _ n _ S _ n _ 5 _ n _ S _ n _ S

1 201404 2 322163 3 422250 4 511622 5 592659
6 669422 7 740673 8 807658 9 B73727 10 | 935762
11 | 998750 12 1055369 13 1111007 14 1164917 15 1218562
16 | 1271467 | 17 | 1324716 | 18 | 1373508 | 19 | 1421993 | 20 | 1468089
21 | 1516194 | 22 | 1564940 | 23 | 1609313 | 24 | 1653517 | 25 | 1697040
26 | 1742414 | 27 | 1788221 | 28 | 1829214 | 29 | 1873512 | 30 | 1912127
31 | 1951990 | 32 | 1994299 | 33 | 2034881 | 34 | 2075782 | 35 | 2113478
36 | 2152129 | 37 | 2191081 | 38 | 2224929 | 39 | 2262398 | 40 | 2298416
41 | 2335326 | 42 | 2368912 | 43 | 2407780 | 44 | 2442043 | 45 | 2477384
46 | 2511918 | 47 | 2546599 | 48 | 2583300 49 | 2618861 o0 | 2652814

8.1.2 E2:y2-21y =x%+67x% — 10x + 30
(rank(E2) = 5)

_ n _ S _ n _ ) _ n _ S _ n _ ) _ n _ S
1 217561 2 353203 3 467854 4 570499 5 664760

6 752802 7 836816 8 916978 9 993251 | 10 | 1066276
11 1136854 12 1206474 13 1273073 14 1339060 15 1402266
16 1465722 17 1526688 18 1586506 1645289 | 20 1702981
21 | 1758113 | 22 | 1814534 | 23 | 1869888 1923348 | 25 | 1976276
26 | 2028424 | 27 | 2081935 | 28 | 2133258 | 29 | 2184795 | 30 | 2233014

31 | 2283240 [ 32 | 2331103 | 33 | 2380388 | 34 | 2429313 | 35 | 2475573
d6 | 2522469 | 37 | 2569446 | 38 | 2614393 | 39 | 2660464 | 40 | 2706789
41 | 2750564 | 42 [ 2795057 | 43 | 2841453 | 44 | 2885226 | 45 | 2028576
46 | 2070948 | 47 | 3014348 | 48 | 3056984 | 49 | 3098133 | 50 | 3138632
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8.1.3 E3:y*-63y =x®+351x2 + 56x -+ 22 (rank(E3) = 6)

_ n _ ) _ n _ 5 _ n _ S _ n _ ) _ n _ ) _

1 386697 2 645957 3 869445 4 1072938 5 | 1261476
6 | 1439449 7 | 1608641 8 | 1771245 9 | 1926524 | 10 | 2078573
11 | 2224311 12 | 2369104 | 13 | 2506776 14 | 2643033 | 15 | 2777310
16 | 2908091 | 17 | 3035366 | 18 | 3160920 | 19 3283870 | 20 | 3407035
21 | 3526513 | 22 | 3642749 | 23 | 3760472 | 24 3877013 | 25 | 3989843
26 | 4101297 27 | 4211884 | 28 | 4322482 | 29 | 4432330 30 | 4539339
31 | 4646646 | 32 | 4749538 | 33 | 4853587 | 34 4957684 | 35 | 5059171
36 | 5161085 | 37 | 5261785 | 38 | 5358391 | 39 5458689 | 40 | 5556704
41 | 5653294 | 42 | 5751511 | 43 | 5845392 44 | 5941619 | 45 | 6034557
46 | 6128691 | 47 | 6224164 | 48 | 6315399 | 49 6409947 | 50 | 6499323

8.1.4 Ed4:y?-168y =x®+1641x2 + 161x — 8 (rank(E4) = 7)

f\: _ S _ n _ 5 _ n _ S _ n _ S m n _ 5

1 594145 2 10156566 3 1385905 4 1725542 5 2043874

6 2346273 i 2634736 8 2914172 9 3183595 | 10 3445294

11 3699511 | 12 3948636 | 13 4191263 | 14 4430532 | 15 4663520

16 4893186 | 17 5118437 | 18 5341917 | 19 02560982 | 20 5776124

21 5089072 | 22 6197620 | 23 6406369 | 24 6612722 | 25 6814634

26 7014126 | 27 7213935 | 28 7410973 | 29 7604352 | 30 TI6756

31 7987525 | 32 8177016 | 33 8362978 | 34 8549392 | 35 8733795

36 8918625 | 37 9099551 | 38 9279117 | 39 9458557 | 40 9636586

41 9813116 | 42 9989408 | 43 | 10161495 | 44 | 10332620 | 45 | 10503675

46 | 10675408 | 47 | 10847600 | 48 | 11016174 | 49 | 11182080 50 | 11350545

8.1.5 Eb5:y?-2xy+737y =x® +531x% + 1262x — 110
(rank(E5) = 8)

_’_ .m.._a._ m_ﬂ_ .m._:_ ,w_:_ m_.f_
1

746346 2 1295215 3 1782625 4 2234026 5 2658572

6 3063518 T 34531411 8 38305637 9 4194361 | 10 4549210

11 4896000 | 12 5234904 | 13 5568477 | 14 5892719 | 15 6213424

16 6529903 | 17 6837707 | 18 7142781 | 19 7444932 | 20 7740555
21 8035595 | 22 8326564 | 23 8611872 | 24 8896498 | 25 9176337

