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We formulate a conjecture regarding the equidistribution 
of the Möbius function over shifted primes in arithmetic 
progressions. Our main result is that such a conjecture for 
a fixed even integer h, in conjunction with the Elliott–
Halberstam conjecture, can resolve the parity barrier and 
produce infinitely many primes p such that p +h is also prime.
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1. Introduction

Let Λ(n) denote the von Mangoldt function,

Λ(n) =
{

log p if n = p,

0 otherwise.
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Let h be a fixed even integer. It is conjectured that∑
n≤x

Λ(n)Λ(n + h) ∼ S(h)x, (1.1)

where S(h) is the singular series defined as

S(h) =
∏
p|h

(
1 + 1

p− 1

)∏
p�h

(
1 − 1

(p− 1)2

)
.

If h = 2, this gives an asymptotic formula for the number of twin primes. It is believed 
that sieve methods cannot resolve this conjecture because of the parity problem. However, 
recently some breakthroughs have been made in proving the infinitude of bounded gaps 
between primes beginning with the work of Yitang Zhang [27] and later by Maynard [17]. 
The Polymath project [21] highlights the limitations of these new methods and amplifies 
the parity problem in resolving the twin prime conjecture.

The term “parity principle” was first coined by Atle Selberg [23], who came across this 
phenomenon in 1946, in his work on the ingenious sieve that bears his name today. He 
described this principle as follows: “Sets of integers tend to be very evenly distributed with 
respect to the parity of their number of prime factors unless they have been particularly 
produced, constructed or selected in a way that has a built in bias.” The discussion by 
Selberg in [22] indicates that sieve methods are unable to distinguish whether an integer 
has an odd or an even number of prime factors. This is commonly referred to as the 
parity problem.

The parity problem can also be explained in the context of Bombieri’s asymptotic 
sieve [1], which highlights that classical sieve methods are unable to sift out numbers 
having exactly r prime factors, irrespective of the choice of r. There have been a number 
of attempts (cf. [13,5,8,10]) in various settings, to break the parity barrier by postulating 
additional analytic data into the sieve machinery. In this article, we follow this line of 
thought. A related result is due to J. Friedlander and H. Iwaniec [9] who assumed an 
estimate for certain bilinear forms, relying upon cancellations arising from sign changes 
of the Möbius function, in order to circumvent the parity problem and show the infinitude 
of primes of the form a2 + b4.

A problem closely related to the parity principle is that of showing significant cancel-
lation in the summatory function of the Möbius function:

M(x) :=
∑
n≤x

μ(n).

The assertions M(x) = o(x) and M(x) �ε x
1
2+ε are equivalent to the prime number 

theorem and the Riemann hypothesis respectively. A higher rank version of this was 
conjectured by S. Chowla [4], in terms of the related Liouville function λ(n), defined by 
(−1)Ω(n) where Ω(n) is the total number of prime factors of n, counted with multiplicity.



M. Ram Murty, A. Vatwani / Journal of Number Theory 180 (2017) 643–659 645
Conjecture (Chowla). Let h1 < . . . < hk be non-negative integers. Then, as x → ∞, we 
have ∑

n≤x

λ(n + h1) . . . λ(n + hk) = o(x).

This conjecture is known only in the case k = 1, where again, the statement is 
equivalent to the prime number theorem. In general, one expects what is called the 
Möbius randomness law (cf. [11]), that is, for any “reasonable” sequence of complex 
numbers an, the sum of the Möbius function twisted by this sequence is relatively 
small.

A fundamental result of this type is Halász’s mean value theorem (see [6], Theo-
rem 6.2), which completely determines the asymptotic behaviour of the sum∑

n≤x x
−1g(n) for any multiplicative function g, with |g(n)| ≤ 1 for all n ∈ N. A more 

general conjecture along these lines was formulated by P.D.T.A Elliott [7]. Recently, 
K. Matomäki, M. Radziwiłł and T. Tao [16,24] formulated a slightly modified, “cor-
rected” form of Elliott’s conjecture. They also succeeded in proving the averaged and 
logarithmically averaged (for k = 2) versions of the Chowla and Elliott conjectures. The 
Elliott conjecture essentially states that if g1, . . . , gk : N → C are multiplicative functions 
absolutely bounded by 1, and are “reasonably distributed” (in a certain explicit sense, 
see Conjecture 1.5 of [16]), then for any a1, . . . , ak, b1, . . . , bk ∈ N, we have

