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The Work of Sarvadaman Chowla

M. Ram Murty, V. Kumar Murty and Kenneth S. Williams

Sarvadaman Chowla has been called a “poet of mathematics” and “an ambas-
sador of number theory.” Given the enthusiasm he had for number theory and the
passion with which he did it, these descriptions are not exaggerations. Herman Weyl
described his work in the following way. “Every one of his papers contains interesting
observations, and most of them give their subject a new turn by introducing original
ideas. Sometimes they are devoted to simplified proofs of difficult classical problems,
but more often they give new results, not seldom of a quite surprising character.”
Indeed, the striking features of Chowla's papers are simplicity and beauty.

He was born into a mathematical family. His father was a professor of mathe-
matics. His younger brother Inder Chowla (cited in [214]) received his Ph.D. under
Heilbronn at Cambridge. Inder published twenty one papers in number theory and
analysis from 1935 to 1943, until his untimely death. It is well-known that Chowla's
daughter, Paromita, is also a number theorist and they have written twenty papers

‘together. We will refer to some of them below. Chowla had many students who
went on to become distinguished in their field. In particular, when Chowla taught
at Government College in Lahore (which is in present day Pakistan) during the
1940’s, two of his students were R.P. Bambah and Abdus Salaam. The former is a
noted number theorist and the latter a renowned physicist and Nobel laureate.

It is not our purpose to give an exhaustive survey of Chowla's work. Nor is it
possible to give an encyclopedic account of developments arising from Chowla’s ideas.
Our goal is only to give a brief overview to guide the reader through the numerous
collected papers (which amount to more than 1400 printed pages) and indicate some
of the recurring themes. His book |C] gives us a sampling of the nature of questions
that Chowla was interested in, It is a friendly account, somewhat leisurely presented,
of some central questions of number theory. It is sprinkled with enticing conjectures.
For instance, Bambah and Chowla [166] proved the existence of a constant C such
that between z and z + Cz!/4 there is always a number which can be written as
a sum of two squares. It is still an unsolved problem to show that between z and
z + o{z'/*) such a number exists [C, p. 92]. In Chapter 5 of [C], Chowla discusses
the classical congruence for the binomial coefficient:

A:= (:’;)Eﬂa{mndp},

where p is & prime = 1(mod4) and p = a® + ¥* with a = 1(mod 4). In joint work
with Dwork and Evans, Chowla [347] obtained a refinement of this:

gr-l_1

A= (14 2571 (20 2 mod ),
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establishing a conjecture of Beukers [Be].

A singular theme running through ell of Chowla's papers is the study of class
numbers, with an emphasis on quadratic fields and cyclotomic fields. This seems
to form the background thought for many of his papers. Indeed, the study of class
numbers takes one naturally into the domain of L-functions (see for example, [46],
[171), [179], [186], [190]), modular forms (see e.g. [156], [157], [158] ), Bernoulli
numbers (see e.g., [522], [2], [7], [34], [303]), Diophantine equations, Gauss sums and
exponential sums (see e.g. [13], [22], [30], [33], [35], [38), [169], [228], [240]), elliptic
integrals (see e.g. [8], [10], [167], [184], [276]), and even the combinatorics of block
designs and difference sets (see for example [187] and [284] as well as [120], [121],
[126], [131], [134], [135], [137], [141], [146]), [147]).

As with many other Indian mathematicians, Chowla's earliest work was influ-
enced by Ramanujan and his legacy. In [14], he proved several identities involving
infinite series which had been stated by Ramanujan. For example, he showed that
for any positive integer n,

— (=1)* @k + 1)
& cosh ((2k +1)x/2)

Another early paper of Chowla dealt with the period of the continued fraction
of v'N. Since the time of Brahmagupta in the 6th century A.D. and Jayadeva in
the 11th century A.D.(or perhaps even earlier), it was known that the continued
fraction is periodic and that all the integral solutions of the equation

22~ Ny*=m, |m|<vVN

can be obtained from the knowledge of the continued fraction. (The first rigorous
proof of this was given by Lagrange in the 18th century.) If we write in the usual
notation,

