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RAMANUJAN AND THE ZETA FUNCTION
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ABSTRACT. Srinivasa Ramanujan wrote several papers related to the Rie-
mann zeta function. These papers highlight two themes, the first being
the special values of the zeta function at integer arguments and the sec-
ond, its analytical theory as it pertains to the distribution of prime num-
bers. Apart from his published work, a good chunk of his contributions
are also contained in his letters and notebooks (both lost and found) and
it is the purpose of this article to highlight these contributions in light
of modern developments. In particular, we show how Ramanujan’s iden-
tities can be generalized to prove the non-vanishing of Artin L-series on
R(s) = 1 and thus give a new proof of the Chebotarev density theorem.
In the last section, we discuss its relation to the Rankin-Selberg method
and special values of L-series attached to cusp forms.

1. INTRODUCTION

Without a doubt, the Riemann zeta function has two alluring aspects. The
first is its relation to the distribution of prime numbers and the second is the
determination of its special values. The goal of this article is to show that
Srinivasa Ailyangar Ramanujan made significant contributions to both of these
themes and this is not so widely known.

In fact, about a hundred years ago, Ramanujan published two papers [26]
[27] in the Journal of the Indian Mathematical Society, one in 1911 and the
second in 1913. The first was titled “Some properties of Bernoulli numbers”
and the second, “Irregular numbers”. Both papers focused on special values of

the Riemann zeta function at positive even arguments. Clearly, these papers
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were written by Ramanujan before his historic trip to England to begin his
epic collaboration with G.H. Hardy. A third paper entitled “Some formulas in
the analytical theory of numbers,” written in 1916 after his arrival in England,
was to have a major impact in the study of the distribution of prime numbers.
There is another paper [29] of Ramanujan devoted entirely to the Riemann
zeta function. However, this paper derives some new integral expressions for
Riemann’s functions £(s) and Z(t), and is not directly related to the theme of
this exposition.

Not so well-known is Ramanujan’s work on the zeta function at odd argu-
ments. This is contained in the celebrated notebooks (both lost and found) of
Ramanujan. Indeed, in Entry 21(i) of Chapter 14 in Ramanujan’s second note-
book, we find the following unusual formula. If @ and 3 are positive numbers
such that a8 = 72, and if r is a positive integer, then

(4a)™" <%C(2r +1)+ Z m2r+1(612ma — 1))
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where B; denotes the j-th Bernoulli number. The case a = 8 = 7 is especially
interesting. In this case, if r is even, we deduce
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If r is odd, we deduce the beautiful formula

S 1 _ a1 = (=D By Boy oo
C@r1)+ mzz:l (e )~ (4 kZ:O (k)12 + 2 — 2k)!

which apparently was discovered by Lerch [21] in 1901 and published in an

obscure journal (see also [4] for a discussion on this). Several interesting corol-
laries emanate from this formula. For instance, using the transcendence of 7
and the rationality of the Bernoulli numbers, we infer that at least one of

o0
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is transcendental. Another elegant identity is
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What is evident in Ramanujan’s notebooks is an awareness that special values
of

oo

1
Zm

m=1

are relevant to the study of the Riemann zeta function at odd arguments. Thus,
he proceeds to investigate these sums and observes in Entry 13 (see page 261
of [6]) that for o, 8 > 0 and a8 = 72, we have

, > m2r—1 i, 0 m2r—1 , . BQr
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which is rather striking. Choosing oo = 8 = 7 gives the unusual identity

4rt1
m* By

e2mm —1  8r+4’

m=1

which was discovered by Glaisher [11] in 1889.

Grosswald [13] (see also [14]) wrote several papers in the 1970’s related to
these formulas. (He may have been unaware of Ramanujan’s work when he
wrote the first paper since in the appendix of [13], he says that Siegel alerted
him to the volumes of Ramanujan’s notebooks published by the Tata Institute
in 1957.) To state his theorem, let

oo
§ 27rznz

where

dood.

d|n; d>0

Then, Grosswald [13] proves that for any z with $(z) > 0,
1
F2T+1(Z) — ZQTFQT+1( ]./Z) 2 (27’ + ].)( ].)+

