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Let & be a family of number ficlds which are pormal and of finite degree over a
given number field K. Consider the lattice L{7) spanned by all the clcments of 7.
The generalized Artin problem is to determine the set of prime ideals of X which do
not split completely in any elemeat H of L{¥), H+ K. Assuming the generalized
Riemann hypothesis and some mild restrictions on ., we solve this prablem by
giving an asymptotic formula for the number of such prime ideals below a given
norm. The classical Artin conjecture on primitive roots appears as a special case.
In another case, if & is the family of ficlds obtained by adjoining to Q the g-
division points of an clliptic curve E over Q, the Artin problem determines how
often E(F,) is cyclic. If E has compléx multiplication, the generalized Riemann
hypothesis can be removed by using the analogue of the Bombieri-Vinogradov
prime number theorem for number fields.

1. INTRODUCTION

In his studies of the law of quadratic reciprocity, Gauss [4] was led to
investigate the period in the decimal expansion of 1/p, when p is a prime. He
noticed that the period was equal to the order of 10 (mod p), if p# 2 or 5.
Therefore, the longest period occurs whenever 10 is a primitive root (mod p).
From his tables, Gauss was undoubtedly led to wonder whether there are an
infinite number of primes p such that 10 is a primitive root (mod p).

No progress on this question was made until 1927, when Artin [1] was led
by probability considerations to make the following conjecture: if a is a
rational integer #1, —1, or a square, then a is a primitive root (mod p) for
infinitely many primes p. It is clear that the restrictions on a are necessary.
Furthermore, letting N,(x) be the number of such primes up to x, Artin

conjectured the existence of a constant A(a) such that

Na(x)-vA(a)E:—; s X— 0.
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148 M. RAM MURTY

His idea was as follows: First, a is a primitive root (mod p) if and only if
a®-Ma g ] (mod p)

for all prime divisors g of (p—1). According to a principle of Dedekind, p

splits completely in
K,=0(1,a)

if and only if
a'P~WMa =) (mod p).

Hence, Artin deduced that a is a primitive root (mod p) if and only if p does
not split completely in any K,. Next, he realized that the prime ideal
theorem gives the density of primes which split completely in K, as

1/[K,: Q).
Therefore, the probability that p does not split completely is
I—(1/[K,: Q). -

So, one would expect

A@ =[] (1~ /k,: Q]) i
- .

as the density of primes for which a is a primitive root.

This expression for A(a) was questioned by Lehmer [14] who made some
calculations. Heilbronn [9] suggested a correction because he had realized -
that the events

“p does not split completely in K"

are not independent, as p and g range through all primes. For example, if
a =5, then

{ p: p does not split completely in K, }
={p:(5/p)=—1}= {p:p=2.0r 3 (mod 5), p 2}

and
{ p: p does not split completely in K)

= {p:p# 1 (mod 5)or 5¢~"4 £ | (mod p)}
2 {p:p=2or 3 (mod 5)}.

Heilbronn’s correction agreed with Lelimer’s machine calculations.
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In 1937, Bilharz [2] proved the function field analogue of Artin's
conjecture assuming the Riemann hypothesis for congruence zeta functions,
which was subsequently proved by Weil. A natural question to raise is
whether Artin’s original conjecture could be proved assuming the generalized
Riemann hypothesis (GRH) for the L-series of the number fields involved.
This was answered in the affirmative by Hooley [10] in 1967. His expression
for A(a) agreed with that predicted by Heilbronn. I

Lenstra [15] considered the following generalization of Artin’s conjecture:
Let K be a global field and F a finite normal extension of K. Let C be a
subset of the Galois group of F/K which is stable under conjugation, and let
d be a positive integer (coprime to the characteristic of K in the case of a
function field). Consider a finitely generated subgroup W of K* which has
(modulo torsion) rank r> 1, and let M be the set of prime ideals P of X

satisfying .

(i) the Artin symbol [(F/K)/B]<C, .

(i) the normalized exponential valuation attached to P satisfies
ordy(w) =0 for all wE W,

(iii) if w: W— (Ox/B)* is the natural map, then [(Ox/B)*: w(W)]
divides d, where O, is the ring of integers of K.