JH s {u'U'IEh "-'rﬂ-f]l

where agp = [VN] and a; = 2a0, then T. Vijayaraghavan [V] proved in 1927 that
the length £ of the period of the continued fraction satisfies £ = O(N/?log N). He
also showed that for any é > 0, there are infinitely many values of N such that
{ > NV/2-8 [n 1929, Chowla [20] showed that if N is squarefree, then for any § > 0,

s /2

t< (5 +8)N"?10gN

for all N > Ng(é). In 1931, Pillai and Chowla [36] proved that
£=O(N"?loglog N)

under the generalized Riemann hypothesis. They also showed that there are positive
constants ¢; and ¢; such that ¢y NV/? < £ < e;N'/? for infinitely many N and that
¢ is “on the average” of order N1/2,
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In joint work with his daughter Paromita, Chowla returned to this topic in two
later papers [306] and [307] when they were inspired by a theorem of Hirzebruch
[Hi] that related the class number h(d) of Q(v/d) to the terms in the continued
fraction expansion of \fﬁi More precisely, define for each non-square integer N,
the function s(N) = ay — ay_; + ag_3 — -+ + a,. Hirzebruch proved that if pis a
prime = 3{ mod 4) with p > 3 and h(p) = 1, then s(p) = 3h(—p). This result
suggested various conjectures to them, most notable of which is that if p is as above
and h(2p) = 1, then 5(2p) = 6h(—p). (See also the related work of Zagier [Z].)

In 1930, Chowla [34] considered a conjecture of Ramanujan that the numerator
of Ban/n, where B, denotes the n-th Bernoulli number defined by
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is always a prime number. However,

Bay _ 7709321041217
16 8160

is divisible by 37 giving a counterexample to Ramanujan's conjecture. Chowla
showed that in fact there are infinitely many counterexamples by proving that the

n f
ek Beook 412
345k + 6
is divisible by 691. In [303), Chowla together with his student Hartung, derived an
exact formula for By,. In [351], together with Paromita Chowla, he asks whether
Ramanujan's conjecture can be modified to ask if the numerator is always squarefree.

In one of his earliest papers, Chowla [2] gave a new proof of the von Staudt
and Clausen theorem which gives the fractional part of the Bernoulli number B,
namely for every natural number n,

-BEHE- E i{mndl},

p=1|2n

where the summation is over primes. This theorem has attracted the attention of
many mathematicians over the years. Dilcher, Skula, and Slavutskii [DSS] list over
35 papers dealing with this theorem or its generalizations in their bibliography of
Bernoulli numbers covering the period from 1713 to 1990. Indeed, the theorem has
a p-adic interpretation. It is the key ingredient in Kummer's celebrated theorem
that a prime p is regular (that is, does not divide the class number of the p-th
cyclotomic field) if and only if p does not divide the numerators of the Bernoulli
numbers Bs, By, ..., Bp—3. (See Rosen [R| for an elegant exposition of this.)

Chowla returned to the subject of Bernoulli numbers on many occasions during

his life. In [S22], for example, in answer to a question of Hemraj, Chowla showed

that
{p—3)/2

B 1 =1
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for any integer a not divisible by the prime p. In [348], P. and S. Chowla use Bernoulli
numbers to derive a criterion for the class number of a real quadratic field to be 1.

[n the early 1930's, Chowla was in Cambridge studying with Littlewood. There,
in 1930, he met a young student who had just arrived from India to study physics
and who had already attracted much attention with his work on Compton scattering.
Just the year before, C.V. Raman had won the Nobel Prize in Physics for his work
in spectroscopy. One can therefore imagine the excitement that was attached to the
study of physics in the early 1930's among students from India. This young man,
Subrahmanyan Chandrasekhar, was in fact Raman's nephew and he was soon to
make a tremendous impact in the newly emerging field of astrophysics, eventually
winning the Nobel Prize himself in 1983,

Chowla and Chandrasekhar developed a friendship as both were studious and
hard working. In 1931, Chandrasekhar wrote to his father about Chowla [W]: “He
sometimes comes to my room and we study together. --- But we don't talk much
except during walks. For instance, once we studied nearly four hours without a
single word passing between us. Yet, the feeling that somebody is with us makes it
easier.” In another letter, written in 1935, he described Chowla as “... not only my
personal friend but one whose work and abilities | greatly admire.”

The period 1930-1935, including the years in Cambridge, were amongst the
most productive for Chowla. During this period, he published about 65 papers. In
surveying these papers, the year 1934 stands out as one of tremendous excitement.
For it was in that year that Siegel proved his famous theorem about class numbers
of quadratic fields. This was the climax of a series of parallel and simultaneous
discoveries by a number of mathematicians, with Chowla playing a serious role.

