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Abstract We introduce a new technique for sieving over smooth moduli in the
higher-rank Selberg sieve and obtain asymptotic formulas for the same.
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1 Introduction

The Bombieri–Vinogradov theorem establishes that the primes have a level of distri-
bution θ for any θ < 1/2. More precisely, letting π(x) denote the number of primes
upto x , we put for (a, q) = 1,

EP(x, q, a) =
∑

n≤x
n≡a (mod q)

χP(n) − π(x)

φ(q)
, (1.1)

where χP is the characteristic function of the primes. Then, the primes are said to
have a level of distribution θ if for any A > 0, we have
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∑

q≤xθ

max
(a,q)=1

| EP(x, q, a) |� x

(log x)A
. (1.2)

The chief innovation of Zhang [20] is the extension of the level of distribution of
the primes to beyond θ = 1/2, albeit in a weaker sense by restricting the moduli
to be smooth or free of large prime factors. It is this breakthrough, combined with
the classical GPY approach using the Selberg sieve that enabled him to obtain his
spectacular result on bounded gaps between primes in May 2013. We encourage
the reader to refer to [6, 16, 17], in addition to [20]. Collaborative efforts of a
number of mathematicians [11] succeeded in improving the level of distribution in
Zhang’s equidistribution result from θ = 1

2 + 1
584 to θ = 1

2 + 7
300 . More precisely,

the following was proved. Let P+(q) denote the largest prime factor of q. Then, for
any �, ξ ≥ 0 satisfying 600� + 180ξ < 7, and any A > 0, we have

∑

q≤x�

P+(q)<xξ

max
(a,q)=1

| EP(x, q, a) |� x

(log x)A
, (1.3)

where � = 1
2 + 2�. Applying this improved result to Zhang’s work, along with

sophisticated numerical techniques, the bound for gaps between primes was reduced
from 70 million in [20] to 14950 in [11].

In October 2013, Maynard [9] and Tao [12] independently applied the higher-
rank Selberg sieve to the problem of bounded gaps, thereby obtaining bounded
gaps between primes for any positive level of distribution. They also obtained better
numerical values. The natural next step in this sequence of ideas is to combine the
new equidistribution estimate (1.3) with the higher-rank Selberg sieve. This has been
done in [12], employing efficient numerical methods and extensive computations to
reduce the bound still further to 246.

Recently, the authors ([14, 19] gave an axiomatic formulation of the higher-rank
sieve as a general method, along with applications. This work allows one to see
clearly the underlying structure of the sieve and motivates a more general way to
incorporate smoothing into the higher-rank Selberg sieve. In [12], the moduli are
constrained to be free of large prime factors by truncating the support of the function
F appearing in (3.2). Our method imposes smoothing as an explicit condition and
leads to expressions involving the Dickman and Buchstab functions (cf. Sect. 4) as
would be expected. The general theory of the same forms the crux of this paper. In
forthcoming work, we will discuss applications of this theory.

2 Notation

We will continue with the notation used in [19]. We include the same briefly here
for the sake of completeness. We denote the k-tuple of integers (d1, . . . , dk) by d.
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A tuple is said to be square-free if the product of its components is square-free. For
R ∈ R, the inequality d ≤ R means that

∏
i di ≤ R. The notions of divisibility and

congruence among tuples are defined component-wise.Divisibility relations between
a tuple and a scalar are defined in terms of the product of the components of the tuple.
For example,

q|d ⇐⇒ q|
∏

i

di .

We define the multiplicative vector function f (d) as the product of its component
(multiplicative) functions acting on the corresponding components of the tuple, that
is,

f (d) =
k∏

i=1

fi (di ).

We use [·, ·] and (·, ·) to denote LCM and GCD, respectively. In the case of tuples,
this means the product of the LCMs (or GCDs) of the corresponding components.We
employ the following multi-index notation to denote mixed derivatives of a function
on k-tuples, F(t).

F (α)(t) := ∂αF(t1, . . . , tk)

(∂t1)α1 . . . (∂tk)αk
, (2.1)

for any k-tuple α with α := ∑k
j=1 α j .

Let P+(q) denote the largest prime factor of q. Then q is said to be m-smooth
if P+(q) < m. For a tuple d , P+(d) denotes the largest prime factor dividing any
of the components of d . We use the convention n ∼ N to mean N ≤ n < 2N . In
practice we have N → ∞. We fix D0 = log log log N and let W = ∏

p<D0
p. Then

W ∼ log log N (1+o(1)) by an application of the prime number theorem. Let ω(n)

denote the number of distinct prime factors of n. The greatest integer less than or
equal to x is denoted as �x
. Throughout this paper, δ denotes a positive quantity
which can be made as small as needed.

3 The Higher-Rank Selberg Sieve

In this section,we recall the salient features of the higher-rankSelberg sieve discussed
in [19]. The exposition given here is concise for the sake of brevity, and the reader
is encouraged to peruse Sect. 3.2 of the above-mentioned paper.

Given a set S of k-tuples (not necessarily finite),

S = {n = (n1, . . . , nk)},

in [19], we undertook a systematic study of sums of the form
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∑

n∈S
wn

(∑

d|n
λd

)2

, (3.1)

satisfying certain hypotheses. Here wn is a ‘weight’ attached to the tuples n and λd ’s
are sieve parameters chosen in terms of a fixed positive real number R and a smooth
real valued test function F supported on the simplex

�k(1) := {(t1, . . . , tk) ∈ [0,∞)k : t1 + · · · + tk ≤ 1}.

More precisely, we chose :

λd = μ(d)F
(
log d1
log R

, . . . ,
log dk
log R

)
. (3.2)

The sum (3.1) was assumed to satisfy the following hypotheses.