Lenstra conjectured that M has a density. He also obtained necessary and
sufficient conditions for this density to be nonzero.

In this paper, we consider another generalization of Artin’s conjecture. Let
K be an algebraic number field. Let # be a family of number fields, normal
and of finite degree over K. Consider the lattice L(5) spanned by all the
elements of . Determine the number of prime ideals P of X such that
Ny,o(B) < x and which do not split completely in any element #K of L(F).
For example, if # = {K,: ¢ prime} and K =0, this is Artin’s conjecture.

In Sections 2 and 3, we solve this problem assuming the GRH for the zeta
functions of the number fields of & and some restrictions on the growth of
the discriminants of the fields of . Our theorem has some interesting
applications which we give in sections 4 and 5. Lang and Trotter [13]
formulated an analogue of Artin’s conjecture for elliptic curves. If E is an
elliptic curve over Q and a is a rational point of infinite order, they asked for
the density of those primes_p such that the group E (F,) of rational points
(mod p) is cyclic and generated by the reduction of a (modp). This
conjecture seems to be very difficult. Serre [18] answered the simpler
question of how often E(F,) is cyclic for a given elliptic curve E, by
assuming the: GRH. This is discussed in Section 5.

We then investigate, in Section 6, a method of eliminating the GRH from -

the above results. In one direction, we are able to show that if E has complex
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multiplication, then the number of primes p up to x such that E(F,) is cyclic
is ‘

~cg(x/log x) as x-— co.

’I’hc GRH is avoided by making use of sieve methods and Bombieri’s
theorem in algebraic number fields.

2. THE GENERALIZED ARTIN PROBLEM

Let # be a family of algebraic number fields which are normal and of
finite degree over a fixed number field K. Denote by L(¥) the lattice
spanned by #. That is, elements of L(#) are joins of finite subsets of .
Let /(x, X) be the number of prime ideals P of K such that Nyo(B)< x and
P does not split completely in any H € L(5) for H# K. We consider the
problem of determining the asymptotic behaviour of f(x, K) as x — co.

This problem cannot be handled in this generality and we need to make
some assumptions on % . One of the first assumptions we need is the
following: For each prime ideal P of X, define

R®)= [] =&
Psplits
completely
in HeL¥)
We assume throughout that R(P) € L(F) for all prime ideals P.

Let 4 and B be algebraic number fields of finite degree over K. We know
that a prime ideal P splits completely in 4 and B if and ony if P splits
completely in AB. So we find that P splits completely in R(P) and in no
larger field in the lattice. Therefore, for 4 € L(5), let us define f(x, 4) to be
the number of prime ideals P in O, with Ny,o(B) < x and R(P) = 4. This
coincides with our previous definition if 4 =K.

Letting m,(x, 4) be those prime ideals P of X such that R(B)2 4 and
Nyo(B)< x, we have '

mnA)= 3 f(x H).
HeLi

For fixed x, this sum is actually finite by our assumption and so we may

_ apply Mdbius inversion (see Rota [16]) on L(F) to get

f(va):' E l-‘(A1 H)Jf[(x,H).
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where u is the Mébius function of L(#). In particular, we get for 4 =K,

f(xs K)= Z ﬂ(Ka H) nl(x!H)'
H2K
HelL(#)
Hence, we have to study the behaviour of this sum as x + 0. _
Goldstein [5], on the other hand, considered the following setting for
K=0Q. Let S be a set of rational primes and for g€ S, let L, be a finite
normal extension of Q. Let S* be the set of all squarefree numbers
(including 1) composed of all the primes in S. For each k € S*, define

L=0, and
L= n Ly, n(k)= [L.: Q].

qlk

Then, Goldstein conjectured that

/(x, Q) ~ 8(S) x/log x
as x —+ oo, where
5s)= 3 “E)

sese n(k)’

