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ON A CONJECTURE OF ERDŐS
AND CERTAIN DIRICHLET SERIES

TAPAS CHATTERJEE AND M. RAM MURTY

Let f :Z/qZ→Z be such that f (a)=±1 for 1≤ a < q, and f (q)= 0. Then
Erdős conjectured that

∑
n≥1 f (n)/n 6= 0. For q even, it is easy to show that

the conjecture is true. The case q ≡ 3 (mod 4) was solved by Murty and
Saradha. In this paper, we show that this conjecture is true for 82% of the
remaining integers q ≡ 1 (mod 4).

1. Introduction

In a written communication with Livingston, Erdős made the following conjecture
(see [Livingston 1965] ): if f is a periodic arithmetic function with period q and

f (n)=
{
±1 if q - n,
0 otherwise,

then

L(1, f )=
∞∑

n=1

f (n)
n
6= 0

where the L-function L(s, f ) associated with f is defined by the series

(1) L(s, f ) :=
∞∑

n=1

f (n)
ns .

In 1973, Baker, Birch and Wirsing, using Baker’s theory of linear forms in log-
arithms, proved the conjecture for q prime [Baker et al. 1973, Theorem 1]. In
1982, Okada [1982] established the conjecture if 2ϕ(q)+ 1 > q. Hence, if q is
a prime power or a product of two distinct odd primes, the conjecture is true. In
2002, R. Tijdeman [2002] proved the conjecture is true for periodic completely
multiplicative functions f . Saradha and Tijdeman [2003] showed that if f is
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periodic and multiplicative with | f (pk)| < p− 1 for every prime divisor p of q
and every positive integer k, then the conjecture is true.

It is easy to see that

L(1, f )=
∞∑

n=1

f (n)
n

exists if and only if
∑q

n=1 f (n) = 0. If q is even and f takes values ±1 with
f (q)= 0, then

∑q
n=1 f (n) 6= 0. Hence the conjecture holds for even q .

In 2007, Murty and Saradha [2007] proved that if q is odd and f is an odd
integer-valued odd periodic function then the conclusion of the conjecture holds.
In 2010, they proved that the Erdős conjecture is true if q ≡ 3 (mod 4) [Murty
and Saradha 2010, Theorem 7]. Thus the conjecture is open only in cases where
q ≡ 1 (mod 4). However, it seems that a novel idea will be needed to deal with
these cases. In this paper, we adopt a new density-theoretic approach which is
orthogonal to earlier methods. Here is the main consequence of our method:

Theorem 1.1. Let S(X)=|{q≡1 (mod 4), q≤ X | Erdős conjecture is true for q}|.
Then

lim inf
X→∞

S(X)
X/4
≥ 0.82.

In other words, the Erdős conjecture is true for at least 82% of the integers
q ≡ 1 (mod 4). Our method does not extend to show that the Erdős conjecture is
true for 100% of the moduli q ≡ 1 (mod 4). We examine this question briefly at the
end of the paper. It seems to us that more ideas are needed to resolve the conjecture
fully.

These questions have a long history beginning with Baker, Birch and Wirsing
[Baker et al. 1973]. Their work was generalized by Gun, Murty and Rath [Gun
et al. 2012] to the setting of algebraic number fields. The paper [Chatterjee and
Murty 2014] gives new proofs of some of the background results of this area. We
also refer the reader to [Tijdeman 2002] for an expanded survey of the early history.

2. Notations and preliminaries

From now onwards, we denote the field of rationals by Q, the field of algebraic
numbers by Q, Euler’s totient function by ϕ and Euler’s constant by γ . We say a
function f is Erdősian modulo q if f is a periodic function with period q and

f (n)=
{
±1 if q - n,
0 otherwise.
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Also we will write f (X). g(X) to mean

lim sup
X→∞

f (X)
g(X)

≤ 1.

Similarly, we write f (x)& g(x) to mean

lim inf
X→∞

f (X)
g(X)

≥ 1.

2A. Okada’s criterion.

Proposition 2.1. Let the q-th cyclotomic polynomial8q be irreducible over the field
Q( f (1), . . . , f (q)). Let M(q) be the set of positive integers which are composed
of prime factors of q. For any integer r and prime p, let vp(r) be the exponent of p
dividing r.