One can get a sense of the excitement if one goes to the library to look at
say Acta Arithmetica or the Journal of the London Mathematical Society of that
period. In article 303 of Disquisitiones, Gauss conjectured that the class number
h(—d) of Q(v=d) for d > 0 goes to infinity. A century went by without mathe-
maticians having any idea of how to resolve the conjecture of Gauss as so little was
known about class numbers. Even proving the weaker assertion that h(-d) > 2
for d sufficiently large, which was also stated by Gauss, was beyond the scope of
19th century mathematics. The remarkable achievements of that period were the
class number formulas of Dirichlet which certainly set the stage for Hecke's work of
1918. In that year, Hecke showed assuming the generalized Riemann hypothesis that
h(—d) » Vd/logd. In 1933, Deuring proved the unexpected result that the falsity
of the Riemann hypothesis for {(s) implies h(—d) > 2 if d is sufficiently large, and
shortly after, Mordell proved that this assumption also implies h(—d)—oc. Their
work was based on the study of the Epstein zeta function

Z(s) = ¥ Q(m.n)~",

where Q(m, n) = am?®+bmn+cn? is a binary quadratic form and m, n range through
all pairs of integers # (0,0) and as is well-known, this function plays a dominant role
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in the study of class numbers. Its study is a recurring theme in much of Chowla's
work.

Assuming that there are infinitely many imaginary quadratic fields of class
number one, Chowla shows in [55] that the Epstein zeta function has a real zero
close to s = 1. A few years later, Davenport and Heilbronn [DH| showed that this
zeta function has infinitely many zeros in the half plane RHe(s) > 1. More than
one hundred papers and 13 years later, Chwlnmmrmdwthn;ruhhmmdm

[170] he states that the Epstein zeta function corresponding to the form z* + dy® of
discriminant d has a real zero s(d) with

s(d) ~ 1-3/(xd"/?)

as d — 00. More recently, Bombieri and Hejhal [BH] showed (assuming the Rie-
mann Hypothesis for certain Hecke L-functions and a weak form of the pair correla-
tion conjecture) that almost all (in the sense of density) of the zeros of the Epstein
zeta function are on the critical line.

What happened shortly after Mordell’s work amazed the number theory com-
munity. In 1934, Heilbronn showed that the falsity of the generalized Riemann
hypothesis implies that h(—d)—oc. Combined with Hecke's result, this gave an un-
conditional proof that h(—d)—oc as d—oc. Heilbronn's result stimulated Chowla to
give [62] another proof of Heilbronn's theorem which avoided the use of the theory
of ideals. In |65], he gave a further simplification which avoided the appeal to a
theorem of Hecke and, in [61], [63], [67], he was able to prove the stronger result

h(—d)/2" V=00, 8s d—oo,

where v(d) is the number of distinct prime factors of d. This result has applications
to the problem of determining all idoneal numbers. These numbers D have the
property that if D = ab, every number represented by f = az® + by? (with azx
coprime to by) in a single way is a prime, the square of a prime, the double of a
prime or a power of 2. If an odd number > 1 is represented by [ in a single way, it
is a prime. (See Dickson [Di, p. 89]. Our definition of idoneal numbers also corrects
inaccuracies on page 89 of [Di].) Heilbronn's work naturally suggests the problem
of giving a lower bound for h(—d) in terms of |d|. Chowla considered this in |70]
linking the question to primes in arithmetic progressions. Let m(z, k,a) denote the
number of primes = a( mod k) not exceeding z. Let 0 < & < 1/2. In [70], he proved
that if there is a positive constant ¢ such that

i
n(z, k,a) > W
for z>e*', k>ko(5), (ak)=1,then

h(~d) > |d|'/*~4~

for every ¢ > 0 and all d with |d| > do(d,¢). Later, in [188], Ankeny and Chowla
linked the constant in the Brun-Titchmarsh theorem (a central theorem in sieve



theory) to a lower bound for h(—d). This relationship was subsequently made more
precise by Motohashi [Mo).

The number-theoretic highlights of 1934 are definitely striking to say the least.
First an important result is proved assuming the generalised Riemann hypothesis,
and then assuming the falsity of the same hypothesis. It is certainly a curious
sequence of ideas. Of course, Siegel's breakthrough theorem of 1934 that proved
h{—d) > d'/?~* was certainly a highlight. Of course, this as well as the earlier
results were all ineffective. Since then, much has been learned through the work of
Goldfeld, Gross and Zagier as well as the refinement of Oesterlé, namely the effective

bound

It is interesting that in Goldfeld's reminiscences, he mentions that Chowla had
an influence in getting him to think about the class number problem. “Whenever |
had a question,” writes Goldfeld, “he would dig out an old original reprint of Siegel,
Heilbronn or refer me to even older works of Dedekind or Legendre, and slowly I got
to know the classical literature. The collected papers of Hecke were always easy to
find in his apartment and he pushed me to study it from cover to cover. | continued
to work on the class number problem for several years and when it was finally solved
... it gave Chowla an enormous satisfaction to know that it had been partially done
by his old student in the theory of quadratic fields.”