∑
n≤x

g1(a1n + b1) . . . gk(akn + bk) = o(x),

provided that aibj − ajbi �= 0 for any 1 ≤ i < j ≤ k.
A natural generalization that suggests itself is the development of similar mean value 

estimates and conjectures for the behaviour of multiplicative functions over certain sub-
sets of the natural numbers. One such subset of interest is the sequence of “shifted 
primes” {p + h}, for some fixed non-zero integer h, with p running over all the primes. 
On such sequences, even the rank k = 1 analogue of Chowla’s conjecture would suggest 
that ∑

n≤x

Λ(n)μ(n + h) = o(x). (1.2)

It will be convenient to use the notation μh to denote μ(n + h). One would expect this 
conjecture to be of the same level of difficulty as (1.1). Such estimates are inherently 
related to the parity problem in sieve theory, as we will see. It seems that Hildebrand [14]
was the first to study such problems and derive a partial analogue of Halász’s theorem for 
the subsequence of shifted primes. Later, these results have been improved by Timofeev 
[25] and Khripunova [15]. Some results in this direction have also been obtained by 
J. Pintz in [20].
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In finding small gaps between primes, one of the main tools is the behaviour of primes 
in arithmetic progressions.

Elliott–Halberstam Conjecture EHΛ(xθ). For any A > 0, we have

∑
q≤xθ

max
y≤x

max
a

(a,q)=1

∣∣∣∣∣ ∑
n≤y

n≡a (mod q)

Λ(n) − y

φ(q)

∣∣∣∣∣ �A
x

(log x)A . (1.3)

This conjecture is true and is called the Bombieri–Vinogradov theorem when θ < 1/2. 
This conjecture alone cannot resolve the parity problem and prove either (1.1) or (1.2), for 
instance cf. [21]. Let h be a fixed non-zero integer. We postulate a conjecture regarding 
the equidistribution of the Möbius function on shifted primes {p + h}, in arithmetic 
progressions. We show that this more powerful conjecture does break the parity barrier.

Shifted Möbius Elliott–Halberstam Conjecture EHμh(xη). For any A > 0, we have

∑
q≤xη

max
y≤x

max
a

(a,q)=1

∣∣∣∣∣ ∑
n≤y

n≡a (mod q)

Λ(n)μ(n+ h)− 1
φ(q)

∑
n≤y

Λ(n)μ(n+ h)

∣∣∣∣∣�A
x

(log x)A . (1.4)

The conjecture (1.2) with a stronger error term would simplify the statement of this 
conjecture, but our main theorem below shows why we have not done this.

Theorem 1.1. Let h �= 0 be a fixed even integer. Suppose that the conjectures 
EHΛ(xθ(log x)C) and EHμh

(x1−θ) are true for some fixed θ < 1 and a suitably large 
fixed C. We then obtain the following:

(a) The assertions (1.1) and (1.2) are equivalent.
(b) We have ∑

n≤x

Λ(n)Λ(n + h) ≥ (1 − o(1))S(h)(1 −A(h))x,

where

Ah =
∏
p�h
p>2

(
1 − 1

p(p− 1)

)
. (1.5)

In particular, part (b) of the theorem shows that the twin prime conjecture follows 
from EHΛ(xθ(log x)C) and EHμ2(x1−θ). Note that if the Elliott–Halberstam conjecture 
holds, that is, we have EHΛ(x1−ε) for any small ε > 0, then we only need EHμ2(xε) for 
any small positive ε in order to show the infinitude of twin primes!
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We also remark that our proof goes through if we frame the equidistribution con-
jectures EHΛ(xθ) and EHμh

(xη) for the fixed residue class n ≡ −h (mod q) instead of 
taking the maximum over all residue classes co-prime to q. This may be of interest in 
the light of extensions of the Bombieri–Vinogradov theorem proved in [2,3].

2. Decomposition of Λ

Recall (cf. Ex 1.1.6, [18]) that

Λ(n) =
∑
d|n

μ(d) log(1/d).

We can write

Λ(n) =
∑
d|n
d≤y

μ(d) log(1/d) +
∑
d|n
d>y

μ(d) log(1/d) := Λy(n) + Λ̃y(n).