H1. If a prime p divides a tuple n such that p divides ni and n j , with i �= j , then p
must lie in some fixed finite set of primes P0.

This allows us to perform the ‘W trick,’ that is restrict n in the above sum to be
congruent to a residue class b (mod W ) such that (bi ,W ) = 1 for all i .

H2. The function wn satisfies

∑

d|n
n≡b (mod W )

wn = X

f (d)
+ rd ,

for some multiplicative function f and some quantity X depending on the set
S.

H3. The components of f satisfy

f j (p) = p

α j
+ O(pt ), with t < 1

for some fixed α j ∈ N.

We denote the tuple (α1, . . . ,αk) as α and the sum of the components
∑k

j=1 α j as
α.

H4. There exists θ > 0 and Y � X such that

∑

[d,e]<Y θ

|r[d,e]| � Y

(log Y )A

for any A > 0.
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With all this in place,we state below themain results of the higher-rank sieve obtained
in [19].

Lemma 3.1 Set R to be some fixed power of X. Let f be a multiplicative function
satisfying H3 and

G,H : [0,∞)k → R

be smooth functions with compact support. We denote

G
(
log d

log R

)
:= G

(
log d1
log R

, . . . ,
log dk
log R

)

and similarly for H. Let the dash over the sum mean that we sum over k-tuples d
and e with [d, e] square-free and co-prime to W . Then,

∑′

d,e

μ(d)μ(e)

f ([d, e])G
(
log d

log R

)
H

(
log e

log R

)
= (1 + o(1))C(G,H)(α) c(W )

(log R)α
,

where

C(G,H)(α) =
∫ ∞

0
· · ·

∫ ∞

0

⎛

⎝
k∏

j=1

t
α j−1
j

(α j − 1)!

⎞

⎠G(t)(α)H(t)(α)dt,

with G(t)(α) and H(t)(α) as in the notation of (2.1). Furthermore,

c(W ) :=
∏

p|W

pα

φ(p)α
.

Theorem 3.2 Let λd ’s be as chosen above. Suppose hypotheses H1 to H3 hold and
H4 holds with Y = X. Set R = X θ/2−δ for small δ > 0. Then,

∑

n≡b (mod W )

wn

( ∑

d|n
λd

)2

= (1 + o(1))C(F ,F)(α)c(W )
X

(log R)α
,

with

c(W ) := Wα

φ(W )α

and

C(F ,F)(α) =
∫ ∞

0
· · ·

∫ ∞

0

⎛

⎝
k∏

j=1

t
α j−1
j

(α j − 1)!

⎞

⎠ (F (α)(t)
)2
dt .
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4 A Refined Smoothing Procedure

In the axiomatization of the higher-rank Selberg sieve discussed in Sect. 3, it may
be that the hypothesis H4 holds for θ in a range that is too restrictive to yield good
asymptotic formulas. Motivated by estimates of the type (1.3), we would like to
consider the followingmore relaxed condition on the error term instead of hypothesis
H4:

H4∗ There exists � > 0, 0 < ξ ≤ 1 and Y � X such that

∑

[d,e]<Y�

P+([d,e])<Y ξ�/2

|r[d,e]| � Y

(log Y )A

for any A > 0.

Accordingly, we now consider the sum (3.1) with additional smoothing conditions
imposed. Let R1 = X�/2−δ . We will replace R in (3.2) by R1. The above setting
motivates the analysis of smooth sums of the kind

∑

d,e<R1

λdλe

f [d, e] ,

and hence a smooth version of the sum considered in Lemma 3.1 must be studied.
We do so by emulating the Fourier analytic method adopted in [19], incorporating
the smoothing conditions that arise by use of the partial zeta function as well as the
Dickman and Buchstab functions.

The Dickman function ρ is defined recursively by the initial condition ρ(u) =
1, (0 ≤ u ≤ 1) and the equation

ρ(u) = ρ(v) −
∫ u

v

ρ(t − 1)
dt

t
, (v ≤ u ≤ v + 1).

The Buchstab function ω is defined similarly, by the initial condition uω(u) :=
1, (1 ≤ u ≤ 2) and the relation

uω(u) = 1 +
∫ u−1

1
ω(v)dv, (u > 2).

These functions have a long and venerable history. Though Dickman’s paper [5]
where he introduced the function was published in 1930, it seems that Ramanujan
(unpublished) had studied it more than a decade earlier (see p. 337 of [15]). Indeed,
Ramanujan writes down the following explicit formula for the Dickman function
ρ(u). Put I0 = 1 and define (for k ≥ 1) recursively
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Ik(u) =
∫

· · ·
∫

t1,...,tk≤1
t1+...+tk≤u

dt1 . . . dtk
t1 . . . tk

.

Then,

ρ(u) =
∞∑

k=0

(−1)k

k! Ik(u).

The study of ρ(u) became dormant for almost two decades until 1947, when Chowla
and Vijayaraghavan studied it unaware of any earlier work (see [3]). Two years later,
Buchstab [2] studied the same function (again unaware of any earlier work). It was
de Bruijn [4], in 1951, who began exhaustive research into the nature of this function
and obtained an asymptotic expansion for it. In 1980, Hildebrand and Tenenbaum
[7, 18] extended considerably the range of applicability of de Bruijn’s formulas. We
refer the reader to the excellent survey of Moree [10] for further details.

We state some results which will be useful in our analysis. These are from [18],
after minor changes in notation.

Proposition 4.1 (p. 379 of [18]) For the partial zeta function, defined as

ζy(s) :=
∏

p<y

(
1 − 1

ps

)−1

,

we have,
ζy(s) = ζ(s)e−J ((s−1) log y)

(
1 + O(Lε(y)

−1)
)
,

where

J (s) =
∫ ∞

0

e−s−t

s + t
dt

and
Lε(y) = exp{(log y)3/5−ε}.