We now show that both of these settings are the same if }_ 1/n(k) < co.
The transition is achieved by Rota’s cross-cut theorem. Let us recall what

this theorem says. .
A cross cut of a finite lattice L is a subset C of L satisfying
(i) subset C does not contain the minimum O or the maximum 1 of
L,
(ii) no two elements of C are comparable;
(iii) any maximal chain stretched between 0 and 1 meets C. For any
cross cut C, we have

-

u@®1)=3 (-1)g.

ral

where g, is the number of r-subsets of C whose join equals the maximum.
We want to show

u#(Q, H) i Z u(k)
werin [H: Q] - - n(k)’

where & = {L;:g € S}.

e e
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Suppose first that L,<L, forgq,q' €S, q#q'. Then,

M) _ 2 1) | 5 u)

Kess n(k) -kES‘ n(k) =~ se3- n(k)’
Q' q'lk

The second sum is

L I (Y S Y
RN P P R P s el
q'lkqlk q'lk.qbk q'1katk AT
Therefore,
2 #y
ses- n(k) kese n(k)’

and so L. can be removed from % without chgnging the sum. On the other
hand, a theorem of Hall [8] tells us that 4(0, T) =0 unless I is the join of
atoms in L. This means that

v MOH) _ « wQH)

witvm [H: Q] yeftey [H:Q] ’

where .# ' is the maximal set of atoms in & Therefore, without any loss of
generality, we may assume that no two elements of # are comparable.
Applying the cross-cut theorem to the interval [Q, H], we have,

v 1 ’
wérn [H: Q] g‘. L,,‘-,_Z,_:qrzﬂ =1
I N N )
B neton [H: Q] JLEH ”(k)_kg‘ n(k)’

as desired.

Goldstein’s formulation has the advantage of indexing the fields in a
natural way. The former setting removes the arbitrariness of the index set
and applies Mébius inversion directly. .

In this generality, Goldstein’s conjecture has been shown to be false by
Weinberger [21] and Serre (independently).
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3. ConpDITIONAL THEOREMS

Let S be the set of rational primes and for each g € S, let L, /K be normal
and of finite degree n(g) over a fixed algebraic number field X. Define for
each squarefree number &, :

L=[]L,  d,=disc(L,/Q).
qik

Set L, =K and n(k)=[L,:K]. Denote by f(x,K) the number of prime
ideals P of X such that Ny,,(B) < x and B does not split completely in-any
L,geES.

q

THEOREM 1. Suppose thar

and
(i) we have (1/n(k)) log |d,| = O(log k),

(ii) the number of prime ideals P in K, NK,Q(EB) £ x, which split
completely in some L, q > x'*/log? x is o(x/log x).

Suppose further that the Riemann hypothesis is true Jor each of the
Dedekind zeta functions ((s, L,/Q). Then

J(x K) = 8(S) x/log x + o(x/log x)

as x— co, where

= K
5s)= 3, %

Progf. From our previous considerations, we know that

S5 K) = f (k) 7,05, Ly /K.

Define, as usual, N(x, y) to be the number of prime ideals P, Ny o(B) < x,
which do not split completely in any L, for g <y. Clearly,

Nx,y)=2" p(k) m,(x, L /K),

-whcrc the dash on the sum indicates that all prime divisors of k are <y, and
JS(x K) < N(x, ). Now define M(x, &,, &,) to be the number of prime ideals
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P of K with Ny,,(B)<x and P splits completely in some L, &<g9<d;.
Clearly, if g{x) is the largest index m such that some P, Ny,o(B) < x, splits
completely in E,,, then

S (% K) > N(x, y) — M(x, p, g(x)).
We first estimate M(x, y, g(x)). Let us write

M(x, y, 8(x)) < X my(x, L, /K) + M(x, x'*/log? x, g(x))

=3, +M(x, x'"flog? x, g(x))

(say), where in the first sum, y < ¢ < x'?/log? x. Assumption (ii) says that
the second term is o(x/log x). To estimate the first sum, we apply GRH in
the following form: We know from Lagarias—Odlyzko [11] that on this
hypothesis,

N . 172
(% L /K) = ;—'(E)- +0 (:Tk)' log |d,| .r"‘”),

where lix is the usual logarithmic integral and the constants implied are
absolute. Applying this, we get that the first sum is bounded by

Y2y Exa),

et
y<a<sinoprs M) ycociTiioge

where we have set for convenience

E(x,q) = ]%—-nl(x. L,,/K)l.