We want to apply this decomposition only when the argument n is square-free. Since 
Λ(n) = μ2(n)Λ(n) except when n = pm with m ≥ 2, and there are only O(x1/2 log x)
such n ≤ x, we have∑

n≤x

Λ(n)Λ(n + h) =
∑
n≤x

Λ(n)μ2(n + h)Λ(n + h) + O(x1/2 log x)

=
∑
n≤x

Λ(n)μ2(n + h)Λy(n + h) +
∑
n≤x

Λ(n)μ2(n + h)Λ̃y(n + h)

+ O(x1/2 log x)

:= S1(y) + S2(y) + O(x1/2 log x). (2.1)

The condition that n + h is square-free will be needed to evaluate S2. Although this 
condition complicates the evaluation of S1, we show in the next section that we get the 
same asymptotic value as we get for S1 without this condition.

3. Evaluation of S1 using EHΛ(xθ(log x)C)

We define the singular series by

S(h) =
{

2C2
∏

p>2,p|h

(
p−1
p−2

)
if h is even, h �= 0,

0 if h is odd,
(3.1)

where

C2 =
∏(

1 − 1
(p− 1)2

)
.

p>2



648 M. Ram Murty, A. Vatwani / Journal of Number Theory 180 (2017) 643–659
In order to evaluate S1, we will need the following special case of the Wiener–Ikehara 
Tauberian theorem due to D.J. Newman [19]. For a more general treatment of this, we 
refer the reader to the article [26].

Theorem 3.1 (Newman). Let |an| ≤ 1. We consider the series

F (s) :=
∞∑

n=1

an
ns

,

which is absolutely convergent for Re(s) > 1. If F (s) can be analytically continued to 
Re(s) ≥ 1, then the series 

∑∞
n=1 an/n

s converges for Re(s) ≥ 1.

In particular, the proof of this theorem shows that for Re(s) ≥ 1, we have

∞∑
n=1

an
ns

= F (s).

We need the following preliminary propositions.

Proposition 3.2. For a fixed even integer h, let

gh(d) :=
∏
p|d
p�h

(
(p− 1)2

p(p− 1) − 1

)
. (3.2)

The series

f(s) :=
∞∑
d=1

(d,h)=1

μ(d)gh(d)
φ(d)ds , (Re(s) > 0),

can be analytically continued to Re(s) ≥ 0.

Proof. We have the following Euler product for f(s) for Re(s) > 0,

f(s) =
∏
p�h

(
1 − gh(p)

(p− 1)ps

)
=

∏
p�h

(
1 − (p− 1)

(p(p− 1) − 1)ps

)
.

Multiplying and dividing by the factor (1 − 1/ps+1), for each prime, we obtain

f(s) = ζ(s + 1)−1
G(s), (3.3)

where ζ(s) is the Riemann-zeta function and G(s) is the Euler product
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G(s) =
∏
p|h

(
1 − 1

ps+1

)−1 ∏
p�h

(
1 − 1

ps+1

)−1 (
1 − (p− 1)

(p(p− 1) − 1)ps

)
.

If we show that G(s) is absolutely convergent for Re(s) ≥ 0, then the expression (3.3)
gives the analytic continuation of f(s) to Re(s) ≥ 0.

We can write G(s) as

G(s) =
∏
p|h

(
1 − 1

ps+1

)−1 ∏
p�h

(
1 − 1

ps+1

)−1
⎛⎝1 − 1

ps+1
(
1 − 1

p(p−1)

)
⎞⎠

=
∏
p|h

(
1 − 1

ps+1

)−1 ∏
p�h

(
1 − 1

ps+1

)−1
⎛⎝1 −

1 + O
(

1
p(p−1)

)
ps+1

⎞⎠ ,

since (1 − xp)−1 = 1 +O(xp), where xp = 1/p(p − 1). Continuing with this notation, we 
can simplify the above expression further as

G(s) =
∏
p|h

(
1 − 1

ps+1

)−1 ∏
p�h

(
1 − 1

ps+1

)−1 (
1 − 1

ps+1 + O (xp)
ps+1

)

=
∏
p|h

(
1 − 1

ps+1

)−1 ∏
p�h

(
1 + O (xp)

ps+1

(
1 − 1

ps+1

)−1
)
.

Since (1 − p−s−1)−1 = 1 + O(1/ps+1), we obtain

G(s) =
∏
p|h

(
1 − 1

ps+1

)−1 ∏
p�h

(
1 + O (xp)

ps+1 + O(xp)
p2s+2

)
.