2 1 r+1
27TZ T+ ZZQT"‘Q 2k B2k32r+2 2k
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Putting z = i8/m with § > 0 gives the Ramanujan-Lerch formula above. The
polynomial on the right hand side has been studied by the author with C.
Smyth and R. Wang in [24]. In this context, the reader can also consult [12]
as well as [19] and [20].
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In [4], Berndt proves the following generalization: for any z with $(z) > 0,

let Vz = —1/z. For any integer r, we have
ety =
— mr+1(6727risz _ ]_)
- - (1.1)
1
= (1 -1)" - —
(1+(=1) )mzz:l L (e—Zrime — 1) +g(z,—r)
r+2
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where for r # 0,
g(z,—r)=(1=2")¢(r + 1),

and for r = 0, g(z,0) = mi—log(—z). From this, Berndt [4] deduces both Euler’s
formula for the zeta function at even arguments and Ramanujan’s formula
above for ((2r + 1). Indeed, if we put r = 2n — 1 in (1.1), then the left hand
side vanishes as well as the first sum on the right hand side. An easy calculation
now gives Euler’s formula. To deduce the Ramanujan-Grosswald formula, we
replace r with 2r (r # 0) and do the obvious simplifications. Thus, Euler’s
formula and Ramanujan’s formula are special cases of Theorem 2.2 of Berndt
[4]. In [7], Berndt discusses an unpublished manuscript of Ramanujan in which
some hints are given of how Ramanujan may have derived his formulas for the
special values of ((2r + 1). This unpublished paper is also part of a chapter
in the forthcoming fourth volume by Andrews and Berndt [1] on Ramanujan’s
lost notebook.

As noted by the author, C. Smyth and R. Wang in [12], the function F.(2)
is an example of an “Eichler integral” in the following sense. Let 7 be odd and

Br+1

Er - r 271'117’.27 =
+1(z 7+1+ZU g 20 + 1)

be the classical Eisenstein series of weight r for the full modular group. Then,

for any odd r > 1, we have

Frl(z) = (E?Tir)y /Z:O [Eria(7) — a7 — 2)" " Hdr,

as is easily checked. This is called an “Eichler integral of the first kind” in the
literature (see [12]).

In his 1916 paper, Ramanujan obtained more remarkable identities involv-
ing the Riemann zeta function and these identities have been used by Ingham
[17] to give a new proof of the non-vanishing of the zeta function on the line
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R(s) = 1 (a fact which is equivalent to the prime number theorem). More

precisely, Ramanujan [28] showed that

— oa(n)op(n)  ¢(s)¢(s —a){(s = b)¢(s —a—b)
;::1 ns n ((2s—a—1b) ' (1.2)

Formula (1.2) was partly generalized by Chowla [9] in 1928. Shimura (see
Lemma 1 of [33]) also generalized Ramanujan’s identity and this is essentially
our Theorem 5.2 below in different notation. Shimura seems to be unware
of Ramanujan’s work in this context since no reference is made to him in
[33]. As Ingham [17] notes, a mild variation of the Ramanujan identity also
leads to a proof of the non-vanishing of the Dirichlet L-functions on the line
R(s) = 1 (which is again equivalent to the prime number theorem for arithmetic
progressions). In this paper, we will discuss these two aspects of Ramanujan’s
work as well as generalizations and future directions. In particular, we show
that a generalization of Ramanujan’s identity leads to a proof of the non-
vanishing of Artin L-series on (s) = 1, a fact which is equivalent to the
Chebotarev density theorem.

2. SPECIAL VALUES OF THE RIEMANN ZETA FUNCTION

The Bernoulli numbers B,,, are defined by the generating function

for kK = 1,2, ... Since the Riemann zeta function admits an Euler product, for
R(s) > 1,

> 1\!

=Y =TI(1-)

n=1 P
where the product is over prime number numbers, Ramanujan observed in
[26] that this gives us a rapid method of computing the Bernoulli numbers.
Much of the discussion in Ramanujan’s notebooks is replete with a study of
the Bernoulli numbers and their relationship to special values of the Riemann
zeta function. It is highly reminiscent of Euler [2] who, though he didn’t have
the concept of analytic continuation and did not view the zeta function as a
function of a complex variable, managed to derive the functional equation for it

and evaluate explicitly its special values at even arguments. (See for example,
formula (K) of [2].) In the same spirit, Ramanujan seems to have derived the
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functional equation according to Berndt (see pages 153-154 in Chapter 7 of [5]).
According to Ayoub (see the last line on page 1078 of [2]), Euler conjectured
that ((2r + 1)/7?"+1 is a “function of log2”. This attribution is however, not
quite accurate. According to the English translation of the paper [10], Euler

was aiming to show that there are no integers a, b, ¢ such that
al(3) + b(log 2)® + c(log 2)7? = 0,

and he seems to have conjectured that there was no such relation. If we in-
terpret the “function of log 2” to be a “polynomial with algebraic coefficients in
log 2, then it may be possible to show that (27 +1)/72" ! is not a polynomial
in log 2 with algebraic coefficients, now with modern tools since it is generally
believed that

,¢(3),¢(5), ...

are all algebraically independent. In this context, Kohnen [18] has made general
conjectures regarding special values of L-series attached to modular forms of
weight 2k for the full modular group. These conjectures (when applied to the
Eisenstein series) imply the transcendence of the numbers (27 +1)/72" 1. Of
course, these conjectures say nothing about the relationship of these numbers
to log 2, but most probably there is no relation to it.

