On Artin's Conjecture

M. RAM MURTY

School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540

Communicated by S. Chowla

Received March 30, 1981

Let $\mathcal F$ be a family of number fields which are normal and of finite degree over a given number field K. Consider the lattice $L(\mathcal F)$ spanned by all the elements of $\mathcal F$. The generalized Artin problem is to determine the set of prime ideals of K which do not split completely in any element H of $L(\mathcal F)$, $H \neq K$. Assuming the generalized Riemann hypothesis and some mild restrictions on $\mathcal F$, we solve this problem by giving an asymptotic formula for the number of such prime ideals below a given norm. The classical Artin conjecture on primitive roots appears as a special case. In another case, if $\mathcal F$ is the family of fields obtained by adjoining to $\mathbb Q$ the q-division points of an elliptic curve E over $\mathbb Q$, the Artin problem determines how often $E(\mathbb F_p)$ is cyclic. If E has complex multiplication, the generalized Riemann hypothesis can be removed by using the analogue of the Bombieri-Vinogradov prime number theorem for number fields.

1. INTRODUCTION

In his studies of the law of quadratic reciprocity, Gauss [4] was led to investigate the period in the decimal expansion of 1/p, when p is a prime. He noticed that the period was equal to the order of $10 \pmod{p}$, if $p \neq 2$ or 5. Therefore, the longest period occurs whenever 10 is a primitive root (mod p). From his tables, Gauss was undoubtedly led to wonder whether there are an infinite number of primes p such that 10 is a primitive root (mod p).

No progress on this question was made until 1927, when Artin [1] was led by probability considerations to make the following conjecture: if a is a rational integer $\neq 1$, -1, or a square, then a is a primitive root (mod p) for infinitely many primes p. It is clear that the restrictions on a are necessary. Furthermore, letting $N_a(x)$ be the number of such primes up to x, Artin conjectured the existence of a constant A(a) such that

$$N_a(x) \sim A(a) \frac{x}{\log x}$$
 as $x \to \infty$.

147

0022-314X/83 \$3.00

Copyright © 1983 by Academic Press, Inc. All rights of reproduction in any form reserved. His idea was as follows: First, a is a primitive root (mod p) if and only if

$$a^{(p-1)/q} \not\equiv 1 \pmod{p}$$

for all prime divisors q of (p-1). According to a principle of Dedekind, p splits completely in

$$K_a = Q(\sqrt[q]{1}, \sqrt[q]{a})$$

if and only if

$$a^{(p-1)/q} \equiv 1 \pmod{p}.$$

Hence, Artin deduced that a is a primitive root (mod p) if and only if p does not split completely in any K_q . Next, he realized that the prime ideal theorem gives the density of primes which split completely in K_q as

$$1/[K_a:Q].$$

Therefore, the probability that p does not split completely is

$$1 - (1/[K_a:Q]).$$

So, one would expect

$$A(a) = \prod_{q} (1 - (1/[K_q:Q]))$$

as the density of primes for which a is a primitive root.

This expression for A(a) was questioned by Lehmer [14] who made some calculations. Heilbronn [9] suggested a correction because he had realized that the events

"p does not split completely in K_a "

are not independent, as p and q range through all primes. For example, if a = 5, then

 $\{p: p \text{ does not split completely in } K_2\}$

$$= \{p: (5/p) = -1\} = \{p: p \equiv 2 \text{ or } 3 \pmod{5}, p \neq 2\}$$

and

 $\{p: p \text{ does not split completely in } K_s\}$

$$= \{ p: p \not\equiv 1 \pmod{5} \text{ or } 5^{(p-1)/5} \not\equiv 1 \pmod{p} \}$$

$$\supseteq \{p: p \equiv 2 \text{ or } 3 \pmod{5}\}.$$

Heilbronn's correction agreed with Lehmer's machine calculations.

In 1937, Bilharz [2] proved the function field analogue of Artin's conjecture assuming the Riemann hypothesis for congruence zeta functions, which was subsequently proved by Weil. A natural question to raise is whether Artin's original conjecture could be proved assuming the generalized Riemann hypothesis (GRH) for the L-series of the number fields involved. This was answered in the affirmative by Hooley [10] in 1967. His expression for A(a) agreed with that predicted by Heilbronn.

Lenstra [15] considered the following generalization of Artin's conjecture: Let K be a global field and F a finite normal extension of K. Let C be a subset of the Galois group of F/K which is stable under conjugation, and let d be a positive integer (coprime to the characteristic of K in the case of a function field). Consider a finitely generated subgroup W of K^* which has (modulo torsion) rank $r \ge 1$, and let M be the set of prime ideals $\mathfrak P$ of K satisfying

- (i) the Artin symbol $[(F/K)/\mathfrak{P}] \subseteq C$,
- (ii) the normalized exponential valuation attached to \mathfrak{P} satisfies $\operatorname{ord}_{\mathfrak{n}}(w) = 0$ for all $w \in W$,
- (iii) if $\psi: W \to (O_K/\mathfrak{P})^*$ is the natural map, then $[(O_K/\mathfrak{P})^*: \psi(W)]$ divides d, where O_K is the ring of integers of K.

Lenstra conjectured that M has a density. He also obtained necessary and sufficient conditions for this density to be nonzero.

In this paper, we consider another generalization of Artin's conjecture. Let K be an algebraic number field. Let \mathcal{F} be a family of number fields, normal and of finite degree over K. Consider the lattice $L(\mathcal{F})$ spanned by all the elements of \mathcal{F} . Determine the number of prime ideals \mathfrak{P} of K such that $N_{K/Q}(\mathfrak{P}) \leqslant x$ and which do not split completely in any element $\neq K$ of $L(\mathcal{F})$. For example, if $\mathcal{F} = \{K_q : q \text{ prime}\}$ and K = Q, this is Artin's conjecture.