26 9456621 | 27 9731143 | 28 | 10004300 | 29 | 10276113 | 30 | 10542562

31 | 10810469 | 32 | 11073349 | 33 | 11331322 | 34 11591076 | 35 | 11847572

36 | 12104436 | 37 | 12360929 | 38 | 12611653 | 39 12861357 | 40 | 13109258
41 | 13357360 | 42 | 13602367 | 43 | 13847412 | 44 14090376 | 45 | 14332387
46 | 14571373 | 47 | 14810372 | 48 | 15048835 | 49 15282605 | 50 | 15515199
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8.1.6 E6:y?+ 3576y = x5 + 9767x2 + 425x — 2412
(rank(E6) = 9)

_ n _ & _ n _ 5 _ n _ 5 _ n _ S5 _ n _ S

[

1 628669 1090005 3 1498764 4 1878154 5 2232601

m wmqwmmo ﬂ wmmmmmw m wmﬂmacm m mmmHu@wwa meOHmm
11 4108589 2 4394015 | 13 4671069 | 14 4946030 | 15 5213297

H
_m mAQQCmHHq mﬂmmuauwm mww&pwwuw mmgmmmwmo mnmwmﬂa
21 6742563 | 22 6985878 | 23 7225992 | 24 TAGTI09 | 25 7702909

26 7934087 | 27 8166383 | 28 8396313 | 29 B6216G45 | 30 8847970

31 9068998 | 32 9289189 | 33 0509889 | 34 97256722 | 35 9941257

36 | 10156603 | 37 | 10369435 | 38 | 10582542 | 39 | 10791065 | 40 | 11003125

41 | 11209192 | 42 | 11415744 | 43 | 11619274 | 44 | 11824137 | 45 | 12026375

46 | 12226343 | 47 | 12427274 | 48 | 12629308 | 49 | 12827005 | 50 | 13024838

8.1.7 ET:y? - 15336y =x* + 1461695x> — 1414x — 80334
(rank(E7) = 10)

(i 51~ _s[al 5[] 5=

s |

n
1 863765 2 1518178 3 2103843 4 2650730 3 3167285

6 3661074 7 4138930 8 4601567 9 5049942 | 10 5490045

11 5918105 | 12 6337736 | 13 6750994 | 14 7154920 | 15 7552743

16 7945953 | 17 8332084 | 18 8714975 | 19 9092725 | 20 9463593

21 9832013 | 22 | 10197337 | 23 | 10556331 | 24 | 10913126 | 25 | 11265934

26 | LIG16G719 | 27 | 11961429 | 28 | 12304890 | 29 | 12645915 | 30 | 12083303

31 [ 13318006 | 32 | 13653228 | 33 | 13983816 | 34 | 14311650 | 35 | 14638627

36 | 14963131 | 37 | 15283241 | 38 | 15604378 | 39 | 15923548 | 40 | 16237957

41 | 16551140 | 42 | 16863976 | 43 | 17174866 | 44 | 17485161 | 45 | 17789400

4G | 18095174 | 47 | 18400360 | 48 | 18702538 | 49 | 19001829 | 50 | 19300679

8.2 Modular analogues of Turan’s conjecture

Let E be an elliptic curve. The coefficients of its L-series will be denoted
a(n). The normalized coefficients will be denoted ag(n) where a g(n) =
a(n)/ni. The Liouville function is denoted A(n) where A(n) = (—1)*"™ and
(n) is the total number of prime factors of n (counted with multiplicity).
Let Tp(z) = ¥, o, ap(n)A(n)/n? be the generalized Turan sum.