Returning to Ramanujan and his two papers related to the special values
of the Riemann zeta function at even arguments, we find the curious recurrence

for the Bernoulli numbers given as formula (34) of [26]:

2n2n —1
B?n: ( BQn QH(]-_p — >a

where the product is over prime numbers. (Note that here we are writing Ba,

adhering to the more modern notation, whereas Ramanujan writes B,,.) This
recurrence is easily seen from writing the quotient ((2n)/{(2n — 2), applying
Euler’s formula for {(2n) and using the Euler product.

It is not difficult to make Ramanujan’s asymptotic a bit more precise.

Indeed,
| Ban/ Ban—2| p?—1
—_— = 1-— <1
A2 H p2n —1 —

from which we easily deduce

1 _ 1 | Bay, / Bap—2|
ETErI | (1 - p) = a@n-1)2 =
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we deduce:

Theorem 2.1. As n tends to infinity, we have

| Bay,/ Ban—2|

I suppose this is what Ramanujan meant when he wrote that Ba,/Ba2,—2
converges to the quantity above “very rapidly as n becomes greater and greater”
(see [26, (35)]).

3. SPECIAL VALUES OF RELATED DIRICHLET SERIES

In his 1913 paper on “irregular numbers”’, Ramanujan evaluates the series
— On
>
n=1
where a, = 1 if n has an odd number of prime divisors counted with multi-
plicity. Indeed, let (n) be the number of prime divisors of n counted with
multiplicity. We define the Liouville function A(n) as (—1)®(™). Since \(n) is
a multiplicative function of n (that is, A(mn) = A(m)A(n) whenever m and n

are coprime), it is easy to see that

i Ar(;b) =11 (1 + pi)l _ Cc(éi)'

p

Thus,

 gn 1 CUR))  C(2R)? — C(ak)
2= (“2’“’ - @(%)) =)

n=1
which is the main formula in section 4 of [27] (in slightly different notation).

Later in the same paper, Ramanujan writes [27]

i (n 1 2k
cRUCOR

n=1 j2

where p denotes the Mobius function. Thus,

0 VAT VIR NS SUSE (CT NS W WC Ut (L)
2 — n2k — n2k — n2k 2\ ((4k) ((2k) 2¢(2k)¢(4k)
where b,, = 1 if n contains an odd number of distinct prime divisors and zero

otherwise. This is formula (12) of [27].
Finally,

oo

1 = 12 (n = 2k 2k)(C(4k) — 1
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n=1
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where ¢, = 1if n is not squarefree and zero otherwise. So in this way, Ramanu-
jan evaluates the Dirichlet series supported at “irregular numbers” in terms of
Bernoulli numbers, first by writing them as functions of the Riemann zeta

function and then noting that the arguments of the zeta function are all even.

4. SPECIAL VALUES OF THE RIEMANN ZETA FUNCTION
AT ODD ARGUMENTS

The Ramanujan-Grosswald formula allows us to write the special value

¢(2r+1) in terms of special values of Fb,11(z) and the Ramanujan polynomials

r+1

BoyBayso—
o 2r4+2—2k 2k D2r+2—-2k
Raria(2) = ;Z 2k)\(2r + 2 — 2k)!”

Indeed, we have [13]

1 2r 2r (2mi)>r+t

6@+ DT = 1) = Farga(2) = 27 Farga(=1/2) = ————Rars1(2).
We can choose an algebraic value of z lying in the upper half-plane so that the
Ramanujan polynomial vanishes. Indeed As a consequence of the work in [24],
it follows that for r > 4, there is an algebraic « lying in the upper half-plane,
with |a| = 1, which is not a 2r-th root of unity such that

2
(@r+1)=

— (Farga(@) = 0 Fopya (=1/@)).

The functions Fb,41(2) are special cases of Eichler integrals (integrals of mod-

ular forms). This expression for {(2r 4+ 1) motivates the study of the function

1

Gary1(2) = 1

(Fars1(2) — 2 F(=1/2))
and study its special values. Thus, the author, C. Smyth and R. Wang showed

in [12] the following striking theorem:
Theorem 4.1. The set

{Gary1(2) : 3(2) > 0, zalgebraic, 2% # 1}
contains at most one algebraic number.

