
The Sato–Tate conjecture and generalizations∗

M RAM MURTY1 and V KUMAR MURTY2

1Department of Mathematics, Queen’s University, Kingston, Ontario, K7L 3N6, Canada.
e-mail: murty@mast.queensu.ca

2Department of Mathematics, University of Toronto, Toronto, Ontario, M5S 2E4, Canada.
e-mail: murty@math.toronto.edu

1. Introduction

Consider the elliptic curve E defined by the
equation

y2 = x3 + ax+ b, a, b ∈ Z.

Let Δ = −16(4a3 + 27b2). For each prime p with
(p,Δ) = 1, we can consider the congruence

y2 ≡ x3 + ax+ b(mod p),

and count the number Np of solutions (x, y). This
quantity was first studied by Emil Artin [1] in his
1924 doctoral thesis in which he conjectured that

|Np − p| ≤ 2
√
p, (1)

for all such primes. In many ways, his study was
motivated by the classical Riemann hypothesis. To
understand the nature of zeta functions in general,
Artin defined the analogue of the Dedekind zeta
function in the setting of a function field over a
finite field. In the case of a quadratic extension of
Fp(x) defined by

y2 = x3 + ax+ b,
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the analogue of the Riemann hypothesis for the
function field zeta function turns out to be
equivalent to (1). In his thesis, Artin verified his
conjecture for many small primes p but could not
prove it. In February, 1933, Hasse [14] proved
the conjecture using techniques from algebraic
geometry. One could say that understanding this
function field analogue of the Riemann hypoth-
esis was an important step in the annals of
mathematics. The reader is referred to the his-
torical document [11] for further discussions on
this.

Artin’s thesis was seminal in many ways. First,
it opened up the study of algebraic geome-
try over finite fields and connected it to the
study of exponential sums that occur in classi-
cal analytic number theory. Second, it inspired
Weil [36] to formulate in 1949 general conjec-
tures that led Grothendieck [13] to chart out
a visionary program in algebraic geometry ulti-
mately leading to a resolution of the Weil conjec-
tures in the fundamental work on Deligne [8] in
1974.

Around 1960, Mikio Sato and John Tate [32]
(independently) asked about the distribution of the
numbers

Np − p/
√
p

in the interval [−2, 2], as p tends to infinity. For
example, is it reasonable to expect that these
numbers are uniformly distributed in the interval?
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In other words, is it true that for any interval
[a, b] ⊆ [−2, 2], we have

lim
x→∞

#{p ≤ x : (Np − p)/
√
p ∈ [a, b]}

#{p ≤ x} = b− a?

This question is the genesis of the Sato–Tate
conjecture. Numerical evidence seemed to suggest
otherwise. More precisely, Sato and Tate were led
to predict that for a ‘generic’ elliptic curve E the
following is true. If we write

(Np − p)/
√
p = 2cos θp, 0 ≤ θp ≤ π,

and [α, β] ⊆ [0, π], then, their conjecture says

lim
x→∞

#{p ≤ x : θp ∈ [α, β]}
#{p ≤ x} =

2
π

∫ β

α

sin2 θ dθ

=
β − α

π
− 1

2π
(sin 2β − sin 2α).

What ‘generic’ means is that the elliptic curve
should be without complex multiplication (see [20]
for details). If the elliptic curve has complex multi-
plication, then the (essentially) uniform distribu-
tion law for the angles was worked out by Deuring
[10] building on earlier work of Hecke [15,16].

One can formulate a more general conjecture.
Let E be an elliptic curve defined over a number
field K. For each place v of K where E has good
reduction, we may consider the group of points of
E mod v. Its cardinality (including the identity
element) can be written as

Nv + 1 − av,

where Nv denotes the norm of v and av is an inte-
ger satisfying Hasse’s inequality |av| ≤ 2(Nv)1/2.
As before, one can therefore write

av = 2N(v)1/2 cos θv,

where θv(E) := θv satisfies 0 ≤ θv ≤ π. The Sato–
Tate conjecture now is a statement about how
the angles θv are distributed in the interval [0, π]
as v varies. When E has complex multiplication
(CM), the distribution law is known and again
follows from the classical work of Deuring on Hecke
L-series (see [26] for details). In the non-CM case,
one expects that the angles are uniformly distri-
buted with respect to the measure

μST :=
2
π

(sin2 θ)dθ.