Keeping in mind that xp = 1/p(p − 1), it is easy to see that G(s) converges absolutely 
for Re(s) ≥ −1. �
Proposition 3.3. We have

Ah

∞∑
d=1

(d,h)=1

μ(d)gh(d) log(1/d)
φ(d) = S(h),

where Ah and S(h) are as defined by (1.5) and (3.1) respectively.

Proof. From the definition of f(s) above, we have

f ′(s) =
∞∑
d=1

μ(d)g(d) log(1/d)
φ(d)ds , (3.4)
2�d
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which is absolutely convergent for Re(s) > 0. From the previous lemma we see that f ′(s)
can be analytically continued to Re(s) ≥ 0. Indeed, we have

f ′(s) =
(
ζ(s + 1)−1G(s)

)′ = G′(s)ζ(s + 1)−1 + G(s)
(
−ζ ′(s + 1)

ζ(s + 1) ζ(s + 1)−1
)
.

It can be checked that G′(s) is absolutely convergent for Re(s) ≥ 0. Since ζ(s +1)−1 and 
− ζ′

ζ (s + 1) have a simple zero and a simple pole respectively at s = 0, with residue 1, at 
s = 0 we obtain:

f ′(0) = G(0) =
∏
p|h

(
1 − 1

p

)−1 ∏
p�h

(
1 − 1

p

)−1 (
1 − (p− 1)

(p(p− 1) − 1)

)
.

We have obtained that the series

∞∑
d=1

(d,h)=1

μ(d)g(d) log(1/d)
φ(d)ds , (Re(s) > 0),

can be analytically continued to Re(s) ≥ 0. Using the Tauberian Theorem 3.1 obtained 
by Newman, we see that the above series in fact converges for Re(s) ≥ 0 and is equal to 
f ′(0) at s = 0. This gives

Ah

∞∑
d=1

(d,h)=1

μ(d)g(d) log(1/d)
φ(d) = Ahf

′(0) = AhG(0) = S(h),

where the last equality is easy to check. This completes the proof. �
We now prove the following lemma evaluating S1.

Lemma 3.4. Take h to be a fixed positive even integer, y = xθ for a fixed θ < 1, and let 
C be a fixed suitably chosen constant. Then assuming EH Λ(xθ(log x)C), we have

S1(y) ∼ S(h)x.

It is instructive to observe how this lemma would be proved if we drop the factor 
μ2(n + h) from S1. Then,

S̄1 :=
∑
n≤x

Λ(n)Λy(n + h)

=
∑
n≤x

Λ(n)
∑

d|n+h

μ(d) log(1/d)
d≤y
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=
∑
d≤y

μ(d) log(1/d)
∑
n≤x

n≡−h (mod d)

Λ(n).

If the gcd (d, h) > 1, then this sum is bounded by y log y
∑

n|h Λ(n) � xθ log x log h. We 
may thus assume (d, h) = 1. Then∑

d≤y
(d,h)=1

μ(d) log(1/d)
∑
n≤x

n≡−h (mod d)

Λ(n)

=
∑
d≤y

(d,h)=1

μ(d) log(1/d)
( ∑

n≤x
n≡−h (mod d)

Λ(n) − x

φ(d)

)

+ x
∑
d≤y

(d,h)=1

μ(d) log(1/d)
φ(d) .

By Lemma 2.1 of Goldston and Yıldırım [12], we have

∑
d≤y

(d,h)=1

μ(d) log(1/d)
φ(d) = S(h) + O(e−c

√
log y). (3.5)

For the first term, we take y = xθ and apply EHΛ(xθ) to see that it is � x/(log x)A
for any A > 0. This proves the lemma for S̄1.

Proof of Lemma 3.4. Recall (cf. Ex 1.1.7, [18]) that μ2(n) =
∑

d2|n μ(d). This gives

S1 =
∑
n≤x

Λ(n)
∑

d|n+h
d≤y

μ(d) log(1/d)
∑

e2|n+h

μ(e)

=
∑
d≤y

e≤
√
x+h

[d,e2]≤x+h

μ(d)μ(e) log(1/d)
∑
n≤x

n≡−h (mod [d,e2])

Λ(n)

Let 1 ≤ z ≤ x be chosen later. Then, when e > z, the terms in this sum are

� (log x)2
∑

[d,e2]≤2x
e>z

μ2(d)μ2(e)
(

x

[d, e2] + 1
)
.