Presumably, there are no algebraic numbers in the set described by the

theorem, for otherwise, ((2r 4+ 1) would be an algebraic linear combination of

2r+1

1 and 7 , which is highly unlikely in view of Kohnen’s conjectures and the

prevailing philosophy.
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5. RAMANUJAN AND PRIME NUMBER THEORY

In his twelve lectures on Ramanujan delivered at Harvard University in
1936, G.H. Hardy [15] relates how Ramanujan wrote about explicit formulas
for the number of primes less than x and how most of his assertions were
in error. Ramanujan’s first two letters to Hardy contained several striking
results, some of which were new, and some had been discovered by Riemann
and Gram earlier. In his first letter of January 16, 1913, he wrote saying he
had several interesting formulas for the number of primes up to  but does not
write them down explicitly. In his second letter of 27 February, 1913 (this date
is given incorrectly as 29 February 1913 in Hardy’s book), Ramanujan gives
three formulas for the number of primes less than x. These are:

[ee] t
y

:1 M

/0 tg(t+1)1‘(t+1)dt’ y=ro8%

2 log x +i log x 3+i log 5+ .
By \ 27w 3By \ 2m 5Bg \ 2w ’

oo 1/m

g
5 M(m)/ O 1.45136380...
— m c 10gt

Of these formulas, the third occurs in Riemann’s 1860 paper and a series related

3w

to (but not identical with) the second formula appears in the work of Gram.
But the first one was new and Hardy [15] comments that it “had never, as far
as I know, appeared before; and in any case I am sure (for reasons which I
will state later) that Ramanujan had found all three functions for himself.” He
then proceeds to show how the assertions that Ramanujan made in his letters
are wrong. (In this context, the reader may also read further letters between
Hardy and Ramanujan discussed in the book by Berndt and Rankin [8].)

In the fourth of his twelve lectures, Hardy [15] elaborates on how Ra-
manujan’s identity (1.2) was used by Ingham [17] to deduce the prime number
theorem, that the number of primes up to z is asymptotic to z/logz as x
tends to infinity. As is well-known via Tauberian theory, this is equivalent to
the non-vanishing of the Riemann zeta function on the line R(s) = 1. Ramanu-
jan’s identity is used in conjunction with a famous lemma of Landau, which we
reproduce below, for the sake of completeness. Recall that if a Dirichlet series

= ¢
g(s) =Y —,
n
n=1
converges at s = so (say), then it converges for any s with R(s) > R(so) and

the function thus defined is holomorphic in this region. This fact is easily
established using partial summation and is a standard fact in the theory of
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Dirichlet series. Thus, given a Dirichlet series g(s) as above, the set of values
of s for which the series for g(s) converges contains a maximal open half-plane
of the form R(s) > o¢ and the value of oy is called its abscissa of convergence.

Lemma 5.1. (Landau) Let

oo

fls) =

n=1

an

be a Dirichlet series with non-negative coefficients. Then f(s) has a singularity
at its abscissa of convergence.

Ingham’s proof of the non-vanishing of the Riemann zeta function using
Ramanujan’s identity (1.2) now proceeds as follows. Suppose that ((1+itg) =0
with tp € R and i = /—1. Put a = ity and b = —itp in (1.2). Thus,

i |%On(sn)|2 _ {(s)%¢(s — ito)¢(s +ito) (5.1)
n=1

¢(2s)

Since (1 + itg) = 0, we see that ((1 —itg) = 0 . Thus, the double pole at
s =1 of {(s)? is cancelled by the double zero of ((s — itg)((s + itg) at s = 1.
Thus, the right hand side of the identity (5.1) is analytic for $(s) > 1/2. By
Landau’s theorem, the Dirichlet series in (5.1) has a singularity at its abscissa of
convergence which must be < 1/2 by what we have just said above. However,
the right hand side of (5.1) has a zero at s = 1/2 since the denominator
has a pole there. But the left hand side being a Dirichlet series with non-
negative coefficients is > 1 (corresponding to the term n = 1) as s — %+. This
contradiction proves that ((1+itg) # 0. Hardy discusses this on page 60 of his
celebrated twelve lectures on Ramanujan [15].

In his paper, Ingham [17] observes that a minor change in Ramanujan’s
identity allows one to deduce the non-vanishing of Dirichlet’s L-functions L(s, x)
on the line R(s) = 1. It is well-known that this again is equivalent to the prime
number theorem for arithmetic progressions. Ingham’s idea is best formulated
in the following theorem which can be viewed as a generalization of the “gen-
eral theorem” in [17]. To state this, let us introduce some notation. Given two

arithmetical function f1, fo, we define the Dirichlet convolution fi * fo by
(fixf)n)= Y fi(d)fa(n/d).
d|n,d>0

We say an arithmetical function h is completely multiplicative if h(mn) =
h(m)h(n) for all natural numbers m, n. We say a function h is multiplicative if

h(mn) = h(m)h(n) whenever m and n are coprime. It will also be convenient
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to introduce the associated Dirichlet series for any arithmetical function h,

L(s,h) :=

Here is the generalization of the Ramanujan identity (1.2).

Theorem 5.2. Let fi1, fa, f3, fa be completely multiplicative arithmetical func-
tions. Then

L(s, (f1 * f2)(f3 * f1)) = L(s, fifs)L(s, f1f1)L(s, f2f3)L(57f2f4).