Proposition 4.2 (Theorem 7, p. 372 of [18]) Let ρ be the Dickman function and ρ̂
be the Laplace transform of ρ defined as

ρ̂(s) =
∫ ∞

0
e−stρ(t)dt.

Then,
sρ̂(s) = e−J (s).

We use the notation ω+ := δ + ω, where δ is the Dirac delta function. Then
ω̂+(s) = 1 + ω̂(s), in the distributional sense.
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Proposition 4.3 (Theorem 5, p. 404 of [18]) Let ω denote the Buchstab function
and ω̂ be its Laplace transform given by

ω̂(s) =
∫ ∞

0
e−suω(u)du.

Then,

sω̂+(s) = 1

ρ̂(s)
.

Henceforth, ξ is a fixed number, 0 < ξ ≤ 1. We also recall the following notation
whichwill bewidely used. If g is a vector function, that is, g(t) is defined as

∏
j g j (t j ),

we use the notation g(t)α to denote the product
∏

j g j (t j )α j . It is clear that

ω+(t) :=
∏

j

ω+(t j ) =
∏

j

(ω(t j ) + δ(t j )).

We prove some results toward obtaining a smooth version of Lemma 3.1. These will
play an important role in subsequent discussion.

Lemma 4.4 Let f be a multiplicative function satisfying H3 with respect to the
tuple α = (α1, . . . ,αk). Let G, H be smooth functions with compact support as in
Lemma 3.1. We retain all the notation used in Lemma 3.1. Then the Rξ

1- smooth sum

∑′

d,e

P+([d,e])<Rξ
1

μ(d)μ(e)

f ([d, e])G
(

log d

log R1

)
H

(
log e

log R1

)
.

is asymptotic (as R1 → ∞) to

(1 + o(1))
c(W )

(log R1)α
ξαCG,H(ξ)(α),

where CG,H(ξ)(α) is the integral

∫

Rk

∫

Rk

ηG(u)ηH(v)(1 + iu)α(1 + iv)αϒ(u, v)(α,α,α)dudv, (4.1)

with

ϒ(u, v)(α,α,α) = ω̂+((1 + iu)ξ)α ω̂+((1 + iv)ξ)α ρ̂((2 + iu + iv)ξ)α,

ηG(u) =
∫

Rk

G(t) exp(t) exp(iu · t)dt, ηH(v) =
∫

Rk

G(t) exp(t) exp(iv · t)dt,

where exp(t) = ∏k
j=1 e

t j and the dot denotes the usual dot product of tuples.
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Proof Let y = Rξ
1. As the required sum is the same as the one considered in

Lemma 3.1 with an additional smoothing condition imposed, we will follow the
proof of the aforesaid lemma given in [19], with details to highlight any modifica-
tions. All references to [19] in this proof are understood to refer to the relevant steps
in the proof of Lemma 3.1 in that paper.

Using Fourier inversion as in [19], this sum is given by the integral

∫

Rk

∫

Rk

ηG(u)ηH(v)Zy(u, v)dudv, (4.2)

where Zy(u, v) is now Z(u, v) of [19] along with a smoothing condition, that is,

Zy(u, v) =
∑′

d,e
P+([d,e])<y

μ(d)μ(e)

f ([d, e])
1

d(1+iu)/ log R1

1

e(1+iv)/ log R1

Again, we can write an Euler product for Zy(u, v), as in [19], but it will run only
over primes D0 < p < y, as opposed to the Euler product that we had in [19] over
primes greater than D0. This is because, the dash over the sum constrains [d, e] to
be co-prime to W and the smoothing condition means that its prime factors must be
below y. Hence, the Euler product for Zy(u, v) is given by

∏

p�W,p<y

⎛

⎝1 −
k∑

j=1

1

f j (p)

⎛

⎝ 1

p
1+iu j
log R1

+ 1

p
1+iv j
log R1

− 1

p
1+iu j
log R1

+ 1+iv j
log R1

⎞

⎠

⎞

⎠ .

After applying H3 to retrieve the behavior of f j (p) for each component 1 ≤ j ≤ k,
some algebraicmanipulation along the lines in [19] gives us the following convenient
approximation

Zy(u, v) = (1 + o(1))
k∏

j=1

∏

D0<p<y

(
1 − α j p

−1− 1+iu j
log R1

)(
1 − α j p

−1− 1+iv j
log R1

)

1 − α j p
−1− 2+iu j+iv j

log R1 .

(4.3)

This leads us to examine for each j , Euler products of the form

∏

D0<p<y

(
1 − α j

p1+s j

)
, (4.4)

with Re(s j ) > 0. We write the above Euler product as
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∏

D0<p<y

(
1 − α j

p1+s j

) (
1 − 1

p1+s j

)−α j
(
1 − 1

p1+s j

)α j

= Dj (1 + s j )
∏

D0<p<y

(
1 − 1

p1+s j

)α j

,

where

Dj (s) =
∏

D0<p<y

(
1 − α j

ps

) (
1 − 1

ps

)−α j

is an Euler product supported on primes D0 < p < y and analytic for Re(s) > 0.
For Re(s) ≥ 1, we have

Dj (s) = 1 + O
( ∑

D0<p<y

p−2
)
,

showing that Dj (s) = 1 + o(1) as R1 (and hence y as well as D0) goes to ∞. Pro-
ceeding as in [19], we obtain

∏

D0<p<y

(
1 − α j

p1+s j

)
= (1 + o(1))

∏

p|W

(
1 − 1

p1+s j

)−α j

ζy
(
1 + s j

)−α j
.