In Sections 2 and 3, we solve this problem assuming the GRH for the zeta functions of the number fields of \mathcal{F} and some restrictions on the growth of the discriminants of the fields of \mathcal{F} . Our theorem has some interesting applications which we give in sections 4 and 5. Lang and Trotter [13] formulated an analogue of Artin's conjecture for elliptic curves. If E is an elliptic curve over Q and a is a rational point of infinite order, they asked for the density of those primes p such that the group $E(\mathbb{F}_p)$ of rational points (mod p) is cyclic and generated by the reduction of $a \pmod{p}$. This conjecture seems to be very difficult. Serre [18] answered the simpler question of how often $E(\mathbb{F}_p)$ is cyclic for a given elliptic curve E, by assuming the GRH. This is discussed in Section 5.

We then investigate, in Section 6, a method of eliminating the GRH from the above results. In one direction, we are able to show that if E has complex

multiplication, then the number of primes p up to x such that $E(\mathbb{F}_p)$ is cyclic is

$$\sim c_E(x/\log x)$$
 as $x \to \infty$.

The GRH is avoided by making use of sieve methods and Bombieri's theorem in algebraic number fields.

2. THE GENERALIZED ARTIN PROBLEM

Let $\mathscr F$ be a family of algebraic number fields which are normal and of finite degree over a fixed number field K. Denote by $L(\mathscr F)$ the lattice spanned by $\mathscr F$. That is, elements of $L(\mathscr F)$ are joins of finite subsets of $\mathscr F$. Let f(x,K) be the number of prime ideals $\mathfrak P$ of K such that $N_{K/Q}(\mathfrak P) \leqslant x$ and $\mathfrak P$ does not split completely in any $H \in L(\mathscr F)$ for $H \neq K$. We consider the problem of determining the asymptotic behaviour of f(x,K) as $x \to \infty$.

This problem cannot be handled in this generality and we need to make some assumptions on \mathcal{F} . One of the first assumptions we need is the following: For each prime ideal \mathfrak{P} of K, define

プログラを出ているというできると、 からのない かっこう かんしょう かんしょう かんしょう

$$R(\mathfrak{P}) = \prod_{\substack{\mathfrak{P} \text{ splits} \\ \text{completely} \\ \text{in } HeL\mathcal{P})}} H$$

We assume throughout that $R(\mathfrak{P}) \in L(\mathcal{F})$ for all prime ideals \mathfrak{P} .

Let A and B be algebraic number fields of finite degree over K. We know that a prime ideal $\mathfrak P$ splits completely in A and B if and ony if $\mathfrak P$ splits completely in AB. So we find that $\mathfrak P$ splits completely in $R(\mathfrak P)$ and in no larger field in the lattice. Therefore, for $A \in L(\mathscr F)$, let us define f(x,A) to be the number of prime ideals $\mathfrak P$ in O_K with $N_{K/Q}(\mathfrak P) \leqslant x$ and $R(\mathfrak P) = A$. This coincides with our previous definition if A = K.

Letting $\pi_1(x, A)$ be those prime ideals $\mathfrak P$ of K such that $R(\mathfrak P) \supseteq A$ and $N_{K/Q}(\mathfrak P) \leqslant x$, we have

$$\pi_1(x,A) = \sum_{\substack{H \supseteq A \\ H \in L(\mathcal{F})}} f(x,H).$$

For fixed x, this sum is actually finite by our assumption and so we may apply Möbius inversion (see Rota [16]) on $L(\mathcal{F})$ to get

$$f(x,A) = \sum_{\substack{H \supseteq A \\ H \in L(\mathcal{F})}} \mu(A,H) \, \pi_1(x,H),$$

where μ is the Möbius function of $L(\mathcal{F})$. In particular, we get for A=K,

$$f(x,K) = \sum_{\substack{H \supseteq K \\ H \in L(\mathcal{F})}} \mu(K,H) \, \pi_1(x,H).$$

Hence, we have to study the behaviour of this sum as $x \to \infty$.

Goldstein [5], on the other hand, considered the following setting for K=Q. Let S be a set of rational primes and for $q \in S$, let L_q be a finite normal extension of Q. Let S^* be the set of all squarefree numbers (including 1) composed of all the primes in S. For each $k \in S^*$, define $L_1=Q$, and

$$L_k = \prod_{q \mid k} L_q, \qquad n(k) = [L_k : Q].$$

Then, Goldstein conjectured that

$$f(x,Q) \sim \delta(S) x/\log x$$

as $x \to \infty$, where

$$\delta(S) = \sum_{k \in S} \frac{\mu(k)}{n(k)}.$$

We now show that both of these settings are the same if $\sum 1/n(k) < \infty$. The transition is achieved by Rota's cross-cut theorem. Let us recall what this theorem says.

A cross cut of a finite lattice L is a subset C of L satisfying

- (i) subset C does not contain the minimum $\hat{0}$ or the maximum $\hat{1}$ of L,
 - (ii) no two elements of C are comparable;
- (iii) any maximal chain stretched between $\hat{0}$ and $\hat{1}$ meets C. For any cross cut C, we have

$$\mu(\hat{0}, \hat{1}) = \sum_{r \geq 1} (-1)^r g_r,$$

where g_r is the number of r-subsets of C whose join equals the maximum. We want to show

$$\sum_{H \in L(\mathcal{F})} \frac{\mu(Q,H)}{[H:Q]} = \sum_{k \in S^*} \frac{\mu(k)}{n(k)},$$

where $\mathcal{F} = \{L_q : q \in S\}.$

Suppose first that $L_q \leqslant L_{q'}$ for $q, q' \in S, q \neq q'$. Then,

$$\sum_{k \in S^{\bullet}} \frac{\mu(k)}{n(k)} = \sum_{\substack{k \in S^{\bullet} \\ q' \nmid k}} \frac{\mu(k)}{n(k)} + \sum_{\substack{k \in S^{\bullet} \\ a' \mid k}} \frac{\mu(k)}{n(k)}.$$