We now use (i) to get
log |d,|
S E(x, q) € _V’x”’(lo x+~———")
<3 x'*(log x + log g),

where all the sums are in the range y < g < x'/?/log? x. But now, elementary
estimates (which go back to TschebyschefT) suffice to give '

> E(x,q) < longx = o(x/log.x).

gt
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Finally, using

‘ZD" 1/n(k) < oo,
k=1

we deduce,
B _ o(xflog x),

y<q<xififlogix "(‘I)

provided y = y(x) - c0 as x— 0.
Therefore,

[ (x, K)= N(x, y) + o(x/log x).
Again using GRH, we have by (i)

xl/!

% O(W log(1d,| x"*)) f :

Jix
n(k)
li

=5 (k) j;,f,%+ 0(x*" log kx)(,

Neoy) =" (k) )

where the dash on both sums indicates that all prime divisors of & are <.
As there are at most 2” squarefree numbers composed of primes <y, we see
by elementary estimates that :

N(x, y)= (E' %) li x + O(x'*2%( y + log x)).

Choosing y(x) so that

270 < x"flog? x

and y(x)—+ oo, we find that y(x) = O(log x). Therefore,
y2'x'? < xflog? x = o(x/log x).
Hence, we deduce
15 K)/(x/log ) &(S),

because y(x)— co as x — co. This completes the proof of the theorem.

Remark. In order to verify condition (i) of the theorem, the following
result of Hensel is quite useful (see Serre [17]):

T s E————

-
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If E/Q is normal and ramified only at the primes p,,..., p,, then,
-—log |dgjol <log n+ Z log p;»
where n = [E: Q]. This result enables us to deduce

COROLLARY. Suppose that 32, 1/n(k) < 0 and D is a finite set of
primes such that
(i) pld,»>p=qorp€ED.
If in addition, n(k) = O(k*) for some A > 0, and (ii) is also satisfied, then

S (e K) = 6(5) x/log x + o(x/log x).

Proof. We need only show that (i) of the theorem is satisfied:

1
) ——log|d,| < log n(k) + plzd. logp

<logk+ ) logp
plk

<log k.

We therefore see that §(S) exists whenever the conditions of the theorem
are satisfied. If §(S) > 0, then we get an infinitude of primes which do not
split completely in any L,, g € S. If 6(S) =0, it may happen that there are
still an infinitude of such primes. Such a situation is illustrated in the
following example:

Let p,=3, and define p; to be the smallest prime satisfying p;# 1
(mod p,) for i <j. This sequence of primes was first discussed by Golomb
[7]. Erdds [3] showed that the number of p/s < x is

(1+a(1))x
(log x)(log log x)

Thus, the set of p,s has zero density in the set of primes. If we take

F={0G)i=12m1,

then any prime g not splitting completely in (¢, ) for all i must satisfy ¢ #1
(mod p,). For some j, we must have p; < g < p;,,- Then, by our definition of
Pys1» We get g=p,,,. This shows that the set of primes not sphttmg
completely in any Q(C, ) is precisely the-set of by's.

S LT
Tkl i,
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4. FIRST APPLICATIONS

We now derive some interesting examples from Theorem 1.

A. Artin’s Conjecture on Primitive Roots (Hooley [10])

Let a be an integer +0, +1, or a perfect square. Let {, be a primitive gth
root of unity and g a rational prime. Take for S the set of all rational primes
and L, =Q(,,a'®), L, =Q. -

We check the conditions of the corollary in this case. It is easy to see that
pld, only if p=gq or p|a. This verifies (i). Moreover, n(k) = O(k*). To
verify (ii), we write

M(x, x'"*/log? x, x — 1) = M(x, x"z/Iugz x, x'% log x)
+M(x, x"2 log x, x — 1)
=X+ X
(say). We observe that
Z, <m0 L,/0),
where the summation is over those g satisfying
x"2flog? x < g < x'7* log x.

