
Journal of the Indian Math. So.Speial Volume (2013), 73�91To ommemorate the 125thBirth Anniversary of Srinivasa Ramanujanand the National Mathematis Year�2012.RAMANUJAN AND THE ZETA FUNCTIONM. RAM MURTYAbstrat. Srinivasa Ramanujan wrote several papers related to the Rie-mann zeta funtion. These papers highlight two themes, the �rst beingthe speial values of the zeta funtion at integer arguments and the se-ond, its analytial theory as it pertains to the distribution of prime num-bers. Apart from his published work, a good hunk of his ontributionsare also ontained in his letters and notebooks (both lost and found) andit is the purpose of this artile to highlight these ontributions in lightof modern developments. In partiular, we show how Ramanujan's iden-tities an be generalized to prove the non-vanishing of Artin L-series on
ℜ(s) = 1 and thus give a new proof of the Chebotarev density theorem.In the last setion, we disuss its relation to the Rankin-Selberg methodand speial values of L-series attahed to usp forms.1. IntrodutionWithout a doubt, the Riemann zeta funtion has two alluring aspets. The�rst is its relation to the distribution of prime numbers and the seond is thedetermination of its speial values. The goal of this artile is to show thatSrinivasa Aiyangar Ramanujan made signi�ant ontributions to both of thesethemes and this is not so widely known.In fat, about a hundred years ago, Ramanujan published two papers [26℄[27℄ in the Journal of the Indian Mathematial Soiety, one in 1911 and theseond in 1913. The �rst was titled �Some properties of Bernoulli numbers�and the seond, �Irregular numbers�. Both papers foused on speial values ofthe Riemann zeta funtion at positive even arguments. Clearly, these papers2010 Mathematis Subjet Classi�ation. 10H05, 11F67, 11J81.Key words and phrases: Riemann zeta funtion, speial values, Eihler integrals,Chebotarev density theorem.Researh of the author was partially supported by an NSERC Disovery grant.ISSN 0019�5839 © Indian Mathematial Soiety, 2013 .73



74 M. RAM MURTYwere written by Ramanujan before his histori trip to England to begin hisepi ollaboration with G.H. Hardy. A third paper entitled �Some formulas inthe analytial theory of numbers,� written in 1916 after his arrival in England,was to have a major impat in the study of the distribution of prime numbers.There is another paper [29℄ of Ramanujan devoted entirely to the Riemannzeta funtion. However, this paper derives some new integral expressions forRiemann's funtions ξ(s) and Ξ(t), and is not diretly related to the theme ofthis exposition.Not so well-known is Ramanujan's work on the zeta funtion at odd argu-ments. This is ontained in the elebrated notebooks (both lost and found) ofRamanujan. Indeed, in Entry 21(i) of Chapter 14 in Ramanujan's seond note-book, we �nd the following unusual formula. If α and β are positive numberssuh that αβ = π2, and if r is a positive integer, then
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RAMANUJAN AND THE ZETA FUNCTION 75What is evident in Ramanujan's notebooks is an awareness that speial valuesof
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mr(e2πm − 1)are relevant to the study of the Riemann zeta funtion at odd arguments. Thus,he proeeds to investigate these sums and observes in Entry 13 (see page 261of [6℄) that for α, β > 0 and αβ = π2, we have
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,whih was disovered by Glaisher [11℄ in 1889.Grosswald [13℄ (see also [14℄) wrote several papers in the 1970's related tothese formulas. (He may have been unaware of Ramanujan's work when hewrote the �rst paper sine in the appendix of [13℄, he says that Siegel alertedhim to the volumes of Ramanujan's notebooks published by the Tata Institutein 1957.) To state his theorem, let
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.Putting z = iβ/π with β > 0 gives the Ramanujan-Lerh formula above. Thepolynomial on the right hand side has been studied by the author with C.Smyth and R. Wang in [24℄. In this ontext, the reader an also onsult [12℄as well as [19℄ and [20℄.