It was also in 1934 that Chowla made an important contribution to the Op-
penheim conjecture. Given any ¢ > 0 and an indefinite quadratic form Q(x) =
Azd 4+ + Auzd with real coefficients A; and at least one irrational ratio A,/A;,
when does the inequality |Q(x)| < € have a non-trivial integral solution? Oppenheim
conjectured that for n > 3 there is always an integral solution. In 1934, Chowla |50}
proved this conjecture for n > 9. Davenport and Heilbronn established in 1946 the
conjecture for n > 5. Finally in 1986, the conjecture was settled by Margulis [Mar]
using ergodic theory.

The excitement created in 1934 by Siegel's theorem led Chowla to study its
proof in the subsequent years and in 1950, Chowla [186] gave a very simple proof of
it. In subsequent papers, it is clear that Epstein zeta functions became the focus of
Chowla's attention. They were the object of study of the celebrated collaboration
with Atle Selberg. Though the research for this paper was done in 1949 and an
announcement had already been published by them, the actual paper came out
much later, in 1967. The paper begins with Deuring’s formula for Z(s) which really
was the catalyst behind the developments described above but it takes Deuring’s
work much further. They start with the representation

Z(s) = 2C(2s)a~" + 2%a"'xVY(I'(s)) ' AY3*¢(2s — 1)T(s — 1/2) + Q(s)
where A = d4ac - b* > 0 and

Q{-’} - q'n?tulﬂﬂulfir{’}ai&IH-—J,.I'? iﬂ-m]“'ﬂl-ﬂr{ﬂ]':ﬁ{ﬂﬂ'b;'rﬂ}fm
n=1
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with
I = [r-”:ﬂ-‘w.}rq]nl“”';hdm

from which many consequences can be deduced. For instance, if A = p > 7 is prime
and h(—p) = 1, then Z(s) = 2((s)L,(s) and the above formula can be used to show
that L,(1/2) # 0. By similar techniques, they study

Hu(s) =Y (2 +42 +d2%)",

where the sum is over integer triples (z,y,2z) # (0,0,0). They derive a new mero-
morphic continuation of Hy(s) and show that there exists a real zero pg # 0 with
pa—0. Finally, they derive a remarkable formula in the theory of elliptic functions.
As usual, let us write

/2
H=f" [l-kisinn ﬂ—lh#
1]

w2
K’ =f (1 - k?sin® ¢)"/2dp,
0

where k* + k% = 1. If K'/K = n'/?, and h(—n) is small, it is shown that K may be
computed in finite terms involving the [-function. For example, if n = p is prime
and h(—p) = 1, one has

2K = (2kK)"ow/p) (] Trm) [T term)™

[a/p)=1 ibfpl==—1

where w = 2 for p > 3 and w = 6 for p = 3. The more general formula can be stated
as follows. Let n(z) be the Dedekind eta function and let [a,b,c] run through the
equivalence classes of positive definite, primitive, integral binary quadratic forms
ax® + bxy + cy® of discriminant d. Then, the Chowla-Selberg formula is

[T a=/*|n((b + Va)/2a)| = (arla)~4( [T rm/ia )
m= |

labe]

where (d/m) in the exponent is the Kronecker symbol and w(d) is the number of
munfunitynfn{\/ﬂlfmmkhmcutmimﬁmufmﬂumknfchwln.
namely [8] and [10], where he investigated the problem of finding infinite series for
1/K and 1/K?. The evaluation of complete elliptic integrals of the first kind is still
very much a subject of current interest. It is now recognized that a version of the
Chowla-Selberg formula was given by Lerch in the late 19th century.

As Emil Grosswald states in his review of the Chowla-Selberg paper, “it is in-
evitable that during this long interval [between the announcement of the results and
the publication of the paper] others would work on the same and related topics.” In-
deed, one can see papers by Rosser, Anferteva, Bateman, Grosswald, Ramachandra,
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Rankin, Low, and Stark, to name a few, that either proved directly the formulas
announced in 1947 or developed a related motif. The Chowla-Selberg formula has
recently been extended by Huard, Kaplan and Williams [HKW] and by van der
Poorten and Williams [PW]. By interpreting the left hand side as the period of an
elliptic curve with complex multiplication, Gross [Gro| and Deligne [D] obtained a
generalization of the Chowla-Selberg formula for abelian varieties with multiplica-
tion by an imaginary quadratic field by expressing their periods (up to a rational
number) as a product of I'-function values at rational numbers.