To estimate X', we notice that Q({,) < Q(f,, /%) so that

. (%, Lo /Q) < 2(x, Q(C,)/0).

By the Brun—Titchmarsh theorem, there is an absolute constant 4 such that
for g < x,

7, OC)/0) < Ax/(q — 1) log(x/g).
We deduce

§ea= V4,
log x q

r

where the dash on the summation indicates that q is in the given range for
Z,. But for this sum, we have in turn,

x +log g
1 loglxz q

< x log log x/log? x = o(x/log x).
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To deal with X, recall that a rational prime p splits completely in L, if and
only if pta, p=1 (mod g), and a”~"? = | (mod p). As ¢ > x"* log x and
P<x, we have (p— 1)/g < x'"?/log x. Thus, such a p splits completely in
some L, with ¢ > x'/? log x, only when it divides

R= [] (-1

m<xi/lflog x

. Therefore, 2, is bounded by the number of prime factors of R, which is

trivially O(log R). But,

logRE > mloga < x/log® x.

mgxi/2og x

Therefore, X, = o(x/log x) and we deduce that N,(x), the number of primes
< x for which a is a primitive root, is ~d(S) x/log x.

B. Abelian Extensions
If, for g sufficiently large, the extensions L,/Q are Abelian, then it is
possible to solve the Artin problem in certain cases, Suppose that
(a) L,/Q are abelian for g > ¢,

(b) 2g5y (x+S)/n(g)=o0(1/log ), as p— 0. (Here, f, denotes the
conductor of L, /Q for g > t.)

(€) (1/n(k))log|d,|=O(log k).

Then, the set of primes which do not split completely in any L, has a
Dirichlet density.

This result follows by applying the reciprocity law to show that (i) of the
theorem is true. We know that p splits completely in L, if and only if there
are residue classes a,,..., @, mod (/) (where f, is the conductor of L,/Q)
such that p = a; (mod f,) for some i. Now, #/¢(f,) = 1/n(g), and so

m(x, L, /Q) < (x +£,)/n(g),
giving us that _
1/7|0g? (% LE/Q) =o(x/log x)

as desired.
An erroneous version of the above was proved in [5].




e G

e e et i i = Mt gt wnl = Y i "

ON ARTIN'S CONJECTURE 159
5. -APPLICATION TO ELLIPTIC CURVES

Let E be an elliptic curve over 0. We want to determine the number of
primes p < x, at which E has good reduction and such that E(F,), the group
of points (med p), is cyclic.

Let us recall some facts about elliptic curves. First consider an elliptic
curve E over F,, algebraic closure of the finite field of p elements. For any

prime g, let
E,, = kcr(_E_Er E_), s

where g(x) =g - x. It is known that E, ~ (Z/gZ) ifp#qgandif p=g, E  is
isomorphic to a subgroup of (Z/pZ).
Now, let E be an. e[hpnc curve over Q and E, be the g-division points of

E. That is,
E,=ker(E%E),

where the- map is multiplication by g. Set L, = Q(E,). Clearly, L, is normal
over Q. It is known that L, is ramified only at g and those primes dividing
the conductor of E. We shall also.use fact that L, 2 Q((,).

LemMmA 1. Let G be a finite Abelian group. Then G is cyclic if and only
if G does not contain a (g, g) group for any prime q.

' Progf. This result is clear.

COROLLARY. If E is an elliptic curve over F,, then E(F ) is cyclic if and
only if it does not contain a subgroup of type (g,.9), g=p.

LEMMA 2. Let p be a prime #q. Suppose E has good reduction at p.
Then p splits completely in L, if and only if E(F,) contains a (g, q) group.

Proof. We look at the reduced curve E over F,. Let m, be the
endomorphism of F, given by np{x) =x?, Then,

n:E-E

is a homomorphism and ker(z, — 1) = E(F,). Hence, E(F,) contains a (g, g)
group if and only if =, acts mvmlly on E Hence, the decomposition group
of any prime lying abovc p is trivial if and only if E(F,) contains a (g,q)
group. This gives the result.