76 M. RAM MURTYIn [4℄, Berndt proves the following generalization: for any z with ℑ(z) > 0,let V z = −1/z. For any integer r, we have
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g(z,−r) = (1− zr)ζ(r + 1),and for r = 0, g(z, 0) = πi−log(−z). From this, Berndt [4℄ dedues both Euler'sformula for the zeta funtion at even arguments and Ramanujan's formulaabove for ζ(2r + 1). Indeed, if we put r = 2n− 1 in (1.1), then the left handside vanishes as well as the �rst sum on the right hand side. An easy alulationnow gives Euler's formula. To dedue the Ramanujan-Grosswald formula, wereplae r with 2r (r 6= 0) and do the obvious simpli�ations. Thus, Euler'sformula and Ramanujan's formula are speial ases of Theorem 2.2 of Berndt[4℄. In [7℄, Berndt disusses an unpublished manusript of Ramanujan in whihsome hints are given of how Ramanujan may have derived his formulas for thespeial values of ζ(2r + 1). This unpublished paper is also part of a hapterin the forthoming fourth volume by Andrews and Berndt [1℄ on Ramanujan'slost notebook.As noted by the author, C. Smyth and R. Wang in [12℄, the funtion Fr(z)is an example of an �Eihler integral� in the following sense. Let r be odd and
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[Er+1(τ) − γr+1](τ − z)r−1dτ,as is easily heked. This is alled an �Eihler integral of the �rst kind� in theliterature (see [12℄).In his 1916 paper, Ramanujan obtained more remarkable identities involv-ing the Riemann zeta funtion and these identities have been used by Ingham[17℄ to give a new proof of the non-vanishing of the zeta funtion on the line



RAMANUJAN AND THE ZETA FUNCTION 77
ℜ(s) = 1 (a fat whih is equivalent to the prime number theorem). Morepreisely, Ramanujan [28℄ showed that
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. (1.2)Formula (1.2) was partly generalized by Chowla [9℄ in 1928. Shimura (seeLemma 1 of [33℄) also generalized Ramanujan's identity and this is essentiallyour Theorem 5.2 below in di�erent notation. Shimura seems to be unwareof Ramanujan's work in this ontext sine no referene is made to him in[33℄. As Ingham [17℄ notes, a mild variation of the Ramanujan identity alsoleads to a proof of the non-vanishing of the Dirihlet L-funtions on the line

ℜ(s) = 1 (whih is again equivalent to the prime number theorem for arithmetiprogressions). In this paper, we will disuss these two aspets of Ramanujan'swork as well as generalizations and future diretions. In partiular, we showthat a generalization of Ramanujan's identity leads to a proof of the non-vanishing of Artin L-series on ℜ(s) = 1, a fat whih is equivalent to theChebotarev density theorem.2. Speial Values Of The Riemann Zeta FuntionThe Bernoulli numbers Bn, are de�ned by the generating funtion
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,where the produt is over prime number numbers, Ramanujan observed in[26℄ that this gives us a rapid method of omputing the Bernoulli numbers.Muh of the disussion in Ramanujan's notebooks is replete with a study ofthe Bernoulli numbers and their relationship to speial values of the Riemannzeta funtion. It is highly reminisent of Euler [2℄ who, though he didn't havethe onept of analyti ontinuation and did not view the zeta funtion as afuntion of a omplex variable, managed to derive the funtional equation for itand evaluate expliitly its speial values at even arguments. (See for example,formula (K) of [2℄.) In the same spirit, Ramanujan seems to have derived the



78 M. RAM MURTYfuntional equation aording to Berndt (see pages 153-154 in Chapter 7 of [5℄).Aording to Ayoub (see the last line on page 1078 of [2℄), Euler onjeturedthat ζ(2r + 1)/π2r+1 is a �funtion of log 2�. This attribution is however, notquite aurate. Aording to the English translation of the paper [10℄, Eulerwas aiming to show that there are no integers a, b, c suh that
aζ(3) + b(log 2)3 + c(log 2)π2 = 0,and he seems to have onjetured that there was no suh relation. If we in-terpret the �funtion of log 2� to be a �polynomial with algebrai oe�ients in