Fix some small ε > 0.As done in [19], it is possible to show that themain contribution
to (4.2) comes from the region |u|, |v| < (log R)ε. Hence, we would like to analyze
ζy(1 + s j ) as s j → 0. Combining Propositions 4.1 and 4.2, we obtain as s j → 0+
and y → ∞,

ζy(1 + s j ) = (s j log y)ζ(1 + s j )ρ̂
(
s j log y

)
(1 + O(Lε(y)

−1))

= (1 + o(1))(s j log y)ζ(1 + s j )ρ̂
(
s j log y

)

= (1 + o(1))(log y)ρ̂
(
s j log y

)
,

where we have used the asymptotic ζ(1 + s) = (1 + o(1))s−1 as s → 0+ for the last
equality. Thus we obtain as s j → 0+,

∏

D0<p<y

(
1 − α j

p1+s j

)
= (1 + o(1))

Wα j

φ(W )α j
(log y)−α j ρ̂

(
s j log y

)−α j

Applying this to each term appearing in (4.3), recalling that ξ is defined as
log y/ log R1 and α := ∑k

j=1 α j , we have in the region |u|, |v| < (log R)ε,

Zy(u, v) = (1 + o(1))
Wα

φ(W )α
(log y)−α

k∏

j=1

ρ̂((1 + iu j )ξ)
−α j ρ̂((1 + iv j )ξ)

−α j

ρ̂((2 + u j + v j )ξ)−α j
,



A Smooth Selberg Sieve and Applications 301

as R → ∞. To get rid of the denominator in the above expression, we use Proposi-
tion 4.3. This gives

Zy(u, v) = (1 + o(1))
Wα

φ(W )α

ξ2α

(log y)α

k∏

j=1

(1 + iu j )
α j (1 + iv j )

α j

k∏

j=1

ω̂+((1 + iu j )ξ)
α j ω̂+((1 + iv j )ξ)

α j ρ̂((2 + iu j + iv j )ξ)
α j

As ξ = (log y)/(log R1), we obtain

Zy(u, v) = (1 + o(1))c(W )
ξα

(log R1)α
(1 + iu)α(1 + iv)αϒ(u, v)(α,α,α), (4.5)

with notation as in the statement of this lemma. Plugging this into the integral expres-
sion (4.2) for the required sum yields the result. �

In order to simplify the integral CG,H(ξ)(α) appearing in Lemma 4.4, we first
consider the special case α = 1 = (1, . . . , 1). We have the following result.

Lemma 4.5 The integral

CG,H(ξ)(1) =
∫

Rk

∫

Rk

ηG(u)ηH(v)(1 + iu)(1 + iv)ϒ(u, v)(1,1,1)dudv

is given by

∫

Rk

ρ(t)
∫

Rk

∫

Rk

ω+(s − t)ω+(r − t)G(1)(ξr)H(1)(ξs)drdsdt,

which can be further simplified by writing each ω+(x) as the product

∏

j

(ω(x j ) + δ(x j ))

and expanding the resulting expression. (Here, we use the multi-index notation (2.1)
for G(1)(u) and H(1)(u).)

Proof We have

ϒ(u, v)(1,1,1) = ω̂+((1 + iu)ξ) ω̂+((1 + iv)ξ) ρ̂((2 + iu + iv)ξ).

Then, the interpretation of the vector notation and the definition of the Laplace
transform give us
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ω̂+((1 + iu)ξ) =
k∏

j=1

ω̂+((1 + iu j )ξ) =
k∏

j=1

∫

R

ω+(r j )e
−ξ(1+iu j )r j dr j

=
∫

Rk

ω+(r)e−ξ(1+iu)·r dr ,

where the dot denotes dot product of the tuples ξ(1 + iu) and r and ω+(r) :=∏k
j=1 ω+(r j ). Similarly, we obtain

ω̂+((1 + iv)ξ) =
∫

Rk

ω+(s)e−ξ(1+iv)·sds,

ρ̂((2 + iu + iv)ξ) =
∫

Rk

ρ(t)e−ξ(2+iu+iv)·t dt .

Thus, ϒ(u, v)(1,1,1) equals

∫

Rk

∫

Rk

∫

Rk

ρ(t)ω+(s)ω+(r)e−ξ(1+iu)·(t+r)e−ξ(1+iv)·(t+s)drdsdt .

Plugging this into the required integral gives

CG,H(ξ)(1) =
∫

Rk

∫

Rk

∫

Rk

ρ(t)ω+(s)ω+(r)IG IHdrdsdt,

with

IG(ξ(t + r)) =
∫

Rk

ηG(u)(1 + iu)e−ξ(1+iu)·(t+r)du

IH(ξ(t + s)) =
∫

Rk

ηH(v)(1 + iv)e−ξ(1+iv)·(t+s)dv.

By Fourier inversion, we have the identities

G(x) = ∫
Rk ηG(u) exp

(−(1 + iu) · x) du (4.6)

H(x) = ∫
Rk ηH(v) exp

(−(1 + iv) · x) dv.