The second sum is

$$\sum_{\substack{k \in S^* \\ q' \mid k, q \mid k}} \frac{\mu(k)}{n(k)} + \sum_{\substack{k \in S^* \\ q' \mid k, q \nmid k}} \frac{\mu(k)}{n(k)} = -\sum_{\substack{k \in S^* \\ q' \mid k, q \nmid k}} \frac{\mu(k)}{n(k)} + \sum_{\substack{k \in S^* \\ q' \mid k, q \nmid k}} \frac{\mu(k)}{n(k)} = 0.$$

Therefore,

$$\sum_{k \in S^*} \frac{\mu(k)}{n(k)} = \sum_{\substack{k \in S^* \\ g' \nmid k}} \frac{\mu(k)}{n(k)},$$

and so L_q , can be removed from $\mathcal F$ without changing the sum. On the other hand, a theorem of Hall [8] tells us that $\mu(\hat 0, \hat 1) = 0$ unless 1 is the join of atoms in L. This means that

$$\sum_{H \in L(\mathcal{F})} \frac{\mu(Q, H)}{[H:Q]} = \sum_{H \in L(\mathcal{F}')} \frac{\mu(Q, H)}{[H:Q]},$$

where \mathcal{F}' is the maximal set of atoms in \mathcal{F} . Therefore, without any loss of generality, we may assume that no two elements of \mathcal{F} are comparable. Applying the cross-cut theorem to the interval [Q, H], we have,

$$\sum_{H \in L(\mathcal{F})} \frac{1}{[H:Q]} \sum_{r > 1} \sum_{\substack{L_{q_1} \dots L_{q_r} = H \\ k \in S^*}} (-1)^r$$

$$= \sum_{H \in L(\mathcal{F})} \frac{1}{[H:Q]} \sum_{\substack{L_k = H \\ k \in S^*}} \mu(k) = \sum_{k \in S^*} \frac{\mu(k)}{n(k)},$$

as desired.

Goldstein's formulation has the advantage of indexing the fields in a natural way. The former setting removes the arbitrariness of the index set and applies Möbius inversion directly.

In this generality, Goldstein's conjecture has been shown to be false by Weinberger [21] and Serre (independently).

3. CONDITIONAL THEOREMS

Let S be the set of rational primes and for each $q \in S$, let L_q/K be normal and of finite degree n(q) over a fixed algebraic number field K. Define for each squarefree number k,

$$L_k = \prod_{q \mid k} L_q, \qquad d_k = \operatorname{disc}(L_k/Q).$$

Set $L_1 = K$ and $n(k) = [L_k: K]$. Denote by f(x, K) the number of prime ideals $\mathfrak P$ of K such that $N_{K/Q}(\mathfrak P) \leqslant x$ and $\mathfrak P$ does not split completely in any L_q , $q \in S$.

THEOREM 1. Suppose that

$$\sum_{k=1}^{\infty} \frac{\mu^2(k)}{n(k)} < \infty$$

and

- (i) we have $(1/n(k)) \log |d_k| = O(\log k)$,
- (ii) the number of prime ideals \mathfrak{P} in K, $N_{K/Q}(\mathfrak{P}) \leqslant x$, which split completely in some L_q , $q > x^{1/2}/\log^2 x$ is $o(x/\log x)$.

Suppose further that the Riemann hypothesis is true for each of the Dedekind zeta functions $\zeta(s, L_k/Q)$. Then

$$f(x, K) = \delta(S) x/\log x + o(x/\log x)$$

as $x \to \infty$, where

$$\delta(S) = \sum_{k=1}^{\infty} \frac{\mu(k)}{n(k)}.$$

Proof. From our previous considerations, we know that

$$f(x, K) = \sum_{k=1}^{\infty} \mu(k) \pi_1(x, L_k/K).$$

Define, as usual, N(x, y) to be the number of prime ideals \mathfrak{P} , $N_{K/Q}(\mathfrak{P}) \leqslant x$, which do not split completely in any L_q for $q \leqslant y$. Clearly,

$$N(x, y) = \sum_{k=1}^{\infty} \mu(k) \pi_1(x, L_k/K),$$

where the dash on the sum indicates that all prime divisors of k are $\leq y$, and $f(x, K) \leq N(x, y)$. Now define $M(x, \xi_1, \xi_2)$ to be the number of prime ideals

 $\mathfrak P$ of K with $N_{K/Q}(\mathfrak P)\leqslant x$ and $\mathfrak P$ splits completely in some L_q , $\xi_1\leqslant q\leqslant \xi_2$. Clearly, if g(x) is the largest index m such that some $\mathfrak P$, $N_{K/Q}(\mathfrak P)\leqslant x$, splits completely in L_m , then

$$f(x, K) \geqslant N(x, y) - M(x, y, g(x)).$$

We first estimate M(x, y, g(x)). Let us write

$$M(x, y, g(x)) \leq \sum \pi_1(x, L_q/K) + M(x, x^{1/2}/\log^2 x, g(x))$$
$$= \sum_1 + M(x, x^{1/2}/\log^2 x, g(x))$$

(say), where in the first sum, $y < q < x^{1/2}/\log^2 x$. Assumption (ii) says that the second term is $o(x/\log x)$. To estimate the first sum, we apply GRH in the following form: We know from Lagarias-Odlyzko [11] that on this hypothesis,