Letting δ = (d, e), we can write d = d′δ, e = e′δ, so that [d, e2] = d′e′ 2δ2. Hence, when 
e > z, the contribution to the sum is
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� (log x)2
∑

d′e′ 2δ2≤2x
e′δ>z

( x

d′e′ 2δ2 + 1
)

� x(log x)2
⎛⎝ ∑

d′≤2x

1
d′

∑
e′≤2x

1
e′ 2

∑
δ>z/e′

1
δ2

⎞⎠ + (log x)2
⎛⎝∑

δ≤2x

∑
e′> z

δ

∑
d′≤2x/e′ 2δ2

1

⎞⎠
� x(log x)4

z
+ x(log x)3

z
� x(log x)4

z
.

Choosing z = (log x)B , B = A + 4, with A sufficiently large, we obtain

S1 =
∑
d≤y
e≤z

μ(d)μ(e) log(1/d)
∑
n≤x

n≡−h (mod [d,e2])

Λ(n) + O

(
x

(log x)A

)
.

Again if (de, h) > 1, we can show that the sum is bounded by yz log y
∑

n|h Λ(n) �
xθ(log x)B+2. We may thus assume (de, h) = 1, to get

S1 =
∑
d≤y
e≤z

(de,h)=1

μ(d)μ(e) log(1/d)
∑
n≤x

n≡−h (mod [d,e2])

Λ(n) + O

(
x

(log x)A

)

= x
∑
d≤y
e≤z

(de,h)=1

μ(d)μ(e) log(1/d)
φ([d, e2])

+
∑
d≤y
e≤z

(de,h)=1

μ(d)μ(e) log(1/d)

⎛⎜⎜⎝ ∑
n≤x

n≡−h (mod [d,e2])

Λ(n) − x

φ([d, e2])

⎞⎟⎟⎠

+ O

(
x

(log x)A

)
.

For the second term above, letting r denote [d, e2], it is clear that r ≤ xθ(log x)2B in 
the given range of d, e. Since the number of pairs of natural numbers (n, m) such that 
[n, m] = r is a multiplicative function of r, it is easy to see that this number can be 
bounded above by τ3(r), where τ3(r) is the number of ways of writing r as a product of 
three positive integers. Then, by the Cauchy–Schwarz inequality and the trivial bound∣∣∣∣ ∑

n≤x
n≡−h (mod r)

Λ(n) − x

φ(r)

∣∣∣∣ � x

r
+ 1,

the term under consideration is
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� log x
∑

r≤xθ(log x)2B
τ3(r)

⎛⎜⎜⎝ ∑
n≤x

n≡−h (mod r)

Λ(n) − x

φ(r)

⎞⎟⎟⎠

� log x

⎛⎝ ∑
r≤xθ(log x)2B

τ3(r)2
(x
r

+ 1
)⎞⎠1/2

×

⎛⎜⎜⎝ ∑
r≤xθ(log x)2B

∣∣∣∣ ∑
n≤x

n≡−h (mod r)

Λ(n) − x

φ(r)

∣∣∣∣
⎞⎟⎟⎠

1/2

.

Using elementary estimates for the first term in the above product and EHΛ(xθ(log x)2B)
for the second, we finally obtain

S1(y) = x
∑
d≤y
e≤z

(de,h)=1

μ(d)μ(e) log(1/d)
φ([d, e2]) + O

(
x

(log x)A

)
.

To finish the proof of the lemma, we will show that as y → ∞,

S11 :=
∑
d≤y
e≤z

(de,h)=1

μ(d)μ(e) log(1/d)
φ([d, e2]) ∼ S(h).

Since d, e are square-free, we can write [d, e2] as the product of the co-prime integers e2

and d/(d, e), so that φ([d, e2]) = eφ(e)φ(d)/φ((d, e)). Hence,

S11 =
∑
d≤y

(d,h)=1

μ(d) log(1/d)
φ(d)

∑
e≤z

(e,h)=1

μ(e)φ((d, e))
eφ(e) .

We can extend the last sum to infinity with an error

� log y
∑
d≤y

1
φ(d)

∑
e>z

φ((d, e))
eφ(e) � log y

∑
d≤y

1
φ(d)

∑
e>z

(d, e)
eφ(e) .