It is clear from this that IG(ξ(t + r)) is nothing but

(−1)k
∂kG(x)

∂x1 . . . ∂xk

∣∣∣∣
x=ξ(t+r),

that is, (−1)kG(1)(ξ(t + r)) in our notation. Repeating this argument forH, we have
IH(ξ(t + s)) = (−1)kH(1)(ξ(t + s)). Thus, the required integralCG,H(ξ)(1) is given
by
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∫

Rk

∫

Rk

∫

Rk

ρ(t)ω+(s)ω+(r)G(1)(ξ(t + r))H(1)(ξ(t + s))drdsdt (4.7)

=
∫

Rk

ρ(t)
∫

Rk

∫

Rk

ω+(s)ω+(r)G(1)(ξ(t + r))H(1)(ξ(t + s))drdsdt

=
∫

Rk

ρ(t)
∫

Rk

∫

Rk

ω+(s − t)ω+(r − t)G(1)(ξr)H(1)(ξs)drdsdt,

after suitable change of the variables r and s. �

Let α, β, a, b and c be k-tuples. We now consider the general integral

CG,H(ξ)(α,β,a,b,c), defined as

∫

Rk

∫

Rk

ηG(u)ηH(v)(1 + iu)α(1 + iv)βϒ(u, v)(a,b,c)dudv, (4.8)

with

ϒ(u, v)(a,b,c) = ω̂+((1 + iu)ξ)a ω̂+((1 + iv)ξ)b ρ̂((2 + iu + iv)ξ)c.

Note that when all the tuples involved are the same, say α, then we will use the
notation CG,H(ξ)(α) for convenience. We now emulate the proof of the above lemma
for this general case.

Lemma 4.6 The integral CG,H(ξ)(α,β,a,b,c) is given by

(−1)α+β

∫

Rk

ρc(t)
∫

Rk

∫

Rk

ω+
a (s − t)ω+

b (r − t)G(α)(ξr)H(β)(ξs)drdsdt,

where ρc, ω+
a and ω+

b are defined as follows. Let ∗ denote the convolution operator.
Then,

ρc(t) := ρ∗c(t) =
k∏

j=1

ρ(t j )
∗c j

=
k∏

j=1

ρ(t j ) ∗ . . . ∗ ρ(t j )︸ ︷︷ ︸
c j times

.

Similarly,

ω+
a (r) :=

k∏

j=1

ω+(r j )
∗a j =

k∏

j=1

ω+(r j ) ∗ · · · ∗ ω+(r j )︸ ︷︷ ︸
a j times

=
k∏

j=1

(δ + ω(t j )) ∗ · · · ∗ (δ + ω(t j ))︸ ︷︷ ︸
a j times

.
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The definition of ω+
b is exactly the same. As before, we use the multi-index notation

(2.1) for G(α)(u) and H(β)(u).

Proof We have

ω̂+((1 + iu)ξ)a =
k∏

j=1

ω̂+((1 + iu j )ξ)
a j .

Then for each j , ω̂+((1 + iu j )ξ)
a j is the Laplace transform evaluated at (1 + iu j )ξ,

of the convolution product

ω+(r j )
∗a j = ω+(r j ) ∗ · · · ∗ ω+(r j ),

where ω+ is convolved a j times. Thus,

ω̂+((1 + iu j )ξ)
a j =

∫

R

ω+(r j )
∗a j e−ξ(1+iu j )r j dr j

Reverting to the vector notation gives us

ω̂+((1 + iu)ξ)a =
∫

Rk

ω+
a (r)e−ξ(1+iu)·r dr ,

where ω+
a is as defined in the lemma. Proceeding similarly, we obtain

ω̂+((1 + iv)ξ)b =
∫

Rk

ω+
b (s)e−ξ(1+iv)·sds,

ρ̂((2 + iu + iv)ξ)c =
∫

Rk

ρc(t)e
−ξ(2+iu+iv)·t dt .

Wenowproceed exactly as in theproof of theprevious lemmawithω+(r),ω+(s), ρ(t)
replaced by ω+

a (r),ω+
b (s), ρc(t), respectively, to obtain that ϒ(u, v)(a,b,c) is given

by

∫

Rk

∫

Rk

∫

Rk

ρc(t)ω
+
b (s)ω+

a (r)e−ξ(1+iu)·(t+r)e−ξ(1+iv)·(t+s)drdsdt . (4.9)

Thus, we obtain that the required integral is

∫

Rk

∫

Rk

∫

Rk

ρc(t)ω
+
b (s)ω+

a (r)I (α)

G I
(β)

H drdsdt,

with
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I (α)

G =
∫

Rk

ηG(u)(1 + iu)αe−ξ(1+iu)·(t+r)du

I
(β)

H =
∫

Rk

ηH(v)(1 + iv)βe−ξ(1+iv)·(t+s)dv.

As before, we use the identities (4.6) and change of variable to obtain the desired
result. �

4.1 A Smooth Higher-Rank Sieve

We work with the setting of the sieve established in Sect. 3. Recall the hypotheses
H1 to H3 in this section. Instead of H4 we will assume hypothesis H4∗ on the error
terms. Our main result is then the following smooth version of Theorem 3.2 of [19],
which can be thought of as the ξ-smooth higher-rank sieve.

Theorem 4.7 With λd ’s chosen as in (3.2), hypotheses H1, H2, H3, H4∗ and R1 =
X�/2−δ , we have

∑

n∈S
n≡b (mod W )

wn

( ∑

d|n
P+(d)<Rξ

1

λd

)2

= (1 + o(1))c(W )ξαCF ,F (ξ)(α) X

(log R1)α
,

with

c(W ) = Wα

φ(W )α

andCF ,F (ξ)(α) obtained from the expression inLemma4.6byplugging inβ, a, b, c =
α.