I

$$\pi_1(x, L_k/K) = \frac{\operatorname{li} x}{n(k)} + O\left(\frac{x^{1/2}}{n(k)}\log|d_k|x^{n(k)}\right),\,$$

where $\lim x$ is the usual logarithmic integral and the constants implied are absolute. Applying this, we get that the first sum is bounded by

$$\sum_{y < q < x^{1/2}/\log^2 x} \frac{\text{li } x}{n(q)} + \sum_{y < q < x^{1/2}/\log^2 x} E(x, q),$$

where we have set for convenience

$$E(x,q) = \left| \frac{\operatorname{li} x}{n(q)} - \pi_1(x, L_q/K) \right|.$$

We now use (i) to get

$$\sum E(x, q) \ll \sum x^{1/2} \left(\log x + \frac{\log |d_q|}{n(q)} \right)$$

$$\ll \sum x^{1/2} (\log x + \log q),$$

where all the sums are in the range $y < q < x^{1/2}/\log^2 x$. But now, elementary estimates (which go back to Tschebyscheff) suffice to give

$$\sum E(x, q) \ll \frac{x}{\log^2 x} = o(x/\log x).$$

Finally, using

$$\sum_{k=1}^{\infty} 1/n(k) < \infty,$$

we deduce,

$$\sum_{y < q < x^{1/2}/\log^2 x} \frac{\operatorname{li} x}{n(q)} = o(x/\log x),$$

provided $y = y(x) \to \infty$ as $x \to \infty$.

Therefore,

$$f(x, K) = N(x, y) + o(x/\log x).$$

Again using GRH, we have by (i)

$$N(x, y) = \sum' \mu(k) \left\{ \frac{\operatorname{li} x}{n(k)} + O\left(\frac{x^{1/2}}{n(k)}\log(|d_k| x^{n(k)})\right) \right\},$$

= $\sum' \mu(k) \left\{ \frac{\operatorname{li} x}{n(k)} + O(x^{1/2}\log kx) \right\},$

where the dash on both sums indicates that all prime divisors of k are $\leq y$. As there are at most 2^y squarefree numbers composed of primes $\leq y$, we see by elementary estimates that

$$N(x, y) = \left(\sum_{k=0}^{\infty} \frac{\mu(k)}{n(k)}\right) \text{li } x + O(x^{1/2}2^{y}(y + \log x)).$$

Choosing y(x) so that

$$2^{y(x)} \leqslant x^{1/2}/\log^3 x$$

and $y(x) \to \infty$, we find that $y(x) = O(\log x)$. Therefore,

$$y2^{y}x^{1/2} \leqslant x/\log^2 x = o(x/\log x).$$

Hence, we deduce

$$f(x, K)/(x/\log x) \rightarrow \delta(S)$$
,

because $y(x) \to \infty$ as $x \to \infty$. This completes the proof of the theorem.

Remark. In order to verify condition (i) of the theorem, the following result of Hensel is quite useful (see Serre [17]):

If E/Q is normal and ramified only at the primes $p_1,...,p_m$, then,

$$\frac{1}{n}\log|d_{E/Q}|\leqslant \log n+\sum_{j=1}^m\log p_j,$$

where n = [E: Q]. This result enables us to deduce

COROLLARY. Suppose that $\sum_{k=1}^{\infty} 1/n(k) < \infty$ and D is a finite set of primes such that

(i)
$$p \mid d_a \Rightarrow p = q \text{ or } p \in D$$
.

If in addition, $n(k) = O(k^A)$ for some A > 0, and (ii) is also satisfied, then

$$f(x, K) = \delta(S) x/\log x + o(x/\log x).$$

Proof. We need only show that (i) of the theorem is satisfied:

$$\frac{1}{n(k)}\log|d_k| \leqslant \log n(k) + \sum_{p \mid d_k} \log p$$

$$\leqslant \log k + \sum_{p \mid k} \log p$$

$$\leqslant \log k.$$

We therefore see that $\delta(S)$ exists whenever the conditions of the theorem are satisfied. If $\delta(S) > 0$, then we get an infinitude of primes which do not split completely in any L_q , $q \in S$. If $\delta(S) = 0$, it may happen that there are still an infinitude of such primes. Such a situation is illustrated in the following example:

Let $p_1 = 3$, and define p_j to be the smallest prime satisfying $p_j \not\equiv 1 \pmod{p_i}$ for i < j. This sequence of primes was first discussed by Golomb [7]. Erdös [3] showed that the number of p_i 's $\leqslant x$ is

$$\frac{(1+o(1))x}{(\log x)(\log\log x)}.$$

Thus, the set of p_j 's has zero density in the set of primes. If we take

$$\mathscr{F}=\{Q(\zeta_{p_i}), i=1,2,...\},\$$

then any prime q not splitting completely in $Q(\zeta_{p_i})$ for all i must satisfy $q \not\equiv 1 \pmod{p_i}$. For some j, we must have $p_j < q \leqslant p_{j+1}$. Then, by our definition of p_{j+1} , we get $q = p_{j+1}$. This shows that the set of primes not splitting completely in any $Q(\zeta_{p_i})$ is precisely the set of p_j 's.

4. FIRST APPLICATIONS

We now derive some interesting examples from Theorem 1.