COROLLARY. A prime p does not split completely in any L, if and only if
E(F,) is cyclic. .

I
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Thus, we see that the Artin problem for the family & = {L,: g prime}
determines the number of p < x, such that E(F,) is cyclic. We now apply the
corollary to Theorem 1 and deduce

THEOREM 2 (Serre). Subject to the GRH, we have Jor any elliptic curve
Eover Q, - : BPe s :

i L9 _

=,
X—+c0 xﬂog X E»

where f(x, Q) = number of p< x, such that E(F,) is cyclic.

Remark. Serre has shown that the constant ¢, is nonzero whenever E
has an irrational point of order 2. If all the 2-division points are rational,
then clearly E(F,) is not cyclic for all primes sufficiently large.

Proof. 1t is known that there is a finite set of primes S such that if k is
not divisible by any of the primes in S, then n(k) > k°> In case E has
complex multiplication, this follows from classical results. If E does not have
complex multiplication, the result follows from Serre [19], who showed that
Gal(L,/Q) =~ GL,(Z/kZ) whenever k is coprime to a certain finite set of
primes. In either case, we have Y u?(k)/n(k) < oo.

Since. L, is unramified over Q except for ¢ and a finite number of primes
dividing the discriminant of E, we see that (i) of Theorem 1 is satisfied by
Hensel. If p< x and p splits completely in L,, then E(F,) contains a (g, q)
group and so ¢* | (p + 1 — a,). Therefore, g < 2 \/x. We need to estimate

- my(x, L, /Q)
\/;a'los!xzqd\/; ' 4 i
Since L,20Q({,), we use the Brun-Titchmarsh theorem and get that the
above sum is
|
q L

<€
Vanosix<q<2y/5 q10B(x/g)  log x

where the dash on the summation indicates the range x'/*/log? x < q < 2x"/2.
This last sum can be estimated easily, using

3

1
p<x P

Z,i= 0 (log log'x)'
q log x

l

We get
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Therefore,

> m(x, L,/Q) = o(x/log x)

as desired. This completes the proof.

6. UNcCONDITIONAL THEOREMS

Let E be an elliptic curve over @ with complex multiplication by an order
in an imaginary quadratic field k. Then, one can show that

card(p < x: E(F,) is cyclic) ~ cg(x/log x)

as x — oo, without any hypothesis. Bombieri’s theorem in algebraic number
fields allows us to remove the presence of GRH in our previous theorem.

Suppose K is an algebraic number field and q is an ideal of Oy. The
residue classes of integers coprime to q form a group under multiplication,
the order of which is denoted #(q). Two ideals of X, a and b, are said to be
equivalent (mod q and ab~! = (a/f) with e =f (mod* q), (a, § € Oy), where
this last condition means that (@ — f) € q and all the real conjugates (if any)
of a/f are positive. This defines an equivalence relation and the number of
equivalence classes is denoted A(q). The equivalence classes form an Abelian
group under multiplication called the q-ideal class group. It has order

h(a) = h2"¢(a)/T(a),

h is the class number of K, r, is the number of real embeddings of X, and
T(q) is thé number of residue classes (mod* q) containing a unit.

The ray class field belonging to an ideal q is the Abelian extension L of X
such that the set of prime ideals of X which split completely in L are
precisely those prime ideals lying in the unit class of the g-ideal class group;
that is, those prime ideals which are principal, generated by an element a= 1
(mod* q).

We can now state Bombieri’s theorem in algebraic number fields. Set

w(z,q,0)= z log Ny,o(B).
N:,;(a;;lé:

LemMMA 3 (Wilson [22]). For each positive constant A, there is a
B=B(A), such that if @ =x"""*"log~% x, n= [K: Q), then for x> 1,

z X

1
> max max — W(Z-q,ﬂ)—"hm 4@—-‘:-

ax
Lo
Niola)<Q L& : “;‘)l T(q)
a.q)=
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162 M. RAM MURTY

Since T(q)» I for an imaginary quadratic field, we see that for such a
field K,

max max |w(z, q,n)-—-— < xlog™ x.
Ngglaige £ (aa=1 h(a) ‘

We shall be applying this result when X is an :magmary quadratic field.
Therefore r, = 0 above.

