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A Diophantine m-tuple with property D(n), where n is a non-
zero integer, is a set of m positive integers {a1, ..., am} such 
that aiaj + n is a perfect square for all 1 � i < j � m. It 
is known that Mn = sup{|S| : S is a D(n) m-tuple} exists 
and is O(log |n|). In this paper, we show that the Paley graph 
conjecture implies that the upper bound can be improved to 
� (log |n|)ε, for any ε > 0.

© 2019 Published by Elsevier Inc.

1. Introduction

A Diophantine m-tuple with property D(n), where n is a nonzero integer, is a set 
of m positive integers {a1, a2, . . . , am} such that aiaj + n is a perfect square for all 
1 � i < j � m.

Diophantus found the quadruple {1, 33, 68, 105} with property D(256). The first 
D(1)-quadruple {1, 3, 8, 120} was found by Fermat (cf. [9]). Baker and Davenport showed 
in 1969 (cf. [2]) that Fermat’s set is the only extension of {1, 3, 8} to a D(1)-quadruple, 
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and thus it cannot be extended to a D(1)-quintuple. This result follows from a paper of 
Baker [1] published in 1968 on linear forms in logarithms of algebraic numbers, which is 
an effective version of Gelfond’s theorem used for solutions of Diophantine equations in 
two unknowns and a reduction method introduced in [2].

Baker and Davenport’s remarkable result was the first step towards the folklore conjec-
ture which predicts that there are no D(1)-quintuples. In 2004, Dujella (cf. [13]) proved 
using similar methods to those of Baker and Davenport that there is no sextuple with 
property D(1) and there are only finitely many effectively computable D(1)-quintuples. 
In 2018, in a very recent paper, He, Togbé and Ziegler (cf. [26]) have shown that there 
are no Diophantine quintuples, thereby settling this conjecture.

For n �= 1, however, there are Diophantine quintuples and sextuples, such as 
the quintuple {1, 33, 105, 320, 18240} with n = 256 (cf. [16]) and the sextuple 
{99, 315, 9920, 32768, 44460, 19534284} with n = 2985984 (cf. [19]).

Thus, two related and important questions in the study of Diophantine m-tuples are 
(i) to determine, for a given n and m, the number of possible D(n)-m-tuples; and (ii) to 
estimate the quantity

Mn = sup{|S| : S is a D(n) m-tuple}.

The first observation is that there is no infinite Diophantine m-tuples, for any n �= 0, 
since the number of integral points on the elliptic curve

y2 = (a1x + n)(a2x + n)(a3x + n)

is finite, which follows from a celebrated theorem of Siegel (see, for example, [31]). Un-
fortunately, known bounds (cf. [30]) for the number of integral solutions depend on n, 
a1, a2, and a3. On the other hand, as a result of a conjecture of Caporaso, Harris, and 
Mazur [6], the hyperelliptic curve of genus 2 given by

y2 = (a1x + n)(a2x + n)(a3x + n)(a4x + n)(a5x + n)

has a bounded number of integral points, independent of n and the coefficients a1, . . . , a5. 
This would imply that supn Mn is bounded. This observation has been made by Dujella 
in [12] and the first result in this direction is due to Dujella and Luca [11], who proved 
that Mn is bounded by an absolute constant whenever |n| is prime, and that, for every 
ε > 0, the set of positive integers n for which a D(n) or D(−n) Diophantine m-tuple 
exists with m > (1 + ε) log logn is of asymptotic density zero.

A related elementary observation made independently by Brown [4], Gupta and Singh 
[21], and Mohanty and Ramasamy [28] is that Mn � 3 if n ≡ 2 (mod 4). Indeed, being a 
square, aiaj +n ≡ 0, 1 (mod 4). It follows that ai �≡ aj (mod 4) and that at most one ai
can be even. On the other hand, if n �≡ 2 (mod 4) and n /∈ {−4, −3, −1, 3, 5, 8, 12, 20}, 
then Mn � 4 (cf. [15]).
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More generally, Dujella proved in [14] that Mn � 31 for |n| � 400 and

Mn < C log |n|,

where C = 15.476 if |n| > 400 and C = 9.078 if n > 10100. This is done by estimating 
separately the quantities

An = sup{|S ∩ [|n|3,∞)| : S has D(n)}
Bn = sup{|S ∩ [n2, |n|3)| : S has D(n)}
Cn = sup{|S ∩ [1, n2]| : S has D(n)}.