A. Artin's Conjecture on Primitive Roots (Hooley [10])

Let a be an integer $\neq 0$, ± 1 , or a perfect square. Let ζ_q be a primitive qth root of unity and q a rational prime. Take for S the set of all rational primes and $L_q = Q(\zeta_q, a^{1/q})$, $L_1 = Q$.

and $L_q = Q(\zeta_q, a^{1/q})$, $L_1 = Q$. We check the conditions of the corollary in this case. It is easy to see that $p \mid d_q$ only if p = q or $p \mid a$. This verifies (i). Moreover, $n(k) = O(k^2)$. To verify (ii), we write

$$M(x, x^{1/2}/\log^2 x, x - 1) = M(x, x^{1/2}/\log^2 x, x^{1/2} \log x) + M(x, x^{1/2} \log x, x - 1)$$
$$= \Sigma_1 + \Sigma_2$$

(say). We observe that

$$\Sigma_1 \leqslant \sum \pi_1(x, L_q/Q),$$

where the summation is over those q satisfying

$$x^{1/2}/\log^2 x < q < x^{1/2}\log x$$
.

To estimate Σ_1 , we notice that $Q(\zeta_q) \subseteq Q(\zeta_q, a^{1/q})$ so that

$$\pi_1(x, L_q/Q) \leqslant \pi(x, Q(\zeta_q)/Q).$$

By the Brun-Titchmarsh theorem, there is an absolute constant A such that for q < x,

$$\pi(x, Q(\zeta_q)/Q) \leqslant Ax/(q-1)\log(x/q).$$

We deduce

$$\Sigma_1 \ll \frac{x}{\log x} \sum_{i=1}^{n} \frac{1}{q},$$

where the dash on the summation indicates that q is in the given range for Σ_1 . But for this sum, we have in turn,

$$\Sigma_1 \ll \frac{x}{\log^2 x} \sum_{i=1}^{n} \frac{\log q}{q}$$

$$\ll x \log \log x / \log^2 x = o(x/\log x).$$

To deal with Σ_2 , recall that a rational prime p splits completely in L_q if and only if $p \nmid a$, $p \equiv 1 \pmod q$, and $a^{(p-1)/q} \equiv 1 \pmod p$. As $q > x^{1/2} \log x$ and $p \leqslant x$, we have $(p-1)/q \leqslant x^{1/2}/\log x$. Thus, such a p splits completely in some L_q , with $q > x^{1/2} \log x$, only when it divides

$$R = \prod_{m < x^{1/2/\log x}} (a^m - 1).$$

Therefore, Σ_2 is bounded by the number of prime factors of R, which is trivially $O(\log R)$. But,

$$\log R \leqslant \sum_{m \leqslant x^{1/2}/\log x} m \log a \leqslant x/\log^2 x.$$

Therefore, $\Sigma_2 = o(x/\log x)$ and we deduce that $N_a(x)$, the number of primes $\leq x$ for which a is a primitive root, is $\sim \delta(S) x/\log x$.

B. Abelian Extensions

If, for q sufficiently large, the extensions L_q/Q are Abelian, then it is possible to solve the Artin problem in certain cases. Suppose that

- (a) L_q/Q are abelian for $q \ge t$,
- (b) $\sum_{q>y} (x+f_q)/n(q) = o(1/\log y)$, as $y\to\infty$. (Here, f_q denotes the conductor of L_q/Q for $q\geqslant t$.)
 - (c) $(1/n(k)) \log |d_k| = O(\log k)$.

Then, the set of primes which do not split completely in any L_q has a Dirichlet density.

This result follows by applying the reciprocity law to show that (ii) of the theorem is true. We know that p splits completely in L_q if and only if there are residue classes $a_1,...,a_t \mod (f_q)$ (where f_q is the conductor of L_q/Q) such that $p \equiv a_t \pmod{f_q}$ for some i. Now, $t/\phi(f_q) = 1/n(q)$, and so

$$\pi_1(x, L_a/Q) \leqslant (x+f_a)/n(q),$$

giving us that

$$\sum_{q>x^{1/2}/\log^2 x} \pi_1(x, L_q/Q) = o(x/\log x)$$

as desired.

An erroneous version of the above was proved in [5].

5. APPLICATION TO ELLIPTIC CURVES

Let E be an elliptic curve over Q. We want to determine the number of primes $p \leq x$, at which E has good reduction and such that $E(\mathbb{F}_p)$, the group of points (mod p), is cyclic.

Let us recall some facts about elliptic curves. First consider an elliptic curve \overline{E} over $\overline{\mathbb{F}}_p$, algebraic closure of the finite field of p elements. For any prime q, let

$$\overline{E}_q = \ker(\overline{E} \xrightarrow{q} \overline{E}),$$

where $q(x) = q \cdot x$. It is known that $\overline{E}_q \simeq (\mathbb{Z}/q\mathbb{Z})^2$ if $p \neq q$ and if p = q, \overline{E}_q is isomorphic to a subgroup of $(\mathbb{Z}/p\mathbb{Z})$.

Now, let E be an elliptic curve over Q and E_q be the q-division points of E. That is,

$$E_q = \ker(E \xrightarrow{q} E),$$

where the map is multiplication by q. Set $L_q = Q(E_q)$. Clearly, L_q is normal over Q. It is known that L_q is ramified only at q and those primes dividing the conductor of E. We shall also use fact that $L_q \supseteq Q(\zeta_q)$.

LEMMA 1. Let G be a finite Abelian group. Then G is cyclic if and only if G does not contain a (q, q) group for any prime q.

Proof. This result is clear.

COROLLARY. If E is an elliptic curve over \mathbb{F}_p , then $E(\mathbb{F}_p)$ is cyclic if and only if it does not contain a subgroup of type (q, q), $q \neq p$.

LEMMA 2. Let p be a prime $\neq q$. Suppose E has good reduction at p. Then p splits completely in L_q if and only if $E(\mathbb{F}_p)$ contains a (q, q) group.