Given any elliptic curve E over an algebraic number field, consider the
group of endomorphisms of E, denoted End(E). The addition law on E gives
that End(E)2Z because each of the maps ¢,(x)=nx, x€E, is an
endomorphism. If End(E) # Z, one says that E has complex mu.’nplicanan
In this case, it is known that End(E) must be an order in an imaginary
quadratic field k. (An order is a free Z module of rank [k: @] = 2 containing
Z.) All orders & of k are of the form & = Z + cO,, where ¢ is the conductor
of &.

Now let £ be an elliptic curve over @ which has complex multiplication
by an order of an imaginary quadratic field k. If m is a natural number, let
E be the m-division points of E. Define L = k(E,). Then it is known that

- /Ic contains the ray class field &, of & correspondmg to the ideal mO,.
(See Lang [i2, p. 216].)

LemMmA 4. Let E be an elliptic curve over Q with complex multiplication
by an order & in k. There is an ideal | depending only on E such that

km ELM =] kfm’

where k,, and ky, are the ray class fields of k of levels m and fm, respec-
tively,

Proof. As E has complex mult:phcatlon, n/k is Abelian and hence is
contained in a ray class field. By class field theory, it suffices to determine
the subgroup H of the ideal class group k; such that L, is class field to H.
That is, we determine the subgroup of k5 which fixes L Let @: k% — k be
the homomorphism such that p(x)/x,, is the grossencharacter of E. Then, we
know

o(s)s~ '\ =2,

The main theorem of complex multiplication (see Shimura [20, p. 211]).

gives that s € k7 fixes L, if and only if
Eo(s)s™')=¢&r)  forallt€ (1/m) &,
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where ¢ is an isomorphism of C/¢& to E. Hence, as @(x) = x for all x E k, we

deduce that

p(s)s ' €U, NUeNUpes
where
U, =ker o,
Us=|sEK;:s8 =2},
U,-={s € K;:5=1(mod m?)}

Thus, sEK U, NUNU,e) Conversely, if s=ar, a€k,
rel,NU.NUqe then-

p(s)=o(e@) p(r)=a,

and so g(s)s~'@ =2, p(s)s™' Ekergp, and s fixes L,. We conclude that
L, is class field to

H=Ik*U,NUE N U,g).

But then, if f, = conductor of ¢ and c is the conductor of ¢ and we set
f = lem(f,, c), then we see that

KU o, 2 H2 k" Ul e,

so that

km ELM = klm

as desired. :

This lemma alows us to deduce that if P is a prime ideal of O, which
splits completely in L, then P ~a,, Or ;,., OF G, (mod fm0y), with ¢
bounded because [k, : L] is bounded.

LEMMA 5. The number of a€0,, with Ny(@)<x and a=1
(mod mO,) is O(x/m?).

‘Proof. Let 1,  be an integral basis of O. Then a =a + bi for some
a, b€ Z. Therefore, a — 1 = mc, b=md for some ¢,d € Z. If k=0(/-D),
we have either a?+ Db < x, or (a+b/2)* +b'Df4< x. In either case,
a=0(x"?) and b= 0(x"?). Since m|b, and m | (@— 1), we get a total of

© O(x/m?) possibilities for a. .