He proved that An � 21, Bn < 0.6071 log |n| + 2.152, and Cn < 11.006 log |n| for |n| >
400. If |n| > 10100, he showed that Cn < 8.37 log |n| and the final result is derived by 
combining all of these estimates. The most significant contribution comes from Cn and 
is obtained by using Gallagher’s sieve inequality together with an estimate on double 
Dirichlet character sums due to Vinogradov. Improving these results, Murty and Becker 
[3] have recently shown that for any n,

Mn � 2.6071 log |n| + O

(
log |n|

(log log |n|)2
)
.

Our purpose in this manuscript is to relate the estimate of Mn for all sufficiently 
large n to the Paley graph conjecture (stated below) and show how one can improve the 
known estimates. The basic idea is to use this conjecture together with Gallagher’s sieve 
inequality to handle Bn and Cn simultaneously which will lead to Theorem 1. We first 
recall the Paley Graph Conjecture.

Conjecture 1 (Paley graph conjecture). Let ε > 0 be a real number, S, T ⊆ Fp for an 
odd prime p with |S|, |T | > pε, and χ any nontrivial multiplicative character modulo p. 
Then, there is some number δ = δ(ε) for which the inequality

∣∣∣∣
∑

a∈S,b∈T

χ(a + b)
∣∣∣∣ � p−δ|S||T | (1)

holds for primes larger than some constant C(ε).

The related estimate from Murty and Becker [3] yields

∣∣∣∣
∑

a∈S,b∈T

χ(ab + n)
∣∣∣∣ �

√
p|S||T |,

where p � n is an odd prime and not both sets S and T contain 0.
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In general, a positive answer for this conjecture is known only in the case |S| > p1/2+ε, 
and |T | > pε. However, if the sets S and T have a certain structure, there are nontrivial 
estimates that can be obtained under weaker constraints on their size (see [7,18,27,32,33]) 
using recent advances in additive combinatorics. We quote from [32] why this conjecture 
is called the Paley graph conjecture below.

A Paley graph is a graph G(V, E) with vertex set V = Fp and edge set E such that 
(a, b) ∈ E if and only if a − b is a quadratic residue modulo p. For this graph to 
be undirected, it is also necessary that p ≡ 1 mod 4. Under this assumption, setting 
S = −T in the conjecture and taking the Legendre symbol for the multiplicative 
character χ, we obtain the following remarkable statement: the clique number of the 
Paley graph and its independence number increase slower than pε for any positive ε.

On the other hand, Graham and Ringrose [20] proved that for infinitely many primes 
p, the least quadratic non-residue q is at least c(log p)(log log log p) for some constant 
c > 0. Obviously, for these primes, (1) does not hold for S = T = {1, 2, . . . , q/2}. See 
also [29] for a recent result of Mrazović relating Paley graphs to the result of Graham 
and Ringrose.

Our main theorem is:

Theorem 1. If the Paley graph conjecture holds for some ε ∈ (0, 1), then

Mn �ε (log |n|) ε
1−ε

(
1 + O

(
1

(log log |n|)2
))

.

Remark 1. In particular, if for any ε > 0, the Paley graph conjecture holds, then

Mn �ε (log |n|)ε.

We refer the reader to several other related papers that apply results from graph 
theory to certain problems concerning Diophantine m-tuples such as [23,24,5,10,25].

2. Preliminaries and proof of Theorem 1

We collect here some results needed to prove our main theorem.

Lemma 1 (cf. [17, Thm 4.2]). For x � 2,

|θ(x) − x| < 3.965 x

log2 x
,

where θ(x) =
∑

p�x log p. Also, for x � 1, θ(x) < 2x.
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Lemma 2. For any α ∈ (0, 1),

∑
p�Q

log p
pα

= Q1−α

1 − α

(
1 + O

( 1
log2 Q

))

with an effectively computable implied constant. Furthermore,

∑
p�Q

log p
pε

<
2Q1−ε

1 − ε
. (2)

Proof. Both results follow from Lemma 1 and partial integration. �
Lemma 3 (cf. [17, Thm 5.1, Lemma 5.10]). For x > 1,

π(x) � x

log x

(
1 + 1

log x + 2
log2 x

+ 7.59
log3 x

)
. (3)

Furthermore, for k � 4,

pk � k(log k + log log k + 1) < 2k log k, (4)

where pk denotes the kth prime.

Lemma 4 (cf. [22, Thm 11]). For n � 3,

ω(n) � 1.38402 log n
log log n (5)

with equality for n = p1p2 · · · p9, where ω(n) is the number of distinct prime divisors 
of n.

The following is an inequality which is a result of Gallagher’s Sieve Inequality.