L(2s, f1f2f3f4)

Proof. Since f1, fo, f3, f4 are completely multiplicative, it is easy to see that

f1* f2 and f3 * f4 are multiplicative functions. It now follows that the series
on the left hand side can be expressed as an Euler product. Indeed, noting the

identity
anrl _ ynJrl
$n+$n71y+"'+$yn71 _’_yn:i’ (52)
r—=y
we see that the p-th Euler factor is given by

. )"t — fo(p)" TN [ fa(p)"TE = fa)"TT s
Z ( — fa(p) > ( f3(p) — fa(p) >p . (5:3)

Here if f1(p) = f2(p), we interpret the term in brackets as

f)™ + A1) fap) + -+ fi(p) f2(0)" T+ fap)”

and the same if f3(p) = fa(p). Setting T = p~*, we see that the sum (5.3) is a
sum of four geometric series and the final result becomes

1— f1(p) f2(p) f3(p) fa(p)T?
(1= filp) fs(0)T)(1 = fi(p) fa(p)T)(X = f2(p) f3(p)T) (A — f2(p) fa(p)T)’

from which the result is now evident. O

Taking f; = 1 and fo(n) = n%, f3 = 1 and f4(n) = n®, we deduce Ra-
manujan’s identity (1.2). Let now , be two Dirichlet characters (mod ¢).
Choosing f1 = 1, fo(n) = x(n)n?, f3 =1 and f4(n) = ¢(n)n’, then with

Tax(n) =Y x(d)d
d|n

we deduce Ramanujan’s formula for L-series (as given in [3]):

oo

3 Tax(M)aby(n) _ G(8)L(s —a, x)L(s = b,¢)L(s —a—b,x¥)

ns L(2s—a—b,xv)

n=1
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To deduce the non-vanishing of L(s, x) on R(s) = 1, we choose v =%, b = a,
a = ity with tg € R and argue as before. Indeed, with these choices we have

f: |oan ()® _ C(s)L(s — ito, x) L(s + ito, X) L(s, xo)
— L(2s,x0) ’

where xo is the trivial character (mod ¢). If L(1 —ito,x)) = 0, then L(1 +
itg,x) = 0 which would cancel the poles arising from ((s) and L(s, xo) at
s = 1. Thus, the right hand side is analytic for R(s) > 1/2. Thus the abscissa
of convergence is < 1/2. But the right hand side has a zero at s = 1/2 (arising
from the pole at s = 1/2 of the denominator) and the left hand side is > 1 as

1+

6. THE CHEBOTAREV DENSITY THEOREM VIA RAMANUJAN’S IDENTITY

Just as Ramanujan’s identity was used to prove the non-vanishing of Dirich-
let L-series on R(s) = 1, one can apply a similar method to deduce non-
vanishing of Artin L-series on the line R(s) = 1. This is equivalent to the
Chebotarev density theorem, which can be viewed as the natural generaliza-
tion of Dirichlet’s theorem. Since the background is formidable to present in a
short expository paper such as this, we will content ourselves to give the main
idea of how this can be carried out. We refer the reader to [22] for further
details and background of the theory.

Brauer’s induction theorem reduces the problem of non-vanishing of Artin
L-series on R(s) = 1 to the case of Hecke L-series attached to a number field.
We then need to show that such an L-series does not vanish on f(s) = 1. Any

Hecke L-series attached to a number field I is of the form

o) = 5 X(@)
L(s,X) ;)N(a)s,

where the summation is over non-zero ideals a of F' and y is a Hecke character
attached to a generalized ideal class group. For R(s) > 1, this L-series has an
Euler product:

X))\
L(s,x) = (1 — )
0 =H (=~
Hecke (see [22]) proved that each L(s, x) extends to an entire function (for x

non-trivial) and satisfies a suitable functional equation. When y is trivial, this

is essentially the Dedekind zeta function of F', denoted (r(s), multiplied by

11 7).

plfx
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where f, is the conductor of x. Thus, when x = xo is the trivial character,
then L(s, xo) is analytic everywhere except at s = 1 where it has a simple pole.

Our presentation of Ramanujan’s identity in Theorem 5.2 was completely
formal and it is easily seen that if we define

Tan (@) =Y x(0)N(0)*,
bla

then

|UG’X(U')|2 _ CF(S)L(S —a— av XO)L(S —a, X)L(S - aa Y)
Z N(a)s L(2s —a —a,xo) ’

a#0
where xo is the trivial character corresponding to the associated generalized

ideal class group. As before, if L(1+itg, x) = 0, we choose a = ity and proceed
along the earlier line of argument.