log 2, then it may be possible to show that ζ(2r+1)/π2r+1 is not a polynomialin log 2 with algebrai oe�ients, now with modern tools sine it is generallybelieved that
π, ζ(3), ζ(5), ...are all algebraially independent. In this ontext, Kohnen [18℄ has made generalonjetures regarding speial values of L-series attahed to modular forms ofweight 2k for the full modular group. These onjetures (when applied to theEisenstein series) imply the transendene of the numbers ζ(2r+1)/π2r+1. Ofourse, these onjetures say nothing about the relationship of these numbersto log 2, but most probably there is no relation to it.Returning to Ramanujan and his two papers related to the speial valuesof the Riemann zeta funtion at even arguments, we �nd the urious reurrenefor the Bernoulli numbers given as formula (34) of [26℄:
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RAMANUJAN AND THE ZETA FUNCTION 79we dedue:Theorem 2.1. As n tends to in�nity, we have
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= 1 +O(1/22n).I suppose this is what Ramanujan meant when he wrote that B2n/B2n−2onverges to the quantity above �very rapidly as n beomes greater and greater�(see [26, (35)℄).3. Speial Values Of Related Dirihlet SeriesIn his 1913 paper on �irregular numbers�, Ramanujan evaluates the series
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80 M. RAM MURTYwhere cn = 1 if n is not squarefree and zero otherwise. So in this way, Ramanu-jan evaluates the Dirihlet series supported at �irregular numbers� in terms ofBernoulli numbers, �rst by writing them as funtions of the Riemann zetafuntion and then noting that the arguments of the zeta funtion are all even.4. Speial Values Of The Riemann Zeta FuntionAt Odd ArgumentsThe Ramanujan-Grosswald formula allows us to write the speial value
ζ(2r+1) in terms of speial values of F2r+1(z) and the Ramanujan polynomials
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{G2r+1(z) : ℑ(z) > 0, z algebraic, z2r 6= 1}ontains at most one algebrai number.Presumably, there are no algebrai numbers in the set desribed by thetheorem, for otherwise, ζ(2r + 1) would be an algebrai linear ombination of
1 and π2r+1, whih is highly unlikely in view of Kohnen's onjetures and theprevailing philosophy.



RAMANUJAN AND THE ZETA FUNCTION 815. Ramanujan And Prime Number TheoryIn his twelve letures on Ramanujan delivered at Harvard University in1936, G.H. Hardy [15℄ relates how Ramanujan wrote about expliit formulasfor the number of primes less than x and how most of his assertions werein error. Ramanujan's �rst two letters to Hardy ontained several strikingresults, some of whih were new, and some had been disovered by Riemannand Gram earlier. In his �rst letter of January 16, 1913, he wrote saying hehad several interesting formulas for the number of primes up to x but does notwrite them down expliitly. In his seond letter of 27 February, 1913 (this dateis given inorretly as 29 February 1913 in Hardy's book), Ramanujan givesthree formulas for the number of primes less than x. These are:
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, c = 1.45136380...Of these formulas, the third ours in Riemann's 1860 paper and a series relatedto (but not idential with) the seond formula appears in the work of Gram.But the �rst one was new and Hardy [15℄ omments that it �had never, as faras I know, appeared before; and in any ase I am sure (for reasons whih Iwill state later) that Ramanujan had found all three funtions for himself.� Hethen proeeds to show how the assertions that Ramanujan made in his lettersare wrong. (In this ontext, the reader may also read further letters betweenHardy and Ramanujan disussed in the book by Berndt and Rankin [8℄.)In the fourth of his twelve letures, Hardy [15℄ elaborates on how Ra-manujan's identity (1.2) was used by Ingham [17℄ to dedue the prime numbertheorem, that the number of primes up to x is asymptoti to x/ log x as xtends to in�nity. As is well-known via Tauberian theory, this is equivalent tothe non-vanishing of the Riemann zeta funtion on the line ℜ(s) = 1. Ramanu-jan's identity is used in onjuntion with a famous lemma of Landau, whih wereprodue below, for the sake of ompleteness. Reall that if a Dirihlet series
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,onverges at s = s0 (say), then it onverges for any s with ℜ(s) > ℜ(s0) andthe funtion thus de�ned is holomorphi in this region. This fat is easilyestablished using partial summation and is a standard fat in the theory of