Wenow find an asymptotic formula for a weighted sum over the prime

o
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ideals P of O, such that N wa(P) < x, and P does not split completely in L,
for all primes g. Set

$(x, L fk)= 3 wix, fm0y, a)).

i=1

We estimate

T(x)= i, 4(m) ¢(x, L, [k).
Let us write

W= % 4+ %

m<xt/flogh/ty m>xt/8/loghi2x

=L +Z,
(say), where the constant B is soon to be specified..
By Lemma 4, .
L€ S $oL,/k -
m>x1lagh/ 1 =
<(logx) Y x/m? -
m>x!/8/logh!1x ;;‘:
< x*/S(log x)' +212, 3
In order to estimate Z;, we make use of Lemma3 with K =k,
0=x"log =™ x, We note that [L,: k] < h((m)) and write +
B =3 o) e+ 3 ) fe Loy =],
L, k] AR Ty

where the dash on the summation indicates that m < x'%/log®? x. On the
last sum, we have to estimate

T |60 Laf) =2 | <

If m is in the specified range, then Niyo(m0,) < x'flog® x. Lemma 3
implies that this sum is

O(x/log" x).

Adu-




PSR e N et il gt e g Sy

haldharhons bR AR AL M e

¢ S

ON ARTIN’S CONJECTURE 165

If we choose 4 =2, then B =DB(A) is given by Lemma3 and is now
specified. Finally, E

T(x)= X" a(m) —— + O(x log~* x)

[Lo:k]
and since
FARD il > m~3?
m>x/é/logd/1x m>xt/6flogd/ix
= O0(x~'""* log™ x),
we get

T(x)=x i a(m)[L,: k]~ + O(xlog = x)

for any A > 0. Since the number of prime ideals P of k with degree >2 and
Nxo(B)< x is O(x'?), we deduce that T(x) enumerates those prime ideals,
with a weight of log Niso(B), which do not split completely in any L.

This settles the question over k. To “come down to 0O," we need to make
use of :

LeMMA 6. If m> 2, then k(E,)=Q(E,,).

Proof. If we can show k < Q(E,), then we are done. Let r € Gal(0/0Q);
fix Q(E,). Let k be identified with its normalized embedding in End(E) as
in Shimura [20, p. 113]. Then, we show that 7 fixes  if m is greater than 2,
so that the result would follow by Galois theory. Suppose not. Then
restricted to k is complex conjugation. Let ¢, € End(E) be given by
@a(x) = Ax. For x € E,,, we have g,(x) € E,, so that

t(pa(x)) = @, (x) = Ax.
On the other hand,

T(@2(x)) = 1(Ax) = (4) r(x) = 1x.
Therefore, (1 — 1) x =0 for all x& E,.. Hence,

2Im(A)=0  (mod m?)

fﬁfﬁ?ﬂl A€ . In particular, 2 /=D = mb \/=D or /=D = mb \/=D /2, 50
that mb=2 and therefore m | 2. This completes the proof.
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This lemma shows that @, = L, for m squarefree and >2. The sum

To(x) = TN log p
pdoes not
split completely

Inany @,./Q. p<x.

can be written as
Ty(x) = i () 8%, O/ Q).

where

Po(x, Q./Q)= > logp.

psplitscomp
NQpex

Now, T(x)/2 is the number of primes <x, weighted by log p, which split
completely in & but not in any L, /Q. Taking into account the primes which
do not split in k, we find by using the prime number theorem for k/Q, that

for any 4 > 0,
x/2 + T(x)/2 + O(x log ™ x)

is the weighted enumeration of primes <x not splitting completely in any
L,/Q Form>2,L,=0Q, and so

To(x) 2 x/2 + T(x)/2 + §o(x, L,/Q) + fo(x, Q,/Q) + O(x log ™ x)

= Z p(m) —=—— [Qm g7 + Ot log™ %)

for any 4 > 0, by our previous calculation. Since we always have

hm To(x)/x < Z #(m)[Q,,: Q]-

m=1

we deduce the asymptotic formula for T,(x).
We must relate this to /(x, ). We have

(logx'=%) 37" 1< 3" logp=Tyx)—Ty(x'"?),

xl-d<pax xl-8<pax

where § > 0 and the dash on the summation means that we sum over those p
for which E(F,) is cyclic.

R P
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The above shows that

To(x) To(x) — To(x' %)
log x Togx /A< u(l —d)logx

Choosing § = 2 log log x/log x gives

THEOREM 3. For any elliptic curve E over Q with complex
multiplication, we have

n 59 _ S ymig.: 0.

x«m xflogx =
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