Note In the tables, only the integer part for T is given. We write T' for
Te(n-10°) in the tables below.
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8.21 El:y?=x*+x*—-7Tx+36
(rank(E1) = 4)

Lnl T[] Tln] T[a] T[n] T]
L] 347 | 2|-608] 3| 709 | 4 773 5| 821
6 89| 7] 920 8| 945 9| 967 | 10 [ 987

11 | 1007 | 12 | 1024 | 13 | 1039 | 14 | 1054 | 15 | 1068

16 | 1082 | 17 | 1095 | 18 | 1106 | 19 | 1118 | 20 | 1128

21 11139 | 22 | 1149 | 23 | 1159 | 24 | 1168 | 25 | 1176

26 | 1185 | 27 | 1194 | 28 | 1202 | 20 | 1210 | 30 | 1218

8.2.2 E2:y?-21y=x%+67x2 - 10x+ 30
(rank(E2) = 5) -~

| n] T | n] T| n] T| n| T[ n] T |
1 630 2 743 3 816 4 871 5 916
6 953 7 986 8 | 1016 9 | 1042 | 10 | 1066
11 | 1087 | 12 | 1108 | 13 | 1127 | 14 | 1145 | 15 | 1161
16 | 1177 | 17 | 1192 | 18 | 1207 | 19 | 1220 [ 20 | 1233
21 | 1246 | 22 | 1258 | 23 | 1269 | 24 | 1280 | 25 | 1291
26 | 1302 | 27 | 1312 | 28 | 1322 | 29 | 1331 | 30 | 1340

8.2.3 E3:y?—-63y =x3+351x2 + 56x + 22
(rank(E3) = 6)

(Rl T{a] T{a] T[] T[w] 7]
1] 1034 2 | 1250 3 | 1392 4 | 1501 9 | 15891
6 | 1667 711733 8| 1792 9 | 1846 | 10 | 1895

11 | 1940 | 12 | 1983 | 13 | 2022 | 14 | 2059 | 15 | 2004

16 | 2127 | 17 | 2159 [ 18 | 2189 | 19 [ 2217 [ 20 | 2245

21 | 2272 | 22 | 22097 | 23 | 2321 | 24 | 2345 | 25 | 2368

26 | 2390 | 27 | 2412 | 28 | 2433 | 29 | 2453 | 30 [ 2474

8.2.4 E4:y* - 168y =x* + 1641x2 + 161x — 8
rank(E4) = 7)

_ :_ H._ n _ u4_ n _ M,_ 7 _ MJ_ qp_ T
1 {1498 | 2| 1848 | 3 | 2084 | 4 [ 2266 [ 5 [ 2417
62546 | 7|2659| 82761 | 9 | 2854 | 10 | 2939

11 | 3017 | 12| 3091 | 13 | 3159 | 14 | 3224 | 15 | 3286

16 | 3344 | 17 | 3399 | 18 | 3453 [ 19 | 3504 | 20 | 3553

21 | 3600 | 22 | 3645 | 23 | 3689 | 24 | 3731 | 25 | 3772

26 | 3811 | 27 | 3850 | 28 | 3888 | 29 | 3924 | 30 | 3960
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8.2.5 E5:y”* - 2xy + 737y = x* + 531x2 + 1262x — 110
(rank(E5) = 8)

_3._ H_qw_ mﬁ_:_ u.__.:_ T| =] T |
1| 1821 2| 2278 3 | 2589 4 | 2831 5 | 3031
6 | 3204 7 | 3357 8 | 3495 9| 3620 | 10 | 3735

11 | 3842 | 12 | 3042 | 13 | 4037 | 14 | 4125 | 15 | 4209

16 | 4289 | 17 | 4365 | 18 | 4438 | 19 | 4508 | 20 | 4575

21 | 4641 | 22 | 4703 | 23 | 4763 | 24 | 4822 | 25 | 4879

26 | 4934 | 27 | 4988 | 28 | 5040 | 29 | 5091 | 30 5140

B.2.6 E6:y%+ 3576y =x% + 9767x2 + 425x — 2412
(rank(E6) = 9)

| n] T| n] T| n] H_ﬁﬂ ms_z_ T |
1| 1548 21 1932 3| 2192 4 | 2396 5 | 2563
6 | 2708 T ] 2836 | 8| 2952 9 | 3057 | 10 | 3154
11 13243 | 12 |1 3327 | 13 | 3405 | 14 | 3480 | 15 | 3550
16 | 3617 | 17 | 3682 | 18 | 3743 | 19 | 3802 | 20 | 38590
21 | 3913 3965 | 23 | 4016 | 24 | 4066 | 25 | 4113
26 | 4159 4204 | 28 | 4248 | 29 | 4290 | 30 | 4332

3%

S ]
-J

8.2.7 ET7:y*-15336y = x® + 1461695x> — 1414x — 80334
(rank(ET) = 10)

Lnl Tlna] T[n[ Tla] T[n] T]
1]2060 | 22604 | 32977 | 43270 5| 3514
G | 3725 | 7 [ 3913 | 8 [ 4082 | 9 | 4236 | 10 | 4379
1T | 4511 | 12 | 4635 | 13 | 4751 | 14 | 4861 | 15 | 4966
16 | 5066 | 17 | 5161 | 18 | 5252 | 10 | 5340 | 20 | 5424
21 | 5506 | 22 | 5584 | 23 | 5660 | 24 | 5734 | 25 | 5805

FA

26 | 5874 | 27 | 5941 | 28 | 6007 | 29 [ 6071 | 30 | 6133
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