82 M. RAM MURTYDirihlet series. Thus, given a Dirihlet series g(s) as above, the set of valuesof s for whih the series for g(s) onverges ontains a maximal open half-planeof the form ℜ(s) > σ0 and the value of σ0 is alled its absissa of onvergene.Lemma 5.1. (Landau) Let
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nsbe a Dirihlet series with non-negative oe�ients. Then f(s) has a singularityat its absissa of onvergene.Ingham's proof of the non-vanishing of the Riemann zeta funtion usingRamanujan's identity (1.2) now proeeds as follows. Suppose that ζ(1+it0) = 0with t0 ∈ R and i = √
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s = 1 of ζ(s)2 is anelled by the double zero of ζ(s − it0)ζ(s + it0) at s = 1.Thus, the right hand side of the identity (5.1) is analyti for ℜ(s) > 1/2. ByLandau's theorem, the Dirihlet series in (5.1) has a singularity at its absissa ofonvergene whih must be ≤ 1/2 by what we have just said above. However,the right hand side of (5.1) has a zero at s = 1/2 sine the denominatorhas a pole there. But the left hand side being a Dirihlet series with non-negative oe�ients is ≥ 1 (orresponding to the term n = 1) as s→ 1
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+. Thisontradition proves that ζ(1+ it0) 6= 0. Hardy disusses this on page 60 of hiselebrated twelve letures on Ramanujan [15℄.In his paper, Ingham [17℄ observes that a minor hange in Ramanujan'sidentity allows one to dedue the non-vanishing of Dirihlet's L-funtions L(s, χ)on the line ℜ(s) = 1. It is well-known that this again is equivalent to the primenumber theorem for arithmeti progressions. Ingham's idea is best formulatedin the following theorem whih an be viewed as a generalization of the �gen-eral theorem� in [17℄. To state this, let us introdue some notation. Given twoarithmetial funtion f1, f2, we de�ne the Dirihlet onvolution f1 ∗ f2 by
(f1 ∗ f2)(n) =

∑

d|n,d>0

f1(d)f2(n/d).We say an arithmetial funtion h is ompletely multipliative if h(mn) =

h(m)h(n) for all natural numbers m,n. We say a funtion h is multipliative if
h(mn) = h(m)h(n) whenever m and n are oprime. It will also be onvenient



RAMANUJAN AND THE ZETA FUNCTION 83to introdue the assoiated Dirihlet series for any arithmetial funtion h,
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σa,χ(n) :=
∑

d|n

χ(d)da,we dedue Ramanujan's formula for L-series (as given in [3℄):
∞
∑

n=1

σa,χ(n)σb,ψ(n)

ns
=
ζ(s)L(s− a, χ)L(s− b, ψ)L(s− a− b, χψ)

L(2s− a− b, χψ)
.



84 M. RAM MURTYTo dedue the non-vanishing of L(s, χ) on ℜ(s) = 1, we hoose ψ = χ, b = a,
a = it0 with t0 ∈ R and argue as before. Indeed, with these hoies we have

∞
∑

n=1

|σa,χ(n)|2
ns

=
ζ(s)L(s− it0, χ)L(s+ it0, χ)L(s, χ0)

L(2s, χ0)
,where χ0 is the trivial harater (mod q). If L(1 − it0, χ)) = 0, then L(1 +

it0, χ) = 0 whih would anel the poles arising from ζ(s) and L(s, χ0) at
s = 1. Thus, the right hand side is analyti for ℜ(s) ≥ 1/2. Thus the absissaof onvergene is < 1/2. But the right hand side has a zero at s = 1/2 (arisingfrom the pole at s = 1/2 of the denominator) and the left hand side is ≥ 1 as
s→ 1