Proof Expanding out the square, interchanging the order of summation gives us

∑

n≡b (mod W )

wn

( ∑

d|n
P+(d)<Rξ

1

λd

)2

=
∑

d,e<R1

P+([d,e])<Rξ
1

λdλe

( ∑

[d,e]|n
n≡b (mod W )

wn

)

Now one can argue exactly as in Theorem 3.2 of [19], using H1 and the W -trick to
impose the same restrictions on the tuples d, e. Moreover, H2 along with the choice
of λd ’s gives that the main term for the desired sum is

X
∑′

d,e

P+([d,e])<Rξ
1

μ(d)μ(e)

f ([d, e])F
(

log d

log R1

)
F

(
log e

log R1

)
.
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As H3 holds, one can apply Lemma 4.4 to this sum, to obtain the asymptotic

(1 + o(1))c(W )ξαCF ,F (ξ)(α,α,α) X

(log R1)α
,

as X (and hence R1) goes to infinity. As the choice of λd ’s (see (3.2)) in terms of the
smooth compactly supported functionF means that they are bounded absolutely, the
error term is given by

O

( ∑

d,e<R1

P+([d,e])<Rξ
1

|r[d,e]|
)

(4.10)

and can be neglected due to the choice of R1, after applying H4∗. �

5 Application to Bounded Gaps Between Primes

In this section, we apply the sieve with the smoothing procedure discussed above to
the well-known prime k-tuples problem. A setH of distinct nonnegative integers is
said to be admissible if for every prime p, there is a residue class bp (mod p) such
that bp /∈ H (mod p). That is |H (mod p)| < p, for every prime p. We will work
with a fixed admissible k-tuple

H = {h1, . . . , hk}.

Weuse the ‘W trick’ to remove the effect of small primes, that iswe restrict n to be in a
fixed residue class bmoduloW , whereW = ∏

p<D0
p and b is chosen so that b + hi

is co-prime to W for each hi . This choice of b is possible because of admissibility
of the setH . One can choose D0 = log log log N , so thatW ∼ (log log N )1+o(1) by
an application of the prime number theorem, as noted earlier.

Recall that χP denotes the characteristic function of the primes. Consider the
expressions

S1 =
∑

n∼N
n≡b (mod W )

an

and

S2 =
∑

n∼N
n≡b (mod W )

(
k∑

m=1

χP(n + hm)

)
an,

where an are nonnegative parameters.
For ρ positive, we denote by S(N , ρ) the quantity
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S2 − ρS1 =
∑

n∼N
n≡b (mod W )

⎛

⎝
k∑

j=1

χP(n + h j ) − ρ

⎞

⎠ an. (5.1)

The key idea then used is as follows. We state it as a proposition for convenient
future reference.

Proposition 5.1 Given a positive number ρ, if

S(N , ρ) > 0

for all large N, then there are infinitely many integers n such that at least �ρ
 + 1
of n + h1, . . . , n + hk are primes.

Proof The definition of S(N , ρ) gives that the sum

∑

n∼N
n≡b (mod W )

⎛

⎝
k∑

j=1

χP(n + h j ) − ρ

⎞

⎠ an > 0.

As an are nonnegative parameters, we must have

k∑

j=1

χP(n + h j ) − ρ > 0,

for some n ∼ N . As this happens for all large N ,

k∑

j=1

χP(n + h j ) > ρ

holds for infinitely many integers n. As each χP(n + h j ) is an integer, this completes
the proof. �

Fix some 0 < ξ ≤ 1. Writing n for the tuple (n + h1, . . . , n + hk), we make the
following choice of sieve parameters an:

an =
( ∑

d|n
P+(d)<Rξ

1

λd

)2

,

with the sequence (λd) chosen in terms of F as in (3.2). We will refer to the corre-
sponding sums with this choice of sieve parameters as S1(ξ) and S2(ξ), respectively.
Weproceed to derive asymptotic formulas for S1(ξ) and S2(ξ)by applying our smooth
higher-rank sieve.
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5.1 Asymptotic Formula for S1(ξ)

Recall that S1(ξ) denotes the ξ-smooth sum

S1(ξ) :=
∑

n∼N
n≡b (mod W )

( ∑

d j |n+h j∀ j

P+(d)<Rξ
1

λd

)2

Theorem 5.2 Choose � < 1. With λd’s chosen as in (3.2) and R1 = N�/2−δ , we
have

S1(ξ) = (1 + o(1))
Wk−1

φ(W )k

N

(log R1)k
ξkCF ,F (ξ)(1),

with CF ,F (ξ)(1) given by

∫

(R+)k
ρ(t)

(∫

�k (1/ξ)
ω+(r − t)F (1)(ξr)dr

)2

dt,

where �k(1/ξ) is the simplex {t ∈ [0,∞]k : ∑k
j=1 t j ≤ 1/ξ}.

Proof We wish to prove this as an application of Theorem 4.7. Note that the setting
of the sieve and verification of conditions H1–H3 are the same as in the proof of
Lemma 4.2 in [19]. As rd = O(1) in this case, |λd |’s are bounded, and � < 1, H4*
follows from the bound

∑

[d,e]<N�

P+([d,e])<N ξθ/2

1 �
∑

[d,e]<N�

1 � N

(log N )A

for any A > 0. The tuple α is in this case just the tuple 1 = (1, . . . , 1) and α =∑
j α j = k. We have

c(W ) = Wk

φ(W )k
,

and X = N/W exactly as before. It is clear that the result now follows directly from
Theorem 4.7. The integral CF ,F (ξ)(1) is as in Lemma 4.5. It can be simplified to

∫

(R+)k
ρ(t)

∫

�k (1/ξ)

∫

�k (1/ξ)
ω+(s − t)ω+(r − t)F (1)(ξs)F (1)(ξr)drdsdt

=
∫

(R+)k
ρ(t)

(∫

�k (1/ξ)
ω+(r − t)F (1)(ξr)dr

)2

dt,
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where the limits of integration arise since the support of F(x) is the simplex �k(1)
and the support of the Dickman function ρ(u) is R+. �

Remark We remark that when ξ = 1, the above theorem gives back precisely
Lemma 4.2 of [19] as a special case. Indeed, S1(1) is nothing but S1, as the smooth-
ing condition, is redundant when ξ = 1. Consider the final expression forCF ,F (ξ)(1)

obtained from Lemma 4.5. If ξ = 1, then the support of the function F and hence
the range of integration is the usual simplex

�k(1) := {(t1, . . . , tk) ∈ [0,∞)k : t1 + · · · + tk ≤ 1}.