On using (d, e) =
∑

r|(d,e) φ(r), and writing d = rd′ and e = re′ we find that this error 
is

� log y
∑ 1

rφ(r)
∑
′

1
φ(d′)

∑
′

1
e′φ(e′) � (log y)3

z
.

r≤y d ≤y/r e >z/r
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This is o(1) provided we take B > 3 while choosing z = (log x)B . We have now obtained

S11 ∼
∑
d≤y

(d,h)=1

μ(d) log(1/d)
φ(d)

∞∑
e=1

(e,h)=1

μ(e)φ((d, e))
eφ(e)

=
∑
d≤y

(d,h)=1

μ(d) log(1/d)
φ(d)

∏
p�h

(
1 − φ(p, d)

p(p− 1)

)

= Ah

∑
d≤y

(d,h)=1

μ(d) log(1/d)
φ(d) gh(d),

where Ah and gh(d) are as in (1.5) and Proposition 3.2 respectively. Invoking Proposi-
tion 3.3 completes the proof. �
4. Evaluation of S2 using EHμh(xη)

Recall that

S2(y) =
∑
n≤x

Λ(n)μ2(n + h)Λ̃y(n + h) =
∑
n≤x

Λ(n)μ2(n + h)
∑

d|n+h
d>y

μ(d) log(1/d)

Writing n + h = de and noting that μ2(n + h)μ(n+h
e ) = μ(n + h)μ(e), we have

S2(y) =
∑
n≤x

Λ(n)μ(n + h)
∑

e|n+h

e<n+h
y

μ(e) log
(

e

n + h

)

=
∑

e<x+h
y

μ(e)
∑
n≤x

n≡−h (mod e)

Λ(n)μ(n + h) log
(

e

n + h

)
.

When (e, h) > 1, the contribution to the sum is

� log x
∑

e<x+h
y

μ2(e)
∑
n|e

Λ(n) � x(log x)2

y
.

Moreover, since there is at most one e with xy < e ≤ x+h
y ≤ x

y + 1, for y large, this term 
contributes

� x(log x)2 � y(log x)2.

e
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Hence, we have

S2(y) =
∑
e<x

y

(e,h)=1

μ(e)
∑
n≤x

n≡−h (mod e)

Λ(n)μ(n + h) log
(

e

n + h

)
+ O

((
x

y
+ y

)
(log x)2

)

= S3 − S4 + O

((
x

y
+ y

)
(log x)2

)
,

where

S3 :=
∑
e<x

y

(e,h)=1

μ(e) log e
∑
n≤x

n≡−h (mod e)

Λ(n)μ(n + h),

S4 :=
∑
e<x

y

(e,h)=1

μ(e)
∑
n≤x

n≡−h (mod e)

Λ(n)μ(n + h) log(n + h).

We evaluate S3 and S4 in the following propositions.

Proposition 4.1. Suppose xy ≤ xη, and EHμh
(xη) holds. Then for any A > 0, we have

S3 = (−S(h) + o(1))
(∑

n≤x

Λ(n)μ(n + h)
)

+ O(x/(log x)A).

Proof. Since x/y ≤ xη, we have by EHμh
(xη),

S3 =
∑
e< x

y

(e,h)=1

μ(e) log e
( ∑

n≤x
n≡−h (mod e)

Λ(n)μ(n + h) − 1
φ(e)

∑
n≤x

Λ(n)μ(n + h)
)

+
∑
e< x

y

(e,h)=1

μ(e) log e
φ(e)

∑
n≤x

Λ(n)μ(n + h)

=
∑
e< x

y

(e,h)=1

μ(e) log e
φ(e)

∑
n≤x

Λ(n)μ(n + h) + O

(
x

(log x)A−1

)
.

We complete the proof by using (3.5) to obtain that the first term is

(−S(h) + o(1))
(∑

n≤x

Λ(n)μ(n + h)
)
. �

Recall that conjecture EHμh
(xη) predicts that the function Λ(n)μ(n + h) is equidis-

tributed in arithmetic progressions, within a certain range. In order to evaluate S4, we 
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need equidistribution in arithmetic progression for the function Λ(n)μ(n +h) log(n + 2). 
Indeed, this is an easy consequence of partial summation on EHμh

(xη), as illustrated 
below.

Proposition 4.2. If EHμh
(xη) holds for some fixed h ∈ Z, h �= 0, then we have for any 

A > 0,

∑
q<xη

max
y≤x

max
(a,q)=1

∣∣∣∣ ∑
n≤y

n≡a (mod q)

Λ(n)μ(n + h) log(n + h)

− 1
φ(q)

∑
n≤y

Λ(n)μ(n + h) log(n + h)
∣∣∣∣ �A

x

(log x)A .