2

+.6. The Chebotarev Density Theorem Via Ramanujan's IdentityJust as Ramanujan's identity was used to prove the non-vanishing of Dirih-let L-series on ℜ(s) = 1, one an apply a similar method to dedue non-vanishing of Artin L-series on the line ℜ(s) = 1. This is equivalent to theChebotarev density theorem, whih an be viewed as the natural generaliza-tion of Dirihlet's theorem. Sine the bakground is formidable to present in ashort expository paper suh as this, we will ontent ourselves to give the mainidea of how this an be arried out. We refer the reader to [22℄ for furtherdetails and bakground of the theory.Brauer's indution theorem redues the problem of non-vanishing of Artin
L-series on ℜ(s) = 1 to the ase of Heke L-series attahed to a number �eld.We then need to show that suh an L-series does not vanish on ℜ(s) = 1. AnyHeke L-series attahed to a number �eld F is of the form

L(s, χ) =
∑

a6=0

χ(a)

N(a)s
,where the summation is over non-zero ideals a of F and χ is a Heke haraterattahed to a generalized ideal lass group. For ℜ(s) > 1, this L-series has anEuler produt:

L(s, χ) =
∏

p

(

1− χ(p)

N(p)s

)−1

.Heke (see [22℄) proved that eah L(s, χ) extends to an entire funtion (for χnon-trivial) and satis�es a suitable funtional equation. When χ is trivial, thisis essentially the Dedekind zeta funtion of F , denoted ζF (s), multiplied by
∏

p|fχ

(

1− 1

N(p)s

)

,



RAMANUJAN AND THE ZETA FUNCTION 85where fχ is the ondutor of χ. Thus, when χ = χ0 is the trivial harater,then L(s, χ0) is analyti everywhere exept at s = 1 where it has a simple pole.Our presentation of Ramanujan's identity in Theorem 5.2 was ompletelyformal and it is easily seen that if we de�ne
σa,χ(a) =

∑

b|a

χ(b)N(b)a,then
∑

a6=0

|σa,χ(a)|2
N(a)s

=
ζF (s)L(s− a− a, χ0)L(s− a, χ)L(s− a, χ)

L(2s− a− a, χ0)
,where χ0 is the trivial harater orresponding to the assoiated generalizedideal lass group. As before, if L(1+ it0, χ) = 0, we hoose a = it0 and proeedalong the earlier line of argument.7. Ramanujan's Identity And The Rankin-Selberg MethodHad Ramanujan lived another forty years, he would have been elated tosee the essential role his identity would play in the determination of the spe-ial values of L-series attahed to usp forms, as well as Rankin's spetaular1939 paper [30℄ in whih he makes inroads towards the Ramanujan onjetureregarding the estimate on his τ -funtion. More generally, if f is a normalizeduspidal eigenform of weight k for the full modular group, then we an assoiatethe L-series

L(s, f) =

∞
∑

n=1

an
ns
,where the an's are the Fourier oe�ients of f at the usp i∞. Heke showedthat L(s, f) extends to an entire funtion and satis�es a suitable funtionalequation relating its value at s to its value at k− s. In [31℄, Rankin proved thefollowing theorem. Set

Λf (s) := (2π)−sΓ(s)L(s, f),where Γ(s) denotes the lassial Γ-funtion of Euler. For any even integer jwith k/2 + 2 ≤ j ≤ k − 4, we have
Λf(j)Λf (k − 1) = (−1)j/22j−1(f, EjEk−j),where (·, ·) denotes the Petersson inner produt and Ej denotes the Eisensteinseries of weight j we met earlier. Surprisingly, the fat that suh an expliitformula for the speial values holds in greater generality was noted by Shimura[33℄ muh later in 1976. Here is a brief desription of the essential ideas.