Proof. We look at the reduced curve \overline{E} over \mathbb{F}_p . Let π_p be the endomorphism of $\overline{\mathbb{F}}_p$ given by $\pi_p(x) = x^p$. Then,

$$\pi_n: \overline{E} \to \overline{E}$$

is a homomorphism and $\ker(\pi_p-1)=E(\mathbb{F}_p)$. Hence, $E(\mathbb{F}_p)$ contains a (q,q) group if and only if π_p acts trivially on \overline{E}_q . Hence, the decomposition group of any prime lying above p is trivial if and only if $E(\mathbb{F}_p)$ contains a (q,q) group. This gives the result.

COROLLARY. A prime p does not split completely in any L_q if and only if $E(\mathbb{F}_p)$ is cyclic.

Thus, we see that the Artin problem for the family $\mathscr{F}=\{L_q:q \text{ prime}\}$ determines the number of $p\leqslant x$, such that $E(\mathbb{F}_p)$ is cyclic. We now apply the corollary to Theorem 1 and deduce

THEOREM 2 (Serre). Subject to the GRH, we have for any elliptic curve E over Q,

$$\lim_{x\to\infty}\frac{f(x,Q)}{x/\log x}=c_E,$$

where f(x, Q) = number of $p \le x$, such that $E(\mathbb{F}_p)$ is cyclic.

Remark. Serre has shown that the constant c_E is nonzero whenever E has an irrational point of order 2. If all the 2-division points are rational, then clearly $E(\mathbb{F}_p)$ is not cyclic for all primes sufficiently large.

Proof. It is known that there is a finite set of primes S such that if k is not divisible by any of the primes in S, then $n(k) \ge k^{3/2}$. In case E has complex multiplication, this follows from classical results. If E does not have complex multiplication, the result follows from Serre [19], who showed that $\operatorname{Gal}(L_k/Q) \simeq GL_2(\mathbb{Z}/k\mathbb{Z})$ whenever k is coprime to a certain finite set of primes. In either case, we have $\sum \mu^2(k)/n(k) < \infty$.

Since L_q is unramified over Q except for q and a finite number of primes dividing the discriminant of E, we see that (i) of Theorem 1 is satisfied by Hensel. If $p \le x$ and p splits completely in L_q , then $E(\mathbb{F}_p)$ contains a (q,q) group and so $q^2 \mid (p+1-a_p)$. Therefore, $q \le 2\sqrt{x}$. We need to estimate

$$\sum_{\sqrt{x}/\log^2 x < q < 2\sqrt{x}} \pi_1(x, L_q/Q).$$

Since $L_q \supseteq Q(\zeta_q)$, we use the Brun-Titchmarsh theorem and get that the above sum is

$$\ll \sum_{\sqrt{x/\log^2 x} < q < 2/\sqrt{x}} \frac{x}{q \log(x/q)} \ll \frac{x}{\log x} \sum_{x} \frac{1}{q},$$

where the dash on the summation indicates the range $x^{1/2}/\log^2 x < q < 2x^{1/2}$. This last sum can be estimated easily, using

$$\sum_{p \le x} \frac{1}{p} = \log \log x + B + O\left(\frac{1}{\log x}\right).$$

We get

$$\sum' \frac{1}{q} = O\left(\frac{\log\log x}{\log x}\right).$$

Therefore,

ことに、これできることを表するとのできます。 ないのかいのかいかいかいかいかいかいかいかいかい

$$\sum' \pi_1(x, L_q/Q) = o(x/\log x)$$

as desired. This completes the proof.

6. Unconditional Theorems

Let E be an elliptic curve over Q with complex multiplication by an order in an imaginary quadratic field k. Then, one can show that

$$\operatorname{card}(p \leq x : E(\mathbb{F}_p) \text{ is cyclic}) \sim c_E(x/\log x)$$

as $x \to \infty$, without any hypothesis. Bombieri's theorem in algebraic number fields allows us to remove the presence of GRH in our previous theorem.

Suppose K is an algebraic number field and q is an ideal of O_K . The residue classes of integers coprime to q form a group under multiplication, the order of which is denoted $\phi(q)$. Two ideals of K, α and α , are said to be equivalent (mod α and α and α b⁻¹ = (α/β) with $\alpha \equiv \beta$ (mod* α), α , α and α b equivalent (mod α and α b equivalence conjugates (if any) of α/β are positive. This defines an equivalence relation and the number of equivalence classes is denoted α . The equivalence classes form an Abelian group under multiplication called the α -ideal class group. It has order

$$h(q) = h2^{r_1}\phi(q)/T(q),$$

h is the class number of K, r_1 is the number of real embeddings of K, and T(q) is the number of residue classes (mod * q) containing a unit.

The ray class field belonging to an ideal q is the Abelian extension L of K such that the set of prime ideals of K which split completely in L are precisely those prime ideals lying in the unit class of the q-ideal class group; that is, those prime ideals which are principal, generated by an element $\alpha \equiv 1 \pmod {q}$.

We can now state Bombieri's theorem in algebraic number fields. Set

$$\psi(z, q, a) = \sum_{\substack{\mathfrak{P} \sim a(q) \\ N_{K/Q}(\mathfrak{P}) < z}} \log N_{K/Q}(\mathfrak{P}).$$

LEMMA 3 (Wilson [22]). For each positive constant A, there is a B = B(A), such that if $Q = x^{1/(n+1)} \log^{-B} x$, n = [K: Q], then for $x \ge 1$,

$$\sum_{N_{K/Q}(\mathfrak{q}) < Q} \max_{z < x} \max_{\substack{\mathfrak{q}(\mathfrak{q}) \\ \mathfrak{q}(\mathfrak{q}) = 1}} \frac{1}{T(\mathfrak{q})} \left| \psi(z, \mathfrak{q}, \mathfrak{a}) - \frac{z}{h(\mathfrak{q})} \right| \ll \frac{x}{\log^A x}.$$

Since $T(q) \gg 1$ for an imaginary quadratic field, we see that for such a field K,

$$\sum_{N_{K/Q}(\mathfrak{q}) < Q} \max_{z < x} \max_{(\mathfrak{q}, \mathfrak{q}) = 1} \left| \psi(z, \mathfrak{q}, \mathfrak{a}) - \frac{z}{h(\mathfrak{q})} \right| \ll x \log^{-A} x.$$

We shall be applying this result when K is an imaginary quadratic field. Therefore $r_1 = 0$ above.