In the 1940's there was considerable interest in the Ramanujan 7 function. Most
notably, Weil formulated his famous conjectures concerning the number of solutions
mod p for general algebraic varieties. It was slowly being suspected, strongly pro-
pelled by early work of Sato and Shimura, that perhaps the Ramanujan conjecture
predicting |r(p)| < 2p'"/? for all primes p may in fact be a special case of the Weil
conjectures, This indeed turned out to be the case though this was not known un-
til Deligne's work related to the Weil conjectures appeared in 1972. Chowla wrote
numercus papers on the v function. For example, in collaboration with Bambah,
Gupta and Lahiri, he proved many congruences satisfied by 7(n). Bambah and
Chowla [156, 157] showed that

7(n) = o(n)( mod 3), (n,3)=1,

and
T(n) = 0y, (n)( mod 256), (n,2) =1,

where i (n) is the sum of the k-th powers of the divisors of n. He [158] also obtained
a number of results of the type

7(n) = 0( mod 2° - 3% . 5% . 7. 23-691)
for almost all n. We now understand this in the light of the theory of the f-adic
representations attached to Ramanujan's cusp form (see for example Serre [Se).

In 1952, Ankeny, Artin and Chowla [194, 199] derived a beautiful congruence
relating the class number h(d) of a real quadratic field of discriminant d to its
fundamental unit. More precisely, if p is a prime divisor of d with 3 < p < d, they
proved that

u _ p fdyra
-1padr 3, Q) lmen

where (d/a) is the Kronecker symbol for discriminant d, [z] denotes the greatest
integer function and (t + uv/d)/2 is the fundamental unit > 1 of the quadratic field.
In [348], P. and S. Chowla use this congruence to give & nice criterion to determine
when the class number of Q(,/p) is 1. In fact, their result allows for the explicit
determination of the class number of Q(,/p) via the congruence

hu/t = Biy_1)/4( mod p),
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where (¢ + u/P)/2 is the fundamental unit of Q(,/p) and B, denotes the k-th
Bernoulli number. In case u # 0( mod p), we obtain a congruence for h mod p.
Since h < p, this determines h explicitly from a knowledge of the fundamental unit
of Q(/P).

Later, in 1955, Ankeny and Chowla showed [203] that given any natural number
g, there are infinitely many imaginary quadratic fields whose class number is divisible
by g. Some results for real quadratic fields were also obtained. This work has recently
been extended by R. Murty [RM] who obtained quantitative estimates for the num-
ber of such quadratic fields. There is also some related work of Kohnen and Ono
[KO] who obtained quantitative estimates for the number of imaginary quadratic
fields whose class number is coprime to g, improving earlier work of Chowla's stu-
dent, Hartung. These theorems, however, fall short of the Cohen-Lenstra conjectures
[CL] that predict that a positive density of such fields should exist in either case.

Another focus of attention for Chowla was Kummer's conjecture. Let h, be the
class number of the p-th cyclotomic field, with p prime. It is well-known that h, can
be factored as h) h where h} is the class number of the maximal real subfield of
index 2. Kummer conject that for p prime,

S plp+3)/4
hy ~ 2p-32glp—1)/2

as p—oo. Actually Kummer never conjectured this. Rather, he claimed he had a
proof but never published it. In 1851, he wrote, “Je me réserve la démonstration
:thsdawhppementn ultérieurs & une autre occasion.” Unfortunately, this “autre
occasion” never arose. If we call G(p) the expression on the right hand side of
the conjectured asymptotic formula, Ankeny and Chowla proved in [193] that for p

prime,
log(hy /G(p) o
log p
as p—o0o. In a recent paper, Granville [Gra| shows that Kummer's conjecture is
incompatible with the Elliot-Halberstam conjecture and the Hardy-Littlewood con-
jecture predicting that there are at least » z/log” z primes p < z such that 2p+ 1
is also prime.

Around the time that [193] was written, there was an interesting correspon-
dence between Chowla and A. Weil regarding what is referred to in the literature as
Maillet's determinant. For a positive integer m and any integer z, denote by R(x)
the least positive integer which is congruent to z( mod m). If (z,m) = 1, denote by
x’ any integer such that zz’ = 1( mod m). Define the set

§$={1<a<m/2, (a,m)=1)

and consider the determinant of the j¢(m) x j¢(m) matrix A, = (R(ab')) where a
and b range over elements of S. In a letter written March 6, 1952, Weil asked Chowla
if he could evaluate this determinant. Both of them had successfully considered the
case when m is a prime p. In this case,

det(A) = p»~V/7h7,




where h_ is as above. In fact, they also had a similar formula for prime powers.
There was a plan to write a joint paper about this and also to consider the general
case. Unfortunately, this plan never materialised. The prime case was rediscovered
two years later by Carlitz and Olson [CO].