Proof. For any (a, q) = 1, let us use the notation∑
n≤x

n≡a (mod q)

Λ(n)μ(n + h) = M(x) + Eμ(x, q, a), (4.1)

where M(x) = 1
φ(q)

∑
n≤x Λ(n)μ(n + h). Then by partial summation,∑

n≤y
n≡a (mod q)

Λ(n)μ(n + h) log(n + h)

= log(y + h)
∑
n≤y

n≡a (mod q)

Λ(n)μ(n + h)

−
y∫

2

1
t + h

∑
n≤t

n≡a (mod q)

Λ(n)μ(n + h)dt

= M(y) log(y + h) −
y∫

2

M(t)
t + h

dt + O

(
max
t≤y

|Eμ(t, q, a)| log y
)
.

Again using partial summation, we see that the first two terms give us the desired main 
term

1
φ(q)

∑
n≤y

Λ(n)μ(n + h) log(n + h).

The term in parenthesis is the error term and can be checked to satisfy the required 
bound on average. �

This allows us to bound S4 as follows.
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Proposition 4.3. If xy ≤ xη, and EHμh
(xη) holds, then for any A > 0, we have

S4 �A
x

(log x)A .

Proof. Applying Proposition 4.2, we obtain

S4 =
∑
e< x

y

(e,h)=1

μ(e)
φ(e)

∑
n≤x

Λ(n)μ(n + h) log(n + h) + O

(
x

(log x)A−1

)
.

By Lemma 2.1 of Goldston and Yıldırım [12], we have

∑
e<x

(e,h)=1

μ(e)
φ(e) � e−c

√
log x,

which completes the proof. �
Putting together Propositions 4.1 and 4.3, we have proved the following result regard-

ing the evaluation of S2(y).

Lemma 4.4. For any A > 0, we have

S2(y) = (−S(h) + o(1))

⎛⎝∑
n≤x

Λ(n)μ(n + h)

⎞⎠ + O

(
x

(log x)A

)
+ O((xη + y)(log x)2),

provided xy ≤ xη and the Shifted Möbius Elliott–Halberstam Conjecture EHμh
(xη) holds.

5. Proof of Theorem 1.1

We choose y = xθ and η = 1 − θ, so that (2.1) and Lemmas 3.4, 4.4 give us

∑
n≤x

Λ(n)Λ(n + h) ∼ (S(h) + o(1))

⎛⎝x−
∑
n≤x

Λ(n)μ(n + h)

⎞⎠ ,

provided EHΛ(xθ(log x)C) and EHμh
(x1−θ) hold. Assuming these two conjectures, this 

shows that (1.1) and (1.2) are equivalent to each other.
The second part of the theorem follows from the trivial bound∣∣∣∣∣∑ Λ(n)μ(n + h)

∣∣∣∣∣ ≤ ∑
Λ(n)μ2(n + h)
n≤x n≤x
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and the formula

∑
n≤x

Λ(n)μ2(n + h) ∼ Ahx.

We prove this formula as follows. We have

∑
n≤x

Λ(n)μ2(n + h) =
∑
n≤x

Λ(n)
∑

d2|n+h

μ(d)

=
∑

d≤
√
x+h

μ(d)
∑
n≤x

n≡−h (mod d2)

Λ(n)

=
∑

d≤x1/4

μ(d)
∑
n≤x

n≡−h (mod d2)

Λ(n)

+
∑

x1/4<d≤
√
x+h

μ(d)
∑
n≤x

n≡−h (mod d2)

Λ(n).

We use the trivial bound on the inner sum to see that the second term is

�
∑

x1/4<d≤
√
x+h

log x
( x

d2 + 1
)
� x3/4 log x.

For the first term, the contribution of d such that (d, h) > 1 is � x1/4 log x. Using the 
Bombieri–Vinogradov theorem, we get

∑
d≤x1/4

(d,h)=1

μ(d)
∑
n≤x

n≡−h (mod d2)

Λ(n) = x
∑

d≤x1/4

(d,h)=1

μ(d)
φ(d2) + O

(
x

(log x)A

)

= Ahx + O(x3/4) + O

(
x

(log x)A

)
,

which proves the required formula and completes the proof.
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