Given any elliptic curve E over an algebraic number field, consider the group of endomorphisms of E, denoted $\operatorname{End}(E)$. The addition law on E gives that $\operatorname{End}(E) \supseteq \mathbb{Z}$ because each of the maps $\varphi_n(x) = nx$, $x \in E$, is an endomorphism. If $\operatorname{End}(E) \neq \mathbb{Z}$, one says that E has complex multiplication. In this case, it is known that $\operatorname{End}(E)$ must be an order in an imaginary quadratic field k. (An order is a free \mathbb{Z} module of rank [k:Q] = 2 containing \mathbb{Z} .) All orders \mathscr{O} of k are of the form $\mathscr{O} = \mathbb{Z} + cO_k$, where c is the conductor of \mathscr{O} .

Now let E be an elliptic curve over Q which has complex multiplication by an order of an imaginary quadratic field k. If m is a natural number, let E_m be the m-division points of E. Define $L_m = k(E_m)$. Then it is known that L_m/k contains the ray class field k_m of k corresponding to the ideal mO_k . (See Lang [12, p. 216].)

Lemma 4. Let E be an elliptic curve over Q with complex multiplication by an order $\mathcal O$ in k. There is an ideal f depending only on E such that

是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也

$$k_m \subseteq L_m \subseteq k_{im}$$

where k_m and k_{lm} are the ray class fields of k of levels m and lm, respectively.

Proof. As E has complex multiplication, L_m/k is Abelian and hence is contained in a ray class field. By class field theory, it suffices to determine the subgroup H of the ideal class group k_A^x such that L_m is class field to H. That is, we determine the subgroup of k_A^x which fixes L_m . Let $\varphi: k_A^x \to k$ be the homomorphism such that $\varphi(x)/x_\infty$ is the grössencharacter of E. Then, we know

$$\varphi(s) s^{-1} \mathcal{O} = \mathcal{O}.$$

The main theorem of complex multiplication (see Shimura [20, p. 211]). gives that $s \in k_A^x$ fixes L_m if and only if

$$\xi(\varphi(s) s^{-1}t) = \xi(t)$$
 for all $t \in (1/m) \mathcal{O}$,

where ξ is an isomorphism of \mathbb{C}/\mathscr{O} to E. Hence, as $\varphi(x) = x$ for all $x \in k$, we deduce that

$$\varphi(s) s^{-1} \in U_{\varphi} \cap U_{\mathscr{C}} \cap U_{m\mathscr{C}},$$

where

$$U_{\sigma} = \ker \varphi,$$

$$U_{\mathcal{C}} = \{ s \in k_{A}^{x} : s\mathcal{O} = \mathcal{O} \},$$

$$U_{m\mathcal{C}} = \{ s \in k_{A}^{x} : s \equiv 1 \pmod{m\mathcal{O}} \}.$$

 $\alpha \in k$ if $s = \alpha r$ $s \in k^x(U_{\omega} \cap U_{\sigma} \cap U_{mc}).$ Conversely, Thus, $r \in U_{\alpha} \cap U_{\alpha} \cap U_{m\alpha}$, then

$$\varphi(s) = \varphi(\alpha) \varphi(r) = \alpha,$$

and so $\varphi(s) s^{-1} \mathcal{O} = \mathcal{O}$, $\varphi(s) s^{-1} \in \ker \varphi$, and s fixes L_m . We conclude that Lm is class field to

$$H=k^{x}(U_{o}\cap U\mathscr{O}\cap U_{m\mathscr{O}}).$$

But then, if $f_{\varphi} = \text{conductor of } \varphi$ and c is the conductor of $\mathscr O$ and we set $f = lcm(f_{\omega}, c)$, then we see that

$$k^x U_{m\mathcal{C}_k} \supseteq H \supseteq k^x U_{m\mathcal{C}_k}$$

so that

$$k_m \subseteq L_m \subseteq k_{im}$$

as desired.

This lemma allows us to deduce that if $\mathfrak P$ is a prime ideal of O_k which splits completely in L_m , then $\mathfrak{P} \sim \mathfrak{a}_1$, or \mathfrak{a}_2 ,..., or \mathfrak{a}_t (mod $\mathfrak{f} mO_k$), with tbounded because $[k_{im}:L_m]$ is bounded.

LEMMA 5. The number of $\alpha \in O_k$, with $N_{k/Q}(\alpha) \leq x$, and $\alpha \equiv 1$ $(\text{mod } mO_k)$ is $O(x/m^2)$.

Proof. Let 1, λ be an integral basis of O_k . Then $\alpha = a + b\lambda$ for some $a, b \in \mathbb{Z}$. Therefore, a - 1 = mc, b = md for some $c, d \in \mathbb{Z}$. If $k = Q(\sqrt{-D})$, we have either $a^2 + Db^2 \le x$, or $(a + b/2)^2 + b^2D/4 \le x$. In either case, $a=O(x^{1/2})$ and $b=O(x^{1/2})$. Since $m \mid b$, and $m \mid (a-1)$, we get a total of $O(x/m^2)$ possibilities for α .