Chowla returned to this question in [293]. There, he posed the general question
of determining the non-trivial (-linear relations amongst the roots of an irreducible
polynomial over Q. He proved that for a prime p = 3( mod 4), the only such relations
amongst the numbers {cot(T") : 1 <r < p} are those which can be deduced from
the relations

mt{%] + mr,[@} = 0.

Chowla deduced this from the non-vanishing of the Dirichlet L-functions L(s, x)
at § = 1. This pretty result attracted enough attention that three new proofs
were given, by Ayoub [Ay1], Hasse [Has]) and Iwasawa (see [Ay2]). Kai Wang [Wa]
extended this result of Chowla and later used it to evaluate Maillet's determinant
for any odd m as

det A = 2" ] ( S nx{n}).

¥l=1)==1 Y (am)=]

From Weil's letter, one infers that this formula was probably known to him and
Chowla. Maillet's determinant itself seems to come up in other areas. For example,
it arises in the study of torsion on elliptic curves [FZ] and in the computation of the
Hodge group of an abelian variety with complex multiplication by the cyclotomic

In [208], Ankeny, Braver and Chowla study lower bounds of class numbers
for more general algebraic number fields. They prove that given two non-negative
integers r; and ry such that r; + 2r; =n > 2 and ¢ > 0, there exist infinitely many
fields F' which have exactly r, real and 2r; non-real embeddings such that

he > |de|'?,

where hp is the class number of F and df is the discriminant of F. This is a kind
of analogue of Siegel's lower bound for the class number of an imaginary quadratic
field. By a classical result of Minkowski and Landau, it is known that

he < |de|'?(log |de|)™",
where the implied constant depends on n alone. Thus, the result of [208] is best
possible.
Naturally, class numbers are intimately connected with special values of Dirich-

let L-functions, namely at s = 1. If x is a real non-principal primitive character
mod k, the Dirichlet L-series is

o) =Y X2,
A=l

n’
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which converges for Re(s) > 0. In [179), Chowla proved that there are infinitely
many k such that

L(1,x) < (1 +o(1))n? /6e” log log k,

where 4 is Euler’s constant. In [46], he showed that there is a positive constant D
such that for infinitely many k we have

L(1,x) > Dloglog k.

Both of these results were previously proved by Littlewood under the assumption
of the generalised Riemann hypothesis. Chowla gave some further improvements of
these results in [171] and in [190] which he wrote with Bateman and Erdés. It is
interesting to note the connection of these results to some earlier work of Chowla,
namely [72] written in 1935. There, he considers characters sums for a real non-
trivial character y mod k,

Si(z) = zl'{“}
nLx
and more generally
Sm':r} - ZS ._1{1‘1;'
n<s

defined recursively. He then proves that if for some m, Sn{z) = Ofor all z > 1, then
L(s,x) >0 for 0 < s < 1. Write m(x) to be the least such m if it exists. There he
writes, “I have been unable to find a real non-principal character y for which m(x)
does not exist."” His results on upper bounds for L(1, x) allow him to deduce that

m(x) = N(loglog k).

We think it is safe to assume that Chowla was conjecturing that m(y) always exists.
In 1937, Heilbronn [H] disproved this and showed that m(x) does not always exist.
The dis is exceedingly simple and makes use of the Liouville function A(n) =
(=1)"") where f(n) is the total number of prime factors of n. It is significant that
Heilbronn's proof is based on the fact that by choosing an appropriate quadratic
character, x(n), one can make it coincide with A(n), up ton < N for any preassigned
value of N. Such a technique was used by Bateman and Chowla in [201], written in
1953, where they study the equivalence of two conjectures, namely

1{"—}:-0
n

M=

-
I
-

for all N if and only if

:‘—Lﬂ—}}{l.
n

M=

a
il
-
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The latter conjecture was disproved by Haselgrove [Ha] and hence the former one is
also false.