On March 18, 2006, Taylor [33] (see also [5])
just published a proof of this conjecture, when
E has at least one prime of multiplicative reduc-
tion. He was building on his earlier work with
Clozel, Harris and Shepherd-Barron (see Carayol’s
Séminaire Bourbaki article [4]).

In this paper, we give an informal exposition
of this recent development. We also indicate some
modest generalizations that are obtained by slight
modifications in the proof. Our first result is a
hybrid Chebotarev–Sato–Tate theorem.

Theorem 1. Let E be an elliptic curve defined
over a totally real number field K with at least
one prime of multiplicative reduction. If M/K is
a solvable Galois extension of finite degree with
G = Gal(M/K), and C is a conjugacy class of G,
then the density of prime ideals p for which the
Artin symbol σp ∈ C and the angle θp ∈ [α, β] with
0 ≤ α ≤ β ≤ π is

2|C|
π|G|

∫ β

α

sin2 θdθ.

In particular, we have the following corollary:

Corollary 2. Let E be an elliptic curve defined
over the rational number field with at least one
prime of multiplicative reduction. Let q be a natu-
ral number and a an integer with (a, q) = 1. For
0 ≤ α ≤ β ≤ π, the density of primes p for which
θp(E) ∈ [α, β] and p ≡ a (mod q) is

2
πϕ(q)

∫ β

α

sin2 θdθ.

It is evident that by similar arguments, one
can handle the joint distribution of angles of any
finite set of elliptic curves provided that there is
at most one elliptic curve in the set without CM
(and having at least one prime of multiplicative
reduction).

One can also study the joint distribution of
angles of a finite collection of pairwise non-
isogenous elliptic curves. This looks like a difficult
question and Harris has recently announced some
progress in this direction.

Though our treatment is informal, the back-
ground needed for a total understanding is quite
formidable spanning representation theory, arith-
metic algebraic geometry, analytic and algebraic
number theory. Still, we hope that the presenta-
tion given here will enable the non-expert to see
how the proof is put together and appreciate the
interplay of ideas.
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Recently, ‘friendly’ exposés of the Sato–Tate
conjecture have appeared in various places. The
papers by Mazur [22,23] are a good place to begin
for the totally uninitiated reader. Here, our goal
is more mathematical. We hope to give (with-
out proofs) the main mathematical ingredients
that enter into such equidistribution questions so
that the reader may have a conceptual understand-
ing of the results.

Because of the celebrated Taniyama conjecture
(now proved by Wiles [37] and others [3]), one
can view the av’s as Fourier coefficients of certain
modular forms of weight 2, at least in the case that
E is defined over the rational number field. In the
general number field case, it is still open whether
the av’s can be viewed as coming from automorphic
representations as predicted by Langlands. Thus,
one can view the Sato–Tate conjecture as a special
case of a more general statement concerning distri-
bution of eigenvalues of Hecke operators. (See [6]
for more details.)

One can formulate a function field analogue of
the Sato–Tate conjecture and this has been proved
in various contexts. Let K be a rational function
field in one variable over a finite field F and let E
denote an elliptic curve over K with nonconstant
j-invariant. Let Y denote the projective line over
F and consider the Néron model E −→ Y . This is
a smooth group scheme whose general fibre is E
and outside of a finite set S of points y ∈ Y , the
fibre Ey at y is an elliptic curve (the ‘reduction’
of E modulo the residue field corresponding to y).
Thus, as an elliptic curve over a finite field, its zeta
function is of the form

(1 − αyT )(1 − αyT )
(1 − T )(1 − qdeg yT )

.

Here αy = q(deg y)/2eiθ(y), where 0 ≤ θ(y) ≤ π. Let
Fn denote the unique extension of F of degree n.
Then, the Sato–Tate conjecture in this context says
that as n −→ ∞, we have

#{y ∈ Y (Fn) : α ≤ θy ≤ β}

∼
(∫ β

α

2
π

sin2 θdθ

)
|Y (Fn)|.

This was proved by Yoshida in [34] and in a dif-
ferent way by K Murty in [26]. Very general the-
orems of Sato–Tate type (in which the base Y is
replaced by an arbitrary variety and E by fami-
lies of �-adic sheaves) are proved in Deligne [9],
section 3.5.