7. RAMANUJAN’S IDENTITY AND THE RANKIN-SELBERG METHOD

Had Ramanujan lived another forty years, he would have been elated to
see the essential role his identity would play in the determination of the spe-
cial values of L-series attached to cusp forms, as well as Rankin’s spectacular
1939 paper [30] in which he makes inroads towards the Ramanujan conjecture
regarding the estimate on his 7-function. More generally, if f is a normalized
cuspidal eigenform of weight k for the full modular group, then we can associate
the L-series

e’

Lis.f)=) =
n=1

where the a,,’s are the Fourier coefficients of f at the cusp ico. Hecke showed
that L(s, f) extends to an entire function and satisfies a suitable functional
equation relating its value at s to its value at k — s. In [31], Rankin proved the

following theorem. Set

Aj(s) := (2m)~°T'(s)L(s, [),

where T'(s) denotes the classical I'-function of Euler. For any even integer j
with k/2+2 < j <k — 4, we have

Ap(D)As(k = 1) = (=1)/22 71 (f, BBy ),

where (-, -) denotes the Petersson inner product and E; denotes the Eisenstein
series of weight j we met earlier. Surprisingly, the fact that such an explicit
formula for the special values holds in greater generality was noted by Shimura
[33] much later in 1976. Here is a brief description of the essential ideas.
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Let k be a positive integer and x a Dirichlet character (mod N) such that
x(=1) = (=1)k. Let

To(N) = {( Z Z ) € SLy(Z) : CEO(mOdN)}

and My (N, x) the vector space of all holomorphic modular forms f(z) satisfying

F(02) = x(d)(ez + ) £ (2), \m=<j fl)erow),

and
az+b

cz+d
The subspace of modular forms vanishing at all the cusps (see [34] for termi-
nology) is denoted S (N, x). We put

vz 1=

Mk(N):Xm%BdNMk(Nv)()a Sk(N):Xm%BdNSk(NaX)v

where the direct sums run over all Dirichlet characters (mod N). Clearly, these
spaces consist of modular forms and cusp forms of weight k& with respect to the

group

Iy (N) = {( ‘c‘ Z ) GI‘O(N):aEdEI(modN)}.

Every element f of My(N) has a Fourier expansion

oo
f(Z) _ Z aneQ-rrm,z
n=0

and we have its associated L-series

> a
L(s.f) =2
n=1

For two elements f,h in My (N) such that fh is a cusp form, we define the
Petersson inner product (f,h) by

(f.h) == 5

T A8LaZ) T ()£ /o, Ty 2dady, ==z +iy,

where Dy denotes a fundamental domain for the action of I'y (V) on the upper
half-plane.
Given f € Si(V, x) and g € M;(N, ) with Fourier expansions

oo %)
f(Z) — Z an€2minz, g(z) — Z bn€2ﬂ-inz7
n=1 n=0
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we define the Rankin-Selberg L-series

o0

Dis, f9):= Y 2

n=1

If f, g are nomalized Hecke eigenforms, the coefficients a,,, b,, are multiplicative
and so the Euler factor can be computed using Theorem 5.2. In the special
case that g(z) is a classical Eisenstein series, the result is particularly striking.
If f has level 1, we find from Theorem 5.2, that

i anor(n) _ L(s, f)L(s —r, f)
— n C2s—r—k+1)"

Rankin showed in the level one case that special values of the left hand side can
be expressed as a rational multiple of the Peterssson inner product of f with
products of classical Eisenstein series. About twenty-five years later, Shimura

[33] generalized this to the higher level case. Following Shimura [33], we put
DN(Svag) = L(25+2 —k _jaxw)D(Safag)a

where L(s,w) denotes the Dirichlet L-function attached to the character w and

write f.(z) := f(—%) which has Fourier expansion

0o
§ ane%mnz .
n=1

Then, f.(2) € Sk(N,X) and it is easily checked that

/f* dx—Zanb e AT =g 4y

n=1

By taking the Mellin transform of the right hand side we see that

/ - 1/ To(2)g(z)dxdy = (47)~*T(s)D(s, [, g),

which is valid for R(s) sufficiently large. Now let A > 0 be an integer and w a
Dirichlet character (mod N), with w(—1) = (—=1)*. Following Hecke [16], we
define the Eisenstein series

B} (z.8,0) = 3_ w(d)(ez + d) ez +d| 7, 7:<a Z)
C
YER

where R is a complete set of representatives for I'so\I'g(V) and

(1 o)

It is easy to see that the series for E3(z,s,w) is absolutely convergent for
R(s) > 2 — A. We suppose that £ > j and transform the integral above by
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the standard unfolding method (see for example p. 54 of [23]) to deduce with
A=k~ j:

(4m)~°T'(s)D(s, f,9) = f(2)g(2)E5 (2,5 + 1 — k, x1)y* *dady.
Dy
If we put
Ex(z,s,w) = Z w(n)(mNz +n) " mzN +n| 72,
(m,n)#(0,0)

where the summation is over all (m,n) € Z? with (m,n) # (0,0). It is then
not too difficult to show that
E\(z,s,w) =2L(2s 4+ \,w)E3(z, s,w)
so that
2(4m)T()Dn (5, £,9) = | Fo(2)g(2)Balz,s + 1 — by xtb)y* dady.
Dn