In The Collected Papers of Hans Amold Heilbronn, Chowla makes comments on
[H]. Since Heilbronn's counterexample produced quadratic characters y whose con-
ductor is composite, Chowla asks if there are infinitely many primes p = 3( mod 4)

such that
P EEL

for all z > 1. All of these questions revolve around the theme of non-vanishing of
Dirichlet L-functions on the real line segment 0 < s < 1. Chowla continued to think
about this question and he wrote various papers with his students, notably, [309],
[313], [317], [318], [321] to cite a few. In fact, in [312] and [313), the authors formulate
variations of the original conjecture and ask the question above. Several notable
developments have arisen from attempts to answer this question. For instance, there
is the paper of Jutila [J] that shows for the first time, infinitely many primes p for
which the L,(1/2) # 0. R. Balasubramanian and Kumar Murty [BM] considered the
L-functions corresponding to all the characters mod p and proved that a positive
proportion of them do not vanish at s = 1/2. An analogous result for quadratic
characters was established in the Ph.D. thesis of Soundararajan [S]. Iwaniec and
Sarmak [[S] relate a proportion larger than 1/2 of normalized eigenforms of fixed
weight and level having the property that their L-functions do not wvanish at the
central critical point to the non-existence of Siegel zeros. There is the paper of
P. Chowla [PC] which shows non-vanishing at s = 1/2 of the zeta function of a
particular biquadratic field. This is of interest since it is contained in a field k of
degree B for which the zeta function of k does have a zero, and in fact arising from
a non-abelian Artin L-function attached to a 2 dimensional representation. This
example, due to Serre, is explained in paper [328].

In his paper Milnor [Mi] points out that P. and S. Chowla [342] suggested the
following conjecture: let a;,as,..., be a sequence of integers which is periodic with
period p, a prime. Then

Y 3 #0,

except in the special case a; = a3 = -+~ = ap—; = a,/(1 — p?). If {(z,35) is the

((z,8) ="+ (z+1)""+--:
then Milnor proves that Chowla's conjecture is true if and only if

€(2,1/p).€(2,2/p), ....<(2, (p— 1)/p)
are linearly independent over Q.
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Alan Baker |[B] describes a related conjecture of Chowla. In the 1968 Stony
Brook conference, Chowla asked whether there exists a rational valued function

J(n), periodic with prime period p, such that

= f(n) _
2

In |BBW], Baker, Birch and Wirsing show that no such function exists. As a con-
sequence, they prove that for any modulus g, satisfying (g, #(g)) = 1, the wvalues
L(1, x), with x ranging over the characters mod g, are linearly independent over the
rationals. They ask if the theorem is still true in the case (g, ¢(q)) > 1.

In [191], Erdés and Chowla study the distribution of values of Dirichlet L-
functions attached to quadratic characters. Consider the set of D = 0,1( mod 4)
and which are not squares. Denote by xp the quadratic character associated to D.
Fix a real o > 3/4. Let g(z, z) denote the set of such D < z for which L(e, xp) < z.
Then, they show that gz, z)/(z/2) tends to a continuous, strictly increasing function
¢(z) with ¢(0) = 0 and ¢(oc) = 1. In particular, applying this with z = 0 shows
that for a fixed o, the value L(o, xp) is positive for a set of D of density 1.

Elliott [E] generalized this in several ways by considering quadratic characters to
prime modulus and any argument o > 1/2. One can ask whether o can be replaced
by a complex argument s which is allowed to vary as a function of D. This problem
is more complicated, but as shown in [E], it is still possible to get a distribution
result provided one restricts the proximity of the real part of s to the critical line
and bounds the imaginary part in terms of z. Distribution of the L-values on the
critical line seems to be an open question.

In his Amalfi paper, Selberg [Sel] showed for quite a general class of functions
that one can get such a distribution result if one assumes the analogue of the Riemann
Hypothesis (or a weaker hypothesis about the number of zeros off the critical line).

In [176), Chowla and Vijayaraghavan considered the important function of de-
termining the number of integers < z all of whose prime factors are < y. This
ubiquitous function is of fundamental importance in sieve theory and it makes its
appearance in various questions of number theory. For example, it is a key tool in
the work of Ankeny, Brauer and Chowla [208] cited above. In [204], Chowla and
Briggs return to the study of this function.

These investigations naturally lead one to the study of error terms for the sum-
matory functions of various classical arithmetical functions to which Chowla turned
his attention. The Dirichlet divisor problem is one of the more well-known problems.
If d(n) denotes the number of divisors of n, and < denotes Euler's constant, then it
is a famous conjecture that

Alz) := E d(n) - (:r:ln.g.t + {2y - l}z) = Ofz'/***)

LT

for any € > 0. If ¢(z) = z — |z] — 1/2, then the conjecture would follow from

3 v(z/n) = O(z"/**).
n<yE
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Chowla and Walum [247] formulated in 1963, the more general conjecture

T 0B, ((z/n}) = O(a*/2* /%)
n<v3

for every non-negative integer a and with B, denoting the r-th Bernoulli polynomial.
They proved the result fora = 1,r = 2. In 1985, Kanemitsu and Sitaramachandrarao
|[KS] proved this conjecture for @ > 1/2 and all integers r > 2. A related problem
concerns the error term in a classical result of Mertens. If ¢(n) denotes Euler’s
function, Mertens proved that

E(z) =) ¢(n) - :—2;1

L

satisfies E(z) = O(zlogz). In a joint paper with Pillai, Chowla [25] showed that

EE[H}---_-E%:}

s

and that E(z) # o(zlogloglog z). In [39], he showed that

jlq E3(t)dt = El?rz + Oz /log" z).