Then L(1, f )= 0 if and only if the following conditions are satisfied:∑
m∈M(q)

f (am)
m
= 0 for every a with 1≤ a < q and (a, q)= 1, and

q∑
r=1

(r,q)>1

f (r)ε(r, p)= 0 for every prime divisor p of q,

where

ε(r, p)=

{
vp(r) if vp(r) < vp(q),

vp(q)+
1

p−1
otherwise.

This proposition is a modification, due to Saradha and Tijdeman [2003], of a result
of Okada [1986]. Note that Okada deduced the sufficient condition 2ϕ(q)+ 1> q
stated in the introduction from his original version of this criterion.

2B. Wirsing’s theorem. The following proposition is due to Wirsing [1961].

Proposition 2.2. Let f be a nonnegative multiplicative arithmetic function, satisfy-
ing

| f (p)| ≤ G for all primes p,∑
p≤X

p−1 f (p) log p ∼ τ log X,

with some constants G > 0, τ > 0 and∑
p

∑
k≥2

p−k
| f (pk)|<∞;
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if 0< τ ≤ 1, then, in addition, the condition∑
p

∑
k≥2

pk
≤X

| f (pk)| = O(X/ log X)

is assumed to hold. Then∑
n≤X

f (n)= (1+ o(1))
X

log X
e−γ τ

0(τ)

∏
p≤X

(
1+

f (p)
p
+

f (p2)

p2 + · · ·

)
.

2C. Mertens’ theorem. We also need a classical theorem of Mertens in a later
section. We record the theorem here (see, for example, [Murty 2008, page 130]):

Proposition 2.3. lim
X→∞

log X
∏
p≤X

(
1−

1
p

)
= e−γ .

3. Exceptions to the conjecture of Erdős

We say that the Erdős conjecture is false modulo q , if there is an Erdősian function f
for which L(1, f )= 0. The following proposition plays a fundamental role in our
approach.

Proposition 3.1. If the Erdős conjecture is false modulo q with q odd, then

1≤
∑
d|q
d≥3

1
ϕ(d)

.

Proof. By the hypothesis, there is an Erdősian function f (mod q) for which, we
have L(1, f )= 0. Applying Okada’s criterion, we get

(2)
∑

b∈M(q)

f (b)
b
= 0.

Let d = (b, q), so that b = db1 with (b1, q/d)= 1. Then (2) can be written as

− f (1)=
∑
d|q
d≥3

1
d

∑
b1∈M(q)
(b1,q/d)=1

f (db1)

b1
.

Taking absolute value of both sides, we get

(3) 1≤
∑
d|q
d≥3

1
d

∑
b1∈M(d)

1
b1
.
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Notice that the inner sum can be written as

∑
b1∈M(d)

1
b1
=

∏
p|d

(
1+

1
p
+

1
p2 + · · ·

)
=

∏
p|d

(
1−

1
p

)−1

=
d
ϕ(d)

.

Hence from (3), we get

1≤
∑
d|q
d≥3

1
ϕ(d)

. �

Corollary 3.2. If q is a prime power or a product of two distinct odd primes, then
the Erdős conjecture is true modulo q.

Proof. This is a pleasant elementary exercise. �

Hence we have recovered the two basic cases of the conjecture which were given
in the introduction, of course, also as a consequence of Okada’s criterion.

Let d(n) be the divisor function, that is, d(n) is the number of divisors of n.

Corollary 3.3. If the smallest prime factor of q is at least d(q), then the Erdős
conjecture is true for q.

Proof. Let l be the smallest prime factor of q. From the above proposition, if the
Erdős conjecture is false modulo q , then we have

1 ≤
∑
d|q
d≥3

1
ϕ(d)

<
1
ϕ(l)

∑
d|q
d≥3

1=
d(q)− 2

l − 1
,

the strict inequality in the penultimate step coming from the fact that q has at least
two prime divisors. Thus, l < d(q). Hence if l ≥ d(q), then the Erdős conjecture is
true modulo q . �

Note that, Corollary 3.3 was not known previously. It implies that the conjecture
is true for any squarefree number q with k prime factors, provided the smallest
prime factor of q is greater than 2k . Proposition 3.1 opens the door for a new
approach to the study of Erdős’s conjecture. Let us consider the following:

S1(X)=
∣∣{q ≡ 1 (mod 4), q ≤ X |Erdős conjecture is false modulo q}

∣∣.
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Then, we have

S1(X)≤
∑
q≤X

q≡1 (mod 4)

∑
d|q
d≥3

1
ϕ(d)

≤

∑
3≤d≤X

d odd

1
ϕ(d)

∑
q≤X

q≡1 (mod 4)
d|q

1

≤

∑
3≤d≤X

d odd

1
ϕ(d)

(
X
4d
+ O(1)

)
≤

∑
3≤d≤X

d odd

1
ϕ(d)

X
4d
+ O

( ∑
3≤d≤X

1
ϕ(d)

)

≤

∑
3≤d≤X

d odd

1
ϕ(d)

X
4d
+ O(log X),

where we have used the well-known fact that (see, for example, [Murty 2008,
page 67]) ∑

d≤X

1
ϕ(d)

= O(log X).

Hence, we get

S1(X).
X
4

∑
3≤d
d odd

1
dϕ(d)

.
X
4

(∏
p odd

(
1+

1
pϕ(p)

+
1

p2ϕ(p2)
+ · · ·

)
− 1

)

.
X
4

(∏
p odd

(
1+

1
p(p− 1)

+
1

p3(p− 1)
+ · · ·

)
− 1

)

.
X
4

(∏
p odd

(
1+

1
p(p− 1)

(
1+

1
p2 +

1
p4 + · · ·

))
− 1

)

.
X
4

(∏
p odd

(
1+

p
(p− 1)(p2− 1)

)
− 1

)
.

The product is easily computed numerically and we have S1(X). 0.33(X/4). The
following is an immediate corollary.

Corollary 3.4. |{q ≡ 1 (mod 4), q ≤ X | Erdős conjecture is true for q}| & 0.67 X
4 .

3A. Refinement using the second moment. By considering higher moments, we
can improve the lower bound in the above corollary. We begin with the second
moment. We include these estimates since they are of independent interest and self
contained.

Proposition 3.5. |{q≡1 (mod 4), q≤ X | Erdős conjecture is true for q}|&0.78 X
4 .
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Proof. Let us first consider the following inequality:

S1(X)≤
∑
q≤X

q≡1 (mod 4)

(∑
d|q
d≥3

1
ϕ(d)

)2

≤

∑
q≤X

q≡1 (mod 4)

∑
d1|q,d2|q

3≤d1,d2<q

1
ϕ(d1)ϕ(d2)

≤

∑
3≤d1,d2≤X

d1,d2 odd

1
ϕ(d1)ϕ(d2)

∑
q≤X

q≡1 (mod 4)
d1|q,d2|q

1

≤

∑
3≤d1,d2≤X

d1,d2 odd

1
ϕ(d1)ϕ(d2)

∑
q≤X

q≡1 (mod 4)
[d1,d2]|q

1

≤

∑
3≤d1,d2≤X

d1,d2 odd

1
ϕ(d1)ϕ(d2)

(
X

4[d1, d2]
+ O(1)

)
.

Hence, we have

S1(X)≤
X
4

∑
3≤d1,d2≤X

d1,d2 odd

1
ϕ(d1)ϕ(d2)[d1, d2]

+ O(log2 X).

By a simple numerical calculation, we deduce that

S1(X). 0.22
X
4
.

Hence the conjecture holds for at least 78% of the positive integers congruent to
1 (mod 4). �

Similarly one can compute higher fractional moments to get an optimal result.
For any r > 1, we have

S1(X)≤
∑
q≤X

q≡1 (mod 4)

(∑
d|q
d≥3

1
ϕ(d)

)r

.

We study this as a function of r . Using Maple we computed that the minimal value
occurs at r ∼ 3.851 and we get

S1(X). 0.18
X
4
.

1Code available at www.mast.queensu.ca/~murty/maplecode.pdf.

http://www.mast.queensu.ca/~murty/maplecode.pdf
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Thus, we get |{q ≡ 1 (mod 4), q ≤ X | Erdős conjecture is true for q}| & 0.82 X
4 ,

that is,

lim inf
X→∞

S(X)
X/4
≥ 0.82.