We now find an asymptotic formula for a weighted sum over the prime

ideals $\mathfrak P$ of O_k such that $N_{k/Q}(\mathfrak P)\leqslant x$, and $\mathfrak P$ does not split completely in L_q for all primes q. Set

$$\phi(x, L_m/k) = \sum_{l=1}^{l} \psi(x, \mathsf{f} m O_k, \mathfrak{a}_l).$$

We estimate

$$T(x) = \sum_{m=1}^{\infty} \mu(m) \phi(x, L_m/k).$$

Let us write

$$T(x) = \sum_{m < x^{1/6/\log B/2}x} + \sum_{m > x^{1/6/\log B/2}x}$$

= $\Sigma_1 + \Sigma_2$

(say), where the constant B is soon to be specified. By Lemma 4,

$$\begin{split} & \mathcal{E}_2 \ll \sum_{m > x^{1/6/\log B/2_X}} \phi(x, L_m/k) \\ & \ll (\log x) \sum_{m > x^{1/6/\log B/2_X}} x/m^2 \\ & \ll x^{5/6} (\log x)^{1+B/2}. \end{split}$$

In order to estimate Σ_1 , we make use of Lemma 3 with K=k, $Q=x^{1/3}\log^{-B(A)}x$. We note that $[L_m:k] \ll h((m))$ and write

$$\Sigma_1 = \sum' \mu(m) \frac{x}{[L_m:k]} + \sum' \mu(m) \left\{ \phi(x,L_m) - \frac{x}{[L_m:k]} \right\},\,$$

where the dash on the summation indicates that $m < x^{1/6}/\log^{B/2} x$. On the last sum, we have to estimate

$$\sum \left| \phi(x, L_m/k) - \frac{x}{[L_m: k]} \right|.$$

If m is in the specified range, then $N_{k/Q}(mO_k) \le x^{1/3}/\log^B x$. Lemma 3 implies that this sum is

$$O(x/\log^A x)$$
.

If we choose A=2, then B=B(A) is given by Lemma 3 and is now specified. Finally,

$$T(x) = \sum_{i=1}^{n} \mu(m) \frac{x}{[L_m : k]} + O(x \log^{-A} x)$$

and since

$$\sum_{m>x^{1/6/\log B/2}x} [L_m:k]^{-1} \ll \sum_{m>x^{1/6/\log B/2}x} m^{-3/2}$$

$$= O(x^{-1/12} \log^{B/4} x),$$

we get

$$T(x) = x \sum_{m=1}^{\infty} \mu(m) [L_m : k]^{-1} + O(x \log^{-A} x)$$

for any A>0. Since the number of prime ideals $\mathfrak P$ of k with degree $\geqslant 2$ and $N_{\kappa/Q}(\mathfrak P)\leqslant x$ is $O(x^{1/2})$, we deduce that T(x) enumerates those prime ideals, with a weight of $\log N_{\kappa/Q}(\mathfrak P)$, which do not split completely in any L_q .

This settles the question over k. To "come down to Q," we need to make use of

LEMMA 6. If
$$m > 2$$
, then $k(E_m) = Q(E_m)$.

Proof. If we can show $k \subseteq Q(E_m)$, then we are done. Let $\tau \in \operatorname{Gal}(\overline{Q}/Q)$; fix $Q(E_m)$. Let k be identified with its normalized embedding in $\operatorname{End}_{\mathbb{C}}(E)$ as in Shimura [20, p. 113]. Then, we show that τ fixes k if m is greater than 2, so that the result would follow by Galois theory. Suppose not. Then τ restricted to k is complex conjugation. Let $\varphi_{\lambda} \in \operatorname{End}(E)$ be given by $\varphi_{\lambda}(x) = \lambda x$. For $x \in E_m$, we have $\varphi_{\lambda}(x) \in E_m$ so that

$$\tau(\varphi_{\lambda}(x)) = \varphi_{\lambda}(x) = \lambda x.$$

On the other hand,

$$\tau(\varphi_{\lambda}(x)) = \tau(\lambda x) = \tau(\lambda) \ \tau(x) = \overline{\lambda} x.$$

Therefore, $(\bar{\lambda} - \lambda) x = 0$ for all $x \in E_m$. Hence,

$$2\operatorname{Im}(\lambda) \equiv 0 \qquad (\operatorname{mod} m\mathscr{O})$$

for all $\lambda \in \mathcal{C}$. In particular, $2\sqrt{-D} = mb\sqrt{-D}$ or $\sqrt{-D} = mb\sqrt{-D}/2$, so that mb = 2 and therefore $m \mid 2$. This completes the proof.

This lemma shows that $Q_m = L_m$ for m squarefree and >2. The sum

$$T_0(x) = \sum_{\substack{p \text{ does not} \\ \text{split completely} \\ \text{in any } Q = IQ, \ p \le x}} \log p$$

can be written as

$$T_0(x) = \sum_{m=1}^{\infty} \mu(m) \phi_0(x, Q_m/Q),$$

where

$$\phi_0(x, Q_m/Q) = \sum_{\substack{p \text{ splits comp} \\ \text{in } Q_m, p \leqslant x}} \log p.$$

Now, T(x)/2 is the number of primes $\leq x$, weighted by $\log p$, which split completely in k but not in any L_m/Q . Taking into account the primes which do not split in k, we find by using the prime number theorem for k/Q, that for any A > 0,

$$x/2 + T(x)/2 + O(x \log^{-A} x)$$

is the weighted enumeration of primes $\leqslant x$ not splitting completely in any L_m/Q . For m>2, $L_m=Q_m$ and so

$$T_0(x) \ge x/2 + T(x)/2 + \phi_0(x, L_2/Q) + \phi_0(x, Q_2/Q) + O(x \log^{-A} x)$$

$$= \sum_{m=1}^{\infty} \mu(m) \frac{x}{[Q_m : Q]} + O(x \log^{-A} x),$$

for any A > 0, by our previous calculation. Since we always have

$