Our knowledge of Gauss sums is very far from being complete. Chowla returned
to this topic throughout his life. In an early paper [13], Chowla derives the classical
results of Gauss by evaluating certain contour integrals and comparing them with
evaluations of Ramanujan. He returned to this theme again in [22], [33], and [169].
In [240}, Chowla proved that 7(x)//P is a root of unity only when x* = xo. In
[322], Berndt and Chowla consider the explicit determination of quartic and octic

Gauss sums,

Before closing, there are two more themes of number theory that originated
in early papers of Chowla. One is the problem of estimating the least prime in
an arithmetic progression. Given relatively prime integers k and £, Chowla [48]
conjectured that there is a prime P(k, ) = {(mod k) satisfying

Pk, f) « k'*
The analog of the Riemann Hypothesis for Dirichlet L-functions implies only the

weaker estimate
Plk,t) < k**,

Linnik |L] proved unconditionally that there is an absolute constant C such that

P(k,£) < k€



and many authors have sought to determine C' explicitly. The latest result is due to
Heath-Brown [H-B] who shows that C < 5.5

The problem of the least prime in an arithmetic progression has a generalization
to number fields. Let F/K be a Galois extension of number fields with group G
and let C be a conjugacy class in G. The analogue of Dirichlet’s theorem on the
infinitude of primes in an arithmetic progression is the Chebotarev density theorem,
one version of which states that

IC]

wclz, F/K) ~ Gl

—liz,

where nc(z, F/K ) denotes the number of prime ideals of K which are unramified in
F and whose Frobenius conjugacy class is C and

n1=f 2.8
2 lﬂgt
If K =Q and F is the cyclotomic field of k-th roots of unity, then we recover the
problem of primes in an arithmetic progression modulo k. Amongst all primes P of
K whose Frobenius conjugacy class in F is C, consider the one of least norm and
denote this norm by P(C, F/K). The analogue of Chowla's conjecture on the least
prime in an arithmetic progression is
24
P(C,F/K) < M‘
ng

where dr denotes the absolute value of the discriminant of F/Q and np = |F :
Ql. [Sae [KM1] for this and other results and conjectures on the least prime in
a conjugacy class. Some evidence is found in the paper [KM2|). Assuming the
Riemann Hypothesis for all Dedekind zeta functions, Lagarias and Odlyzko [L-O]
showed that

P(C,F/K) < (logdr)®.

If in addition to the GRH, one also assumes Artin's conjecture on the holomorphy
of non-Abelian L-functions, then it follows from the results of Murty, Murty and
Saradha [MMS]| that

P(C,F/K) < Qﬂ‘ié‘,‘l—*‘—ﬁ.

The second theme is determining an upper bound for the number of integral
points on & given curve. In [41] he addresses this question and in fact disproves a
conjecture of Siegel. Later in 1983, Silverman [Si] showed how Chowla's work can
be related to ranks of elliptic curves. This work of Chowla is related to his earlier
work on Waring's problem. If Ri(n) denotes the number of representations of n
as the sum of k k-th powers, then Hardy and Littlewood conjectured in 1925 that
Ri(n) = O(n*) for every € > 0. Chowla proved in [93] that Ri(n) # O(1). Later,
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in [95] he showed with Pillai that there is a positive constant ¢ depending only on k
such that Ri(n) > cloglogn for infinitely many positive integers n, and that

clogn
Ry(n) > ioclags

for infinitely many n.

It is difficult to survey in one sweeping instance the mathematical work of
Chowla. No doubt, we have left out many areas which he touched and influenced.
We have not mentioned many of his conjectures, his contributions towards them,
and their later developments. There are many mathematicians whose work has been
influenced by Chowla either directly or indirectly whom we have not mentioned in the
brief compass of this survey. The reader may find additional material in [Ay3] and
|AHW]. We hope, however, that this short overview conveys some of the beauty,
charm and excitement that colours the mathematical personality of Sarvadaman
Chowla.

Acknowledgements. We would like to thank Kalyan Chakraborty, John Fried-
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of this manuscript.
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