Hence, we have shown Theorem 1.1: the conjecture holds for at least 82% of the
numbers congruent to 1 (mod 4).

3B. An alternative approach. In this subsection, we discuss an alternative ap-
proach to this problem. It leads to a slightly weaker result. However this method is
of independent interest, so we record it here. We begin with a further refinement of
Proposition 3.1 by considering fractional moments there. From Proposition 3.1, if
the Erdős conjecture is false for odd q , then

1≤
∑
d|q
d≥3

1
ϕ(d)

.

Adding 1 to both sides of the above inequality, we get

2≤
∑
d|q

1
ϕ(d)

,

which can be rewritten as

1≤
1
2

∑
d|q

1
ϕ(d)

.

Hence for any α > 0, Proposition 3.1 can be rewritten as follows.

Proposition 3.6. If Erdős conjecture is false for odd q, then

1≤
1
2α

(∑
d|q

1
ϕ(d)

)α
.

As before, S1(X) = |{q ≡ 1 (mod 4), q ≤ X | Erdős conjecture is false for q}|.
Then from the above proposition, we get

S1(X)≤
1
2α

∑
q≤X

q≡1 (mod 4)

(∑
d|q

1
ϕ(d)

)α
.

Let fα(q)=
(∑

d|q 1/ϕ(d)
)α

and χ be the nontrivial Dirichlet character mod 4.
Then the above inequality becomes

(4) S1(X)≤
1

2α+1

(∑
q≤X
q odd

fα(q)+
∑
q≤X
q odd

χ(q) fα(q)
)
.
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Again, note that fα(q) is a multiplicative arithmetic function. One can check that it
also satisfies all the other hypotheses of Wirsing’s theorem (Proposition 2.2) with
G = 2α and τ = 1. So in light of Wirsing’s theorem, we get∑

q≤X
q odd

fα(q)∼ X
e−γ

log X

∏
p≤X
p 6=2

(
1+

fα(p)
p
+

fα(p2)

p2 + · · ·

)

and ∑
q≤X
q odd

χ(q) fα(q)∼ X
e−γ

log X

∏
p≤X
p 6=2

(
1+

χ(p) fα(p)
p

+
χ(p2) fα(p2)

p2 + · · ·

)
.

Again, from Mertens theorem we know that∏
p≤X

(1− 1/p)∼
e−γ

log X
.

Hence we have∑
q≤X
q odd

fα(q)∼
X
2

∏
p≤X
p 6=2

(1− 1/p)
(

1+
fα(p)

p
+

fα(p2)

p2 + · · ·

)

∼
X
2

p1 (say)

and∑
q≤X
q odd

χ(q) fα(q)∼
X
2

∏
p≤X
p 6=2

(1− 1/p)
(

1+
χ(p) fα(p)

p
+
χ(p2) fα(p2)

p2 + · · ·

)

∼
X
2

p2 (say).

Now using the above two inequalities, (4) becomes

S1(X).
X

2α+2 (p1+ p2).

Finally, using Maple2 we find that the quantity on the right hand side is minimized
at α ∼ 8.11 and we get

S1(X). 0.20
X
4
.

2Code available at www.mast.queensu.ca/~murty/maplecode.pdf.

http://www.mast.queensu.ca/~murty/maplecode.pdf
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Hence, we get

lim inf
X→∞

S(X)
X/4
≥ 0.80.

Remarks. One cannot hope to obtain 100% by these methods. In fact, one can
show that there is a positive density (albeit small) of q for which the inequality of
Proposition 3.1 holds. Indeed, since∑

d|q

1
ϕ(d)

≥

∏
p|q

(
1+

1
p− 1

)
we can make the product (and hence the sum) arbitrarily large by ensuring that
q is divisible by all the primes in an initial segment. We can even ensure that
these primes are congruent to 1 (mod 4). We then take numbers which are divisible
by this q and congruent to 1 (mod 4) and deduce that for all these numbers, the
inequality in the proposition holds. Since the product on the right diverges slowly
to infinity as we go through such numbers q , we obtain in this way a small density
of numbers for which the inequality holds.
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