Hecke [16] studied the function E\(z,s,w). He proved the following. Put
E(s) =T(s+N)Ex(z,s,w). I XA # 0 or w is non-trivial, then £(s) extends to an
entire function. If N = 1, and A = 0, then £(s) is regular everywhere except
for simple poles at s = 0,1;if N > 1, A = 0 and w is trivial, then £(s) is regular
everywhere except for a simple pole at s = 1. In addition, Hecke [16] proved
that both E}(z,0,w) and E\(z,0,w) belong to Mx(N,w) except when A = 2
and w is trivial. In the latter case, each of these functions is a constant times
y~! plus a holomorphic function in z. In addition, if we define the differential

operators d) and 55\” by

1 A 0
5)\—%(2—@4—&), A >0,

80 = Gxpor o+ Orgady, TEZ, T3>0,

o _1(9 90
0z 2\0x Oy

with the understanding that 5&0) is the identity operator, then it is easily verified

where

that if h € M)(N,w), then 5§\T)h has the same automorphic property as the
elements of M19,(N,w). Shimura [33] proved that if f € Si(N,x) and g €
M;(N,v¢) and j + 2r < k with  a non-negative integer, then

Dk—1—-r,f,g) = cﬂ'k(f*,gég\r)Ei(z,O,Xw)),

where A =k — j — 2r and

B I'(k—j—2r) (—1)r4—IN 1
T —1-nT(k—j -7 3 }_][V(HE)’
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where the product is over the prime divisors p of N. In the level one case,
this was also proved by Zagier (see [35, Proposition 6]) by different methods.
Zagier’s technique also allows him to prove the following theorem which would
definitely have interested Ramanujan. If f is a cusp form of weight k for the
full modular group as above, and

0,2

¢(25 — 2k +2)
Drls) = Qj—kJrl Zn_

then Rankin [30] and Selberg [32] independently showed that Dy(s) extends as
a meromorphic function to the entire complex plane and satisfies the functional
equation

Di(s) =27 /2T ()T ((s — k + 2)/2)Dy(s) = D}(2k — 1 — s).

Zagier [35] shows that the values of Dy(s)/n?s %+ at s = k, k+2, ...,2k — 2 are
all algebraic multiples of the inner product (f, f). In this context, Ramanujan
would have been intrigued by the following connection of the special value {(3)
to the Petersson inner product discovered by Petersson [25]. If we let " be the

0 -1
1 0 )’

.2
mim- z
Z 6 ’

m=—0oQ

group generated by the matrices

(1)

and

oo

bo(z) = Y (~1)memm,

Z ewi(m+1/2)22,
m=-—o00
be the classical theta functions, then 65, (6o62)* are modular forms of weight 4
for the group I'. Petersson [25] proved that

3
¢(3) = 7(927 (0002)").

Undoubtedly, the future of the study of special values of the Riemann zeta
function has modular connections, as is revealed by the early work of Ramanu-

jan.

Acknowledgements. 1 would like to thank Bruce Berndt and the referee for

their helpful comments and references.



90

(1]
2]

(3]
(4]
(5]
(6]
[7]
(8]
[9]

[10]

[11]
[12
[13]
[14]
[15]
[16]
[17]

(18]

[19]
20]

[21]

M. RAM MURTY

REFERENCES

G. Andrews and B. Berndt, Ramanugjan’s Lost Notebook, Part IV, Springer, to appear.
R. Ayoub, Euler and the zeta function, American Math. Monthly, 81 (1974), 1067—
1086.

R. Balasubramanian and K. Ramachandra, The place of an identity of Ramanujan in
prime number theory, Proc. Indian Academy Sc., Section A, 83 (1976), no. 4, 156-165.
B. Berndt, Modular tranformations and generalizations of several formulae of Ra-
manujan, Rocky Mountain J., 7 (1977), 93-101.

B. Berndt, Ramanujan’s notebooks, Part I, Springer-Verlag, New York, N.Y., 1985.
B. Berndt, Ramanujan’s notebooks, Part II, Springer-Verlag, New York, N.Y., 1989.
B. Berndt, An unpublished manuscript of Ramanujan on infinite series identities, J.
Ramanujan Math. Soc., 19 (2004), 57-74.

B. Berndt and R. Rankin, Ramanugjan, Letters and commentary, History of Mathe-
matics, 9, American Math. Soc., Providence, RI, London Math. Soc., London, 1995.
S. Chowla, Some applications of the Riemann zeta function and allied functions,
Tohuku Math J., 30 (1928), 202-225.

L. Euler, De relatione inter ternas pluresve quantitates instituenda, presented to the
St. Petersburg Academy, August 14, 1774. (English translation available online at
http://eulerarchive.maa.org/docs/translations/E591trans.pdf) There seems to be a
typo in the English translation. On page 9 the second displayed formula is of course,
the sum of the reciprocals of the integer squares.

J.W.L. Glaisher, On the series which represent the twelve elliptic and the four zeta
functions, Messenger of Mathematics, 18 (1889), 1-84.

S. Gun, M. Ram Murty and P. Rath, Transcendental values of FEichler integrals, Bull.
London Math. Soc., 43 (2011), no. 5, 939-952.

E. Grosswald, Die werte der Riemannschen Zetafunktion an ungeraden argu-
mentstallen, Nachr. Akad. Wiss. Gottingen Math.-Phys. KI. 2 (1970), 9-13.

E. Grosswald, Comments on some formulae of Ramanujan, Acta Arithmetica, 21
(1972), 25-34.

G.H. Hardy, Ramanujan, Twelve lectures on subjects suggested by his life and work,
Chelsea Publishing Company, New York, N.Y., 3rd edition, 1978.

E. Hecke, Theorie der Eisensteinschen Reihen hoherer Stufe und ihre Anwendung auf
Funktionentheorie und Arithmetik, Abh. Math. Sem. Hamburg, 5 (1927), 199-224.
A. E. Ingham, A note on Riemann’s {-function and Dirichlet’s L-functions, J. London
Math. Soc., 5 (1930), 107-112.

W. Kohnen, Transcendence conjectures about periods of modular forms and rational
structures on spaces of modular forms, Proc. Indian Acad. Sci. (Math. Sci.), 99 (1989),
231-233.

M. Lalin and C.J. Smyth, Unimodularity of zeros of self-inversive polynomials, Acta
Math. Hungar, 138 (2013), no. 1-2, 85-101.

M. Lalin and M. Rogers, Variations of the Ramanujan polynomials and remarks on
¢(2j + 1)/m%3+1 to appear in Funct. Approx. Comment. Math.

M. Lerch, Sur la fonction ((s) pour valeurs impaires de l’argument, J. Sci. Math.
Astron., pub. pelo Dr. F. Gomes Teizeira, Coimbra, 14 (1901), 65-69.



RAMANUJAN AND THE ZETA FUNCTION 91

[22] M. Ram Murty and V. Kumar Murty, Non-vanishing of L-functions and applications,
Birkh&user, 1997.

[23] M. Ram Murty and V. Kumar Murty, The mathematical legacy of Srinivasa Ramanu-
jan, Springer, 2013.

[24] M. Ram Murty, C. Smyth and R. Wang, Zeros of Ramanujan polynomsials, J. Ra-
manujan Math. Soc., 26 (2011), 107-125.

[25] H. Petersson, Uber die Berechnung der Skalarprodukte ganzer Modulformen, Com-
mentarii Math. Helvetici, 22 (1949), no. 1, 168-199.

[26] S. Ramanujan, Some properties of Bernoulli numbers, J. Indian Math. Soc., 3 (1911),
219-234.

[27] S. Ramanujan, Irregular numbers, J. Indian Math. Soc., 5 (1913), 105-106.

[28] S. Ramanujan, Some formulae in the analytic theory of numbers, Messenger of Math-
ematics, 45 (1916), 81-84.

[29] S. Ramanujan, New ezpressions for Riemann’s functions £(s) and Z(t), Quarterly J.
Math., 46 (1915), 253-260.

[30] R. Rankin, Contributions to the theory of Ramanujan’s function T(n) and similar
arithmetic functions, II, The order of the Fourier coefficients of integral modular
forms, Proc. Cambridge Phil. Soc., 35 (1939), 357-372.

[31] R. Rankin, The scalar product of modular forms, Proc. London Math. Soc., 2 (3)
(1952), 198-217.

[32] A. Selberg, Bemerkung tber eine Dirichletsche Reihe die mit der Theorie der Mod-
ulformen nahe verbunden ist, Arch. Math. Naturvid, 43 (1940), 47-50.

[33] G. Shimura, The special values of the zeta functions associated with cusp forms,
Comm. on pure and applied mathematics, 29 (1976), 783-804.

[34] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Publ.
Math. Soc. Japan, No. 11, Iwanami Shoten and Princeton University Press, 1971.

[35] D. Zagier, Modular forms whose Fourier coefficients involve zeta-functions of qua-
dratic fields, International Summer School on Modular Functions, VI, Bonn, 1976,
Springer Lecture Notes, 627, Springer, Berlin, 1977.

M. RAM MURTY,

Department of Mathematics,
Queen’s University,

Kingston, Ontario, K7L 3N6,Canada

murty@mast. queensu. ca