In particular while integrating over this simplex, for each t j we have the bounds
0 ≤ t j ≤ 1. Recall that in this range, the Dickman function ρ is simply 1, while the
Buchstab function ω is 0. Thus in the final expression of Lemma 4.5, putting ξ = 1
andG,H = F , only the term involving the product δ(s − t)δ(r − t) survives, giving
us

CF ,F (1)(1) =
∫

�k (1)
(F (1)(t))2dt .

This is nothing but the functional η(F) of Lemma 4.2 in [19].

5.2 Asymptotic Formula for S2(ξ)

Let us recall the sum S2(ξ). We may write

S2(ξ) =
k∑

m=1

S(m)
2 (ξ),

where

S(m)
2 (ξ) :=

∑

n∼N
n≡b (mod W )

χP(n + hm)

( ∑

d j |n+h j∀ j

P+(d)<Rξ
1

λd

)2

We proceed to derive an asymptotic formula for S(m)
2 (ξ).

Theorem 5.3 Choose � = 1/2 + 2� − δ, with some small δ > 0 and � a positive
number such that (1.3)holds (namely,� satisfies600� + 180η < 7, whereη = �ξ).
With λd’s chosen as in (3.2) and R1 = N�/2−δ , we have

S(m)
2 (ξ) = (1 + o(1))

Wk−1

φ(W )k

π(2N ) − π(N )

(log R1)k−1
ξk−1CFm ,Fm (ξ)(1),
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where the function Fm acting on (k − 1)-tuples is defined in terms of F by

Fm(x1, . . . , xm−1, xm+1, . . . , xk) = F(x1, . . . , xm−1, 0, xm+1, . . . , xk)

and CFm ,Fm (ξ)(1) is given by

∫

(R+)k−1
ρ(t)

(∫

�k−1(1/ξ)
ω+(r − t)F (1)

m (ξr)dr

)2

dt .

(Here, �k(1/ξ) is as defined in Theorem 5.2.)

Proof Hypotheses H1, H2 and H3 hold as in the proof of Lemma 4.3 in [19] to give

X = π(2N ) − π(N )

φ(W )
∏

j �=m φ(d j )

and rd = EP(N , q, a), where a is some residue class co-prime to q = W
∏

j �=m d j

and EP(x, q, a) is as defined by (1.1).
To check H4* with Y = N , it suffices to check that

∑

[d,e]<N�

P+([d,e])<N�ξ

|EP(N , q, a)| � N

(log N )A
,

for any A > 0. As W � log log N , we see that there exists ε > 0 small enough so
that

∑

[d,e]<N�

P+([d,e])<N�ξ

|EP(N , q, a)| �
∑

q<N�+ε

P+(q)<N�ξ

|EP(N , q, a)|

�
∑

q<N
1
2 +2�

P+(q)<N η

|EP(N , q, a)|

which is of the order of N (log N )−A, for any A > 0 by (1.3).
Keeping in mind the additional constraint dm = 1 on tuples d as described in

Lemma 4.3 of [19], which forces the mth component of the function F to be zero,
the result follows as an application of Theorem 4.7. �

It can be observed as before that putting ξ = 1 yields Lemma 4.3 of [19]. Further-
more, in the expression obtained for S(m)

2 (ξ) above, it is clear that the specific value
of m has no role to play. Due to the symmetry of the integrals, we can write
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S2(ξ) =
k∑

m=1

S(m)
2 (ξ) (5.2)

= (1 + o(1))
Wk−1

φ(W )k

π(2N ) − π(N )

(log R1)k−1
ξk−1kCFk ,Fk (ξ)

(1),

with notation as in Theorem 5.3, setting m = k.
We remark that the densities depending on ξ in the expressions for S1(ξ) and

S2(ξ) are strictly positive, as can be seen from the positive integrands and limits of
integration. Thus, ξ- smoothing gives for the sums S1 and S2 the expected asymptotic
formulas multiplied by some strictly positive density factor depending on ξ. This
is indeed what one would expect, in the spirit of the classical Buchstab iteration
procedure.

6 Some Material Toward Numerical Bounds

Choosing some�which is admissible in the derivation of the asymptotic formula for
Q1 as well as Q2, one obtains the following after using the prime number theorem.

Theorem 6.1 Choose � = 1/2 + 2�, with � > 0 and 600� + 180ξ < 7. Then,
with λd’s chosen as in (3.2) in terms of F , and R = N�/2−δ , we have as N → ∞,

S(N , ν) := S2 − νS1

∼ Wk−1

φ(W )k

N

(log R)k
ξk−1

((
�

2
− δ

)
kCFk ,Fk (ξ)

(1) − νξCF ,F (ξ)(1)
)

.

Combining Proposition 5.1 with the above result, we need

ν <

(
�

2
− δ

)
k

ξ

CFk ,Fk (ξ)
(1)

CF ,F (ξ)(1)
(6.1)

This suggests that we should maximize the functional appearing above, prompting
us to define

Mk(ξ) = sup
F

k
CFk ,Fk (ξ)

(1)

CF ,F (ξ)(1)
,

where the supremum is taken over all symmetric smooth functions supported on
�k(1). This can be viewed as the ‘ξ-smooth’ analogue of the classical functional Mk

encountered in [9, 12, 19]. We will express Mk(ξ) in a more amenable form, which
also makes it easier to check that Mk(1) is indeed the functional Mk defined in (33)
of [12].