Lemma 5. Let S be a subset of {1, 2, . . . , N} for some positive integer N . For any 1 <
Q � N ,

|S| �

∑
p�Q

log p− logN
∑
p�Q

log p
|Sp| − logN

,

where Sp = S mod p, provided the denominator is positive.

Proof of Theorem 1. As mentioned in the introduction, An � 21. Thus, it is enough to 
take a D(n)-m-tuple S lying inside [1, N ], where N = |n|3.
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Assume Conjecture 1 holds for some ε > 0 at least for the quadratic character given 
by the Legendre’s symbol 

( ·
p

)
. Then, there exists some δ = δ(ε) > 0 such that (1) holds 

for p > C(ε) for some constant C(ε) > 0. Increasing C(ε) if necessary we can make sure 
that the inequality

pε(1 − p−δ) � 3 (6)

also holds for p > C(ε). Note that pε > 3 for these primes. If N � C(ε), we get 
|S| � C(ε). Otherwise, assume that N is large enough so that we can take a prime p � n
with C(ε) < p � Q < N , where Q is to be chosen later.

For i = ±1, let Si denote the elements a of Sp for which 
(
a
p

)
= i. Thus, we have

|Sp| � |S1| + |S−1| + 1,

with equality when 0 ∈ Sp. Since p � n, for each a ∈ Si, there is at most one b0 ∈ Si

such that p | ab0 + n, and for b ∈ Si \ {b0, a}, 
(
ab+1
p

)
= 1. Finally, it may happen that (

a2+1
p

)
= −1. Thus, assuming |Si| > pε (so that |Si| > 3 as well) would result in

0 < |Si|(|Si| − 3) �
∑

a,b∈Si

(
ab + n

p

)
=

∣∣∣∣
∑

a,b∈Si

(
b + na−1

p

)∣∣∣∣

=
∣∣∣∣

∑
b∈Si

a∈nS−1
i

(
b + a

p

)∣∣∣∣ � p−δ(ε)|Si|2,

implying

pε < |Si| � 3
1 − p−δ

,

which contradicts (6). Thus, we must have |Si| � pε for C(ε) < p � Q with p � n.
We conclude that |Sp| � 1 + 2pε. Take γ = 2 + C(ε)−ε. Then, |Sp| < γpε for the 

primes in question. Therefore,

∑
p�Q

γ log p
|Sp|

>
∑

C(ε)<p�Q
p�n

log p
pε

�
∑
p�Q

log p
pε

−
∑

p�C(ε)

log p
pε

−
∑
p|n

log p
pε

.

If n has no prime divisor exceeding e1/ε, which is the only critical point of x−ε log x on 
[2, ∞), then using the inequality (3) it follows that
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∑
p|n

log p
pε

� π(e1/ε)
eε

� (1 + 11ε)e1/ε−1.

Otherwise, using (2) we obtain

∑
p|n

log p
pε

�
∑

p�pω(n)

log p
pε

<
2p1−ε

ω(n)

1 − ε
.

Using the inequalities (4) and (5) to estimate the last term, and combining this with the 
previous estimate above we derive that

∑
p|n

log p
pε

�ε (log |n|)1−ε.

Using Lemma 2 again yields

∑
p�Q

γ log p
|Sp|

> Q1−ε

(
1 − c1

log2 Q

)
− c2(logN)1−ε

for some positive constants c1 and c2 depending on ε. Since we need the sum on the left 
larger than γ logN to be able to use Lemma 5, we choose Q = (λ−1 logN)1/(1−ε) for 
some λ < 1. Combining the estimates above and using Lemmas 2 and 5 we obtain

|S| � γ
Q(1 + O(1/ log2 Q)) − logN

Q1−ε

(
1 − c1

log2 Q

)
− c2(logN)1−ε − logN

� γ

(1 − λ)λ
ε

1−ε

(logN)
ε

1−ε (1 + O(1/(log logN)2))
1 − c4

(log logN)2
.

Choosing λ = ε minimizes the coefficient above and we obtain

|S| � 2C(ε)ε + 1
C(ε)ε(1 − ε)

(
3
ε

) ε
1−ε

(log |n|) ε
1−ε

(
1 + O

( 1
(log log |n|)2

))
. �

3. Concluding remarks

The Paley graph conjecture is not only important in graph theory but has important 
consequences in computer science as explained in [8]. There is some progress towards 
this conjecture in the emerging field of additive combinatorics as evident in the paper 
of [7]. However, here, one needs to have some information on the additive structure of 
our sets S and T . Our main idea in the paper is to demonstrate the intimate connection 
between this important conjecture and the problem of Diophantine m-tuples, which was 
hitherto unknown.
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