86 M. RAM MURTYLet k be a positive integer and χ a Dirihlet harater (mod N) suh that
χ(−1) = (−1)k. Let

Γ0(N) =

{(

a b

c d

)

∈ SL2(Z) : c ≡ 0(modN)

}andMk(N,χ) the vetor spae of all holomorphi modular forms f(z) satisfying
f(γz) = χ(d)(cz + d)kf(z), ∀ γ =

(

a b

c d

)

∈ Γ0(N),and
γz :=

az + b

cz + d
.The subspae of modular forms vanishing at all the usps (see [34℄ for termi-nology) is denoted Sk(N,χ). We put

Mk(N) = ⊕
χmodN

Mk(N,χ), Sk(N) = ⊕
χmodN

Sk(N,χ),where the diret sums run over all Dirihlet haraters (mod N). Clearly, thesespaes onsist of modular forms and usp forms of weight k with respet to thegroup
Γ1(N) =

{(

a b

c d

)

∈ Γ0(N) : a ≡ d ≡ 1(modN)

}

.Every element f of Mk(N) has a Fourier expansion
f(z) =

∞
∑

n=0

ane
2πinzand we have its assoiated L-series

L(s, f) =

∞
∑

n=1

an
ns
.For two elements f, h in Mk(N) suh that fh is a usp form, we de�ne thePetersson inner produt (f, h) by

(f, h) :=
3

π[SL2(Z) : Γ1(N){±1}]

∫

DN

f(z)h(z)yk−2dxdy, z = x+ iy,where DN denotes a fundamental domain for the ation of Γ1(N) on the upperhalf-plane.Given f ∈ Sk(N,χ) and g ∈Mj(N,ψ) with Fourier expansions
f(z) =

∞
∑

n=1

ane
2πinz , g(z) =

∞
∑

n=0

bne
2πinz,



RAMANUJAN AND THE ZETA FUNCTION 87we de�ne the Rankin-Selberg L-series
D(s, f, g) :=

∞
∑

n=1

anbn
ns

.If f, g are nomalized Heke eigenforms, the oe�ients an, bn are multipliativeand so the Euler fator an be omputed using Theorem 5.2. In the speialase that g(z) is a lassial Eisenstein series, the result is partiularly striking.If f has level 1, we �nd from Theorem 5.2, that
∞
∑

n=1

anσr(n)

ns
=
L(s, f)L(s− r, f)

ζ(2s− r − k + 1)
.Rankin showed in the level one ase that speial values of the left hand side anbe expressed as a rational multiple of the Peterssson inner produt of f withproduts of lassial Eisenstein series. About twenty-�ve years later, Shimura[33℄ generalized this to the higher level ase. Following Shimura [33℄, we put

DN (s, f, g) := L(2s+ 2− k − j, χψ)D(s, f, g),where L(s, ω) denotes the Dirihlet L-funtion attahed to the harater ω andwrite f∗(z) := f(−z) whih has Fourier expansion
∞
∑

n=1

ane
2πinz .Then, f∗(z) ∈ Sk(N,χ) and it is easily heked that

∫ 1

0

f∗(z)g(z)dx =

∞
∑

n=1

anbne
−4πny, z = x+ iy.By taking the Mellin transform of the right hand side we see that

∫ ∞

0

ys−1

∫ 1

0

f∗(z)g(z)dxdy = (4π)−sΓ(s)D(s, f, g),whih is valid for ℜ(s) su�iently large. Now let λ ≥ 0 be an integer and ω aDirihlet harater (mod N), with ω(−1) = (−1)λ. Following Heke [16℄, wede�ne the Eisenstein series
E∗
λ(z, s, ω) =

∑

γ∈R

ω(d)(cz + d)−λ|cz + d|−2s, γ =

(

a b

c d

)

,where R is a omplete set of representatives for Γ∞\Γ0(N) and
Γ∞ =

{

±
(

1 m

0 1

)

: m ∈ Z

}

.It is easy to see that the series for E∗
λ(z, s, ω) is absolutely onvergent for

ℜ(s) > 2 − λ. We suppose that k ≥ j and transform the integral above by



88 M. RAM MURTYthe standard unfolding method (see for example p. 54 of [23℄) to dedue with
λ = k − j,

(4π)−sΓ(s)D(s, f, g) =

∫

DN

f∗(z)g(z)E
∗
λ(z, s+ 1− k, χψ)ys−1dxdy.If we put

Eλ(z, s, ω) =
∑

(m,n) 6=(0,0)

ω(n)(mNz + n)−λ|mzN + n|−2s,where the summation is over all (m,n) ∈ Z
2 with (m,n) 6= (0, 0). It is thennot too di�ult to show that