We write F (1)(x) as G(x). Then G is a symmetric smooth function supported on
the simplex �k(1). Expressing G as
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G(x) = ∂

∂xm

(
∂k−1F(t)

∂x1 . . . ∂xm−1∂xm . . . ∂xk

)
,

we see from the fundamental theorem of calculus that the function F (1)
m that appears

in Theorem 5.3 is simply the anti-derivative of G with respect to themth component,
evaluated at xm = 0. It is also clear that the anti-derivative of G with respect to the
mth component has the same support as F . Hence, we can write

∫ ∞

0
G(x)dxm = −

(
∂k−1F(x)

∂x1 . . . ∂xm−1∂xm . . . ∂xk

)∣∣∣∣
xm=0

= −F (1)
m (x).

In particular, F (1)
k evaluated at ξr , namely F (1)

k (ξr) equals

−
∫ ∞

0
G(ξr1, . . . , ξrk−1, xk)dxk .

This allows us to recast Mk in terms of G(x) as

Mk(ξ) = sup
G

k Jk(G, ξ)

I (G, ξ)
, (6.2)

where the supremum is taken over all symmetric smooth functions supported on
�k(1) and the functionals Jk(G, ξ) and I (G, ξ) are defined as follows.

Jk(G, ξ) :=
∫

(R+)k−1
ρ(t)

(∫

�k−1(1/ξ)
ω+(r − t)

(∫ ∞
0

G(ξr1, . . . , ξrk−1, x)dx

)
dr

)2

dt,

(6.3)

and

I (G, ξ) :=
∫

(R+)k
ρ(t)

(∫

�k (1/ξ)
ω+(r − t)G(ξr)dr

)2

dt . (6.4)

We would like estimates for the new integrals J (G, ξ) and I (G, ξ) in terms of
the functionals J (G, 1) and I (G, 1) that appear for the higher-rank sieve without
smoothing. Recall from [19] that

J (G, 1) =
∫

�k−1(1)

(∫ ∞

0
G(t)dtk

)2

dt1 . . . dtk−1, (6.5)

and

I (G, 1) =
∫

�k (1)
G(t)2dt . (6.6)
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Let us define the functional

Ik(F, ξ) =
∫

(R+)k
ρ(t)

(∫

(R+)k
ω+(r − t)F(ξr)dr

)2

dt

The problem thus reduces finding upper and lower bounds for this functional in terms
of

Ik(F) =
∫

(R+)k
F(t)2dt .

Lower bound. Using the bound ω+(u) = ω(u) + δ(u) ≥ δ(u) for any u ∈ R
+, we

can write

Ik(F, ξ) ≥
∫

(R+)k
ρ(t)F(ξt)2dt = ξ−k

∫

(R+)k
ρ(t1/ξ) . . . ρ(tk/ξ)F(t)2dt

Upper bound. By the Cauchy–Schwarz inequality, we have

( ∫

(R+)k

ω+(r − t)F(ξr)dr

)2

≤
∫

(R+)k

ω+(r − t)2dr
∫

(R+)k

F(ξr)2dr

= ξ−k I (F)

∫

(R+)k

ω+(r − t)2dr

This gives

Ik(F, ξ) ≤ ξ−k I (F)

(∫

(R+)k
ρ(t)

∫

(R+)k
ω+(r − t)2drdt

)
.

Bounding the integrals that arise in the lower and upper bounds above needs some
work and we defer this to a future paper. We expect that effective bounds for these
integrals should yield a general result involving a remainder term that would encom-
pass contributions both with and without smoothing. More precisely, we should be
able to capture contributions from moduli below Y θ and also from moduli up to
Y� with prime factors below Y ξ . Implementing these ideas and obtaining numerical
improvements would entail the use of variational techniques as well as the following
identities involving the Dickman and Buchstab functions.

Recall that the Dickman function is supported on R
+. Broadhurst [1] gives a

closed form for the Dickman function in terms of polylogarithms, in certain ranges.
We state below the closed form in the range 0–2.

Proposition 6.2 The Dickman function in the domain [0, 2] is given by

ρ(u) =
{
1 if 0 ≤ u ≤ 1
1 − log u if 1 ≤ u ≤ 2
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Proposition 6.3 The convolution ρ ∗ ρ in the domain [0, 2] is given by,

ρ2(u) =
{
u if 0 ≤ u ≤ 1
3u − 2u log u − 2 if 1 ≤ u ≤ 2

Proof The support of ρ gives

ρ2(u) =
∫ u

0
ρ(t)ρ(u − t)dt.

If 0 ≤ u ≤ 1, then the integrand is simply 1, giving the desired answer. For 1 ≤ u ≤ 2,
we write the above integral as

∫ u−1

0
ρ(t)ρ(u − t)dt +

∫ 1

u−1
ρ(t)ρ(u − t)dt +

∫ u

1
ρ(t)ρ(u − t)dt.

Let us consider the first integral. The limits of integration imply that 0 ≤ t ≤ 1 and
1 ≤ u − t ≤ 2, giving that this integral is

∫ u−1

0
(1 − log(u − t))dt.

Similarly, the second integral is simply

∫ 1

u−1
dt,

while the third is given by ∫ u

1
(1 − log t)dt.

Evaluating these integrals gives the desired expression for ρ2(u). �

Recall that the Buchstab function ω(u) is supported on u ≥ 1.

Proposition 6.4 The Buchstab function in the domain [0, 2] is given by

ω(u) =
{
0 if 0 ≤ u ≤ 1
1/u if 1 ≤ u ≤ 2.

The actual implementation of these results we reserve for a future date.
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7 Concluding Remarks

We believe that this implementation is just the beginning of a larger program. We
endeavor to explore further applications of this theory to other classical questions of
number theory.
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