2. Symmetric power L-series of
elliptic curves

Let K be an algebraic number field. Let E be an
elliptic curve defined over K. Let S be the (finite)
set of places where E has bad reduction. For each
finite place v /∈ S of K, we know that the number
of points on Emod v is given by

N(v) + 1 − av,

where av is an integer satisfying Hasse’s inequality
|av| ≤ 2N(v)1/2. For each prime �, the action
of Gal(K̄/K) on the �-adic Tate module gives rise
to an �-adic representation

ρ := ρ� : Gal(K̄/K) → GL2(Q�),

which is integral, that is, the characteristic poly-
nomial of ρ�(Fv) where Fv denotes the Frobenius
automorphism at v /∈ S has integer coefficients,
independent of �. In fact, this characteristic
polynomial is X2 − avX +N(v). Let us write
αvN(v)1/2, βvN(v)1/2 for the two roots of the
quadratic polynomial

X2 − avX +N(v).

The (partial) m-th symmetric power L-function is
defined as

LS(s,Symmρ) :=
∏
v/∈S

m∏
j=0

(1 − αj
vβ

m−j
v N(v)−s)−1.

Clearly, the product converges absolutely for
�(s) > 1. In [29], Serre showed that if for all
m, LS(s,Symm(ρ)) extends to �(s) ≥ 1 and does
not vanish there, then the Sato–Tate conjec-
ture follows. In [26], K Murty showed that
the non-vanishing assumption is unnecessary.
Thus, in this way, the Sato–Tate conjecture was
reduced to a problem of analytic continuation of
LS(s,Symm(ρ)) to the region �(s) ≥ 1, for all
values of m.

In 1970, Langlands [21] outlined a method
of attacking the problem of analytic continua-
tion. He suggested the existence of an automor-
phic representation πm attached to GLm+1(AK),
where AK denotes the adele ring of K, such
that LS(s, πm) = LS(s,Symm(ρ)) where LS(s, πm)
is the automorphic L-function attached to πm with
the Euler factors corresponding to the places v ∈ S
removed. In fact, it is conjectured that one can
define the local factors for v ∈ S in such a way that
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the completed L-function, L(s,Symm(ρ)) (which
we shall abbreviate as Lm(s)) satisfies a func-
tional equation relating s to 1 − s. (See for exam-
ple, [7] for details.) When K = Q and m = 1, this
is the Taniyama conjecture. Langlands’ functoria-
lity conjecture predicts that the symmetric powers
of π1 are automorphic. This has been proved for
some small values of m (see [6] for a survey
of the present state of knowledge). If the Lang-
lands conjecture about the existence of πm is true,
then by the theory of automorphic representa-
tions, one immediately has analytic continuation
of LS(s,Symm(ρ)) to the entire complex plane and
by the result of K Murty [26], the non-vanishing on
the line �(s) = 1 follows and the Sato–Tate conjec-
ture follows. The non-vanishing of the L-function
on the line �(s) = 1 can also be deduced from
a celebrated result of Jacquet and Shalika [17]
who showed that for any automorphic represen-
tation π, we have L(s, π) = 0, for �(s) = 1. So,
what is known about the analytic continuation of
LS(s,Symm(ρ))?

For m = 1, this is the (partial) Hasse–Weil
L-series attached to the elliptic curve E. It is possi-
ble to define the Euler factors at places in S as
well so that the completed L-function conjecturally
admits an analytic continuation to the entire com-
plex plane and satisfies a suitable functional equa-
tion. In the case K = Q, the Taniyama conjecture,
proved by Wiles (in the semistable case) [37] and
by Breuil, Conrad, Diamond and Taylor (in the
general case) [3] asserts that there is a classical
cusp form f of weight 2 and level N (the con-
ductor of E) such that the Hecke L-series L(s, f)
attached to f agrees with L1(s− 1/2). If πf is the
automorphic representation associated to f , then,
in the context of the Langlands program, we have
L(s, πf ) = L1(s). The series L1(s) is essentially the
L-function attached to ρ, coming from the action
of Gal(K̄/K) on the Tate module.

More generally, Lm(s) is essentially the
L-function attached to the representation
Symm(ρ), which comes from the action of
Gal(K̄/K) on the m-fold symmetric product
of the Tate module. As alluded to above, one
expects the existence of an automorphic repre-
sentation πm attached to GLm+1(AK) satisfying
L(s, πm) = Lm(s). This expectation is far from
being realized, though important advances have
been made in this direction.

What Taylor proves is not the automorphy of
Lm(s) but rather its ‘potential automorphy.’ This
fact, combined with other results in the ana-
lytic theory of automorphic L-functions, leads to
the Sato–Tate conjecture. This result of ‘potential
automorphy’ builds on a massive collection of ear-
lier work that can be traced back to the celebrated
conjecture of Serre.

Serre [30] formulated a general conjecture about
representations

ρ : Gal(Q̄/Q) → GL2(F),

with F a finite field, which are odd, and absolutely
irreducible. More precisely, he predicted that such
representations arise from classical modular forms.
Serre [30] showed that his conjecture implies the
Taniyama conjecture. On the other hand, Frey
[12] had a remarkable insight which was completed
and made more precise by Ribet [27] who showed
that the Taniyama conjecture implies Fermat’s last
theorem. Thus, Serre’s conjecture offered a new
approach to Fermat. Wiles [37] proved an impor-
tant case of Serre’s conjecture that was enough to
deduce Taniyama. This work led to further deve-
lopments. Most recently, Chandrashekhar Khare
[18] proved the level 1 case of the Serre conjec-
ture. In very recent work, Khare and Wintenberger
[19] have settled the odd conductor case. This last
development not only gives a new proof of Fermat’s
last theorem, but it also implies the strong Artin
conjecture [2] for 2-dimensional Galois representa-
tions of odd conductor.

In his recent paper, Taylor [33] made substantial
progress towards this conjecture. If K is a totally
real field and m is odd, he showed that there is
a finite, totally real Galois extension L/K such
that (Symmρ) restricted to L is automorphic over
L. One can choose an L that works simultane-
ously for any finite set of odd numbers. One can
also choose it to be unramified at any finite set
of places. Once this theorem is in hand, Taylor
uses standard results from the theory of automor-
phic L-functions to deduce the Sato–Tate conjec-
ture. We will give an outline of this deduction
below.

Before we do this, let us review some essen-
tial theorems from the theory of automorphic
L-functions. We refer the reader to [24] for details,
definitions and additional references to the litera-
ture. More precisely, we highlight pages 119 and
215 of [2] for the exact definitions of the notions of
base change and automorphic induction. Here are
the key theorems we will need.

First is the theorem of base change and auto-
morphic induction, due to Arthur and Clozel [2].
This says the following. Suppose that L/K is a
cyclic extension and π, Π are cuspidal represen-
tations of GLn(AK) and GLn(AL), respectively.
Then, the base change of π, denoted B(π) and the
automorphic induction I(Π) of Π exist.

The second fact we need is a celebrated theorem
of Jacquet and Shalika [17] which states that for
any unitary cuspidal automorphic representation
π, of GLn(AK), we have L(1 + it, π) = 0.
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The third fact needed is a non-vanishing theorem
due to Shahidi [31]. This states that the Rankin–
Selberg L-function L(s, π1 × π2) does not vanish on
the line �(s) = 1, whenever π1 and π2 are unitary
cuspidal automorphic representations.

A fourth fact needed is the Artin reciprocity law
which states that every abelian Artin L-function
of any Galois extension of K is a Hecke L-function
and corresponds to a cuspidal automorphic repre-
sentation of GL1(AK).

3. An outline of Taylor’s theorem

Here is a brief outline of Taylor’s proof of the Sato–
Tate conjecture. His main theorem is: let K be a
totally real field and E/K an elliptic curve with
multiplicative reduction at some prime. For any
odd number m, there is a finite, totally real Galois
extension L/K such that Symmρ becomes auto-
morphic over L. In other words, (Symmρ)|L is auto-
morphic over L. (One can also choose an L that
will work simultaneously for any finite set of odd
positive numbers.)

From this result, he deduces the Sato–Tate con-
jecture in three steps. Here is an outline.

Step 1: For any intermediate field K ⊂ F ⊂ L,
with L/F solvable, Symmρ is automorphic over F .
In other words, (Symmρ)|F is automorphic over F
for every F with L/F solvable.

This is proved in his earlier paper: M Harris,
N Shepherd-Baron and R Taylor, Ihara’s lemma
and potential automorphy, (preprint available at
www.math.harvard.edu/∼rtaylor).

Essentially, it applies the Arthur–Clozel theory
of base change, the key idea being that the base
change lift of Symmρ to L, which exists by Taylor’s
main theorem, is Galois invariant and so must be
the base change lift of an automorphic representa-
tion πF for every intermediate F , with L/F solv-
able. This is because one can find a chain

F = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fm = L

of extensions so that Fi+1/Fi is cyclic for
0 ≤ i ≤ m− 1 and apply the Arthur–Clozel the-
orem for automorphic induction successively,
in stages, to each of the cyclic extensions
Fm/Fm−1, . . . , F1/F0. We refer the reader to
[2] for precise details concerning automorphic
induction.

Step 2: Let G = Gal(L/K). Now apply Brauer
induction to write

1 =
∑

i

ai IndG
Hi
ψi,

with ai integers and ψi 1-dimensional characters of
nilpotent subgroups Hi of G. Then,

L(s, (Symmρ)⊗1)=
∏

i

L(s, (Symmρ) ⊗ IndG
Hi
ψi)ai .

By Frobenius reciprocity,

(Symmρ) ⊗ IndG
Hi
ψi = IndG

Hi
((Symmρ)|LHi ⊗ ψi).

By step 1, (Symmρ)|LHi is automorphic over LHi .
By Artin reciprocity, ψi is a Hecke character χi of
LHi . Thus, (Symmρ)|LHi ⊗ ψi is automorphic over
LHi . By invariance of L-series under induction, we
deduce

L(s,Symmρ) =
∏

i

L(s, (Symmρ)|LHi ⊗ χi)ai ,

and the product on the right hand side, being
a product of automorphic L-functions by step 1,
represents a meromorphic function of s. In this way,
one derives the meromorphic continuation of the
odd symmetric power L-functions attached to E.

Step 3: If we apply the Jacquet–Shalika theo-
rem which assures us that there are no poles on
�(s) = 1 for a cuspidal automorphic L-function
L(s, π), as well as the non-vanishing of L(s, π)
on �(s) = 1 for any automorphic representation
π, we obtain from the above product the ana-
lytic continuation and non-vanishing on �(s) = 1
of L(s,Symmρ) for m odd. To treat m even, one
uses induction and the identity

Symm−1ρ⊕ Symm+1ρ = Symmρ⊗ Sym1ρ,

which is essentially the trigonometric identity

sinmθ
sin θ

+
sin(m+ 2)θ

sin θ
=

(
sin(m+ 1)θ

sin θ

)(
sin 2θ
sin θ

)

(or the Clebsch–Gordon branching rule for SL2).
Thus,

L(s,Symm−1ρ)L(s,Symm+1ρ)

= L(s, (Symmρ) ⊗ Sym1ρ).

Now apply step 1, with the two odd numbers 1,m
to get the base change to L of both Symmρ and
Sym1ρ automorphic. By the same Brauer induc-
tion trick of step 2 applied to the right hand side,
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one deduces that the right hand side has a mero-
morphic continuation for all complex s. To get ana-
lytic continuation to �(s) = 1, one needs to apply
Shahidi’s results on the non-vanishing of Rankin–
Selberg L-functions which appear on the right hand
side. Poles on the line �(s) = 1 can also be ruled
out by the same theory. This completes the proof.

In many respects, this is the elliptic analogue
of Brauer’s theorem of the meromorphy of Artin
L-series. As can be seen, the non-vanishing of the
L-series on the line �(s) = 1 is essential in the
proof. This was ensured by an application of
theorems of Jacquet, Shalika and Shahidi. The
Jacquet–Shalika theorem and the Shahidi theorem
rely on the theory of Eisenstein series (à la Lang-
lands). There are other ways of establishing non-
vanishing of the L-series concerned without using
the theory of Eisenstein series. Indeed, if one is
willing to admit Rankin–Selberg theory and exis-
tence and analyticity of these L-functions, then
classical non-vanishing techniques (of the type used
by Hadamard and de la Vallée Poussin) actually
work. This method is outlined in a recent paper of
Sarnak [28].

4. A Chebotarev–Sato–Tate theorem and
generalizations

There are some natural generalizations of the Sato–
Tate conjecture that one can consider. We indicate
briefly how this can be done and what can actually
be proved. Firstly, we can take two non-isogenous
elliptic curves and consider the joint distribution
of the angles. For instance, if E1 and E2 are non-
isogenous elliptic curves, both without CM, defined
over Q, and θp(E1) and θp(E2) are the angles
respectively, it is reasonable to expect that the dis-
tribution of the pair of angles (θp(E1), θp(E2)) is
given by the product distribution

4
π2

sin2 θ1 sin2 θ2dθ1dθ2.

To prove such an assertion, we can use the for-
malism of Serre [29]. Using the formalism of [29], it
is not difficult to show that this involves the study
of certain L-series. Indeed, if both curves are non-
CM and have associated Galois representations ρ1

and ρ2 respectively, then one needs to show that
the L-series

L(s,Symm1(ρ1) ⊗ Symm2(ρ2))

extends to �(s) ≥ 1 and does not vanish there.
This looks like a difficult question to answer with

the present state of knowledge. However, Harris has
recently announced some progress in this direction.

If however, one of the curves has CM and corres-
ponds to a Hecke character ψ, then one needs to
study the L-series

L(s, ψm1 ⊗ Symm2(ρ2)),

and establish analytic continuation and non-
vanishing in the region �(s) ≥ 1. This can be done
since only Hecke characters intervene and these
can be base-changed to any field by a well-known
theorem of Weil [36]. It is also clear one can take
any number of CM elliptic curves and derive a
similar theorem for the same reasons.

Here is the proof of theorem 1.

By standard Tauberian theory, as discussed in
[29], we need to show that for any irreducible
representation τ of G = Gal(M/K), the L-function

L(s, τ ⊗ Symmρ)

is analytic and non-vanishing in the region
�(s) ≥ 1. Using Brauer induction, we write

τ =
∑

i

ciIndG
Hi
φi,

where the ci are integers, and φi is an abelian
character of Hi, with Hi certain nilpotent sub-
groups of G. In Taylor’s theorem, we can
choose L so that L and M are disjoint. Thus,
Gal(LM/L) = G and

L(s,Symmρ⊗ τ) =
∏

i

L(s,Symmρ⊗ IndG
Hi
φi)ci .

Since we are viewing G as the Galois group of
LM/L, we can re-write this, by Frobenius reci-
procity, as

∏
i

L(s, IndG
Hi

(Symmρ|(LM)Hi ⊗ ψi)ci),

where ψi is the Hecke character corresponding to
φi via Artin reciprocity. As (Symmρ)|L is automor-
phic by Taylor’s theorem, (Symmρ)|LM is automor-
phic by the theory of base change applied to the
solvable extension LM/L. As in step 1 of Taylor’s
theorem, we deduce that (Symmρ)|(LM)Hi is auto-
morphic over (LM)Hi by an application of the
Arthur–Clozel theory. Since ψi is a Hecke charac-
ter, we deduce that

(Symmρ)|(LM)Hi ⊗ ψi
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is automorphic over (LM)Hi . Consequently, by the
invariance of L-series under induction, we deduce
that

L(s, IndG
Hi

((Symmρ)|(LM)Hi ⊗ ψi))

is automorphic. Thus, it is analytic and non-
vanishing for �(s) ≥ 1. This proves that

L(s, (Symmρ) ⊗ χ)

extends to an analytic function for �(s) ≥ 1 and
does not vanish there. This proves the required
assertion for m odd. For m even, we proceed as
before, by induction to obtain the desired result.
This completes the proof of theorem 1.

5. Concluding remarks

We conclude this section with an alternate argu-
ment in the case that M/K is a nilpotent Galois
extension which is simpler. In future variations,
this alternate argument may be useful.

By standard Tauberian theory, as discussed in
[29], we need to show that for any irreducible
representation τ of Gal(K̄/K), with nilpotent
image, the L-function

L(s, τ ⊗ Symmρ)

is analytic and non-vanishing in the region
�(s) ≥ 1. Since any irreducible representation of a
finite nilpotent group is induced from an abelian
character χ of a subgroup H, so

τ ⊗ Symm(ρ) = IndG
H(χ⊗ Symm(ρ)|LH ).

By Arthur–Clozel, χ⊗Symm(ρ)|LH is automorphic.
We now complete the proof as before.

It is clear from the preceding arguments that
if one had the automorphic induction of Hecke
characters, the proof would go through for any
Galois setting and not just in the nilpotent or
solvable setting. Future advances in the Langlands
program should translate into general theorems of
Chebotarev–Sato–Tate type.
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