Eλ(z, s, ω) = 2L(2s+ λ, ω)E∗
λ(z, s, ω)so that

2(4π)−sΓ(s)DN (s, f, g) =

∫

DN

f∗(z)g(z)Eλ(z, s+ 1− k, χψ)ys−1dxdy.Heke [16℄ studied the funtion Eλ(z, s, ω). He proved the following. Put
E(s) = Γ(s+λ)Eλ(z, s, ω). If λ 6= 0 or ω is non-trivial, then E(s) extends to anentire funtion. If N = 1, and λ = 0, then E(s) is regular everywhere exeptfor simple poles at s = 0, 1; if N > 1, λ = 0 and ω is trivial, then E(s) is regulareverywhere exept for a simple pole at s = 1. In addition, Heke [16℄ provedthat both E∗

λ(z, 0, ω) and Eλ(z, 0, ω) belong to Mλ(N,ω) exept when λ = 2and ω is trivial. In the latter ase, eah of these funtions is a onstant times
y−1 plus a holomorphi funtion in z. In addition, if we de�ne the di�erentialoperators δλ and δ(r)λ by

δλ =
1

2πi

(

λ

2iy
+

∂

∂z

)

, λ > 0,

δ
(r)
λ = δλ+2r−2 · · · δλ+2δλ, r ∈ Z, r ≥ 0,where

∂

∂z
=

1

2

(

∂

∂x
− i

∂

∂y

)with the understanding that δ(0)λ is the identity operator, then it is easily veri�edthat if h ∈ Mλ(N,ω), then δ
(r)
λ h has the same automorphi property as theelements of Mλ+2r(N,ω). Shimura [33℄ proved that if f ∈ Sk(N,χ) and g ∈

Mj(N,ψ) and j + 2r < k with r a non-negative integer, then
D(k − 1− r, f, g) = cπk(f∗, gδ

(r)
λ E∗

λ(z, 0, χψ)),where λ = k − j − 2r and
c =

Γ(k − j − 2r)

Γ(k − 1− r)Γ(k − j − r)

(−1)r4k−1N

3

∏

p|N

(

1 +
1

p

)

,



RAMANUJAN AND THE ZETA FUNCTION 89where the produt is over the prime divisors p of N . In the level one ase,this was also proved by Zagier (see [35, Proposition 6℄) by di�erent methods.Zagier's tehnique also allows him to prove the following theorem whih wouldde�nitely have interested Ramanujan. If f is a usp form of weight k for thefull modular group as above, and
Df(s) =

ζ(2s− 2k + 2)

ζ(s− k + 1)

∞
∑

n=1

a2n
ns
,then Rankin [30℄ and Selberg [32℄ independently showed that Df(s) extends asa meromorphi funtion to the entire omplex plane and satis�es the funtionalequation

D∗
f (s) = 2−sπ−3s/2Γ(s)Γ((s− k + 2)/2)Df(s) = D∗

f (2k − 1− s).Zagier [35℄ shows that the values of Df (s)/π
2s−k+1 at s = k, k+2, ..., 2k−2 areall algebrai multiples of the inner produt (f, f). In this ontext, Ramanujanwould have been intrigued by the following onnetion of the speial value ζ(3)to the Petersson inner produt disovered by Petersson [25℄. If we let Γ be thegroup generated by the matries

(

1 2

0 1

)

,

(

0 −1

1 0

)

,and
θ3(z) =

∞
∑

m=−∞

eπim
2z,

θ0(z) =

∞
∑

m=−∞

(−1)meπim
2z,

θ2(z) =
∞
∑

m=−∞

eπi(m+1/2)2z ,be the lassial theta funtions, then θ83, (θ0θ2)4 are modular forms of weight 4for the group Γ. Petersson [25℄ proved that
ζ(3) =

π3

7
(θ83 , (θ0θ2)

4).Undoubtedly, the future of the study of speial values of the Riemann zetafuntion has modular onnetions, as is revealed by the early work of Ramanu-jan.Aknowledgements. I would like to thank Brue Berndt and the referee fortheir helpful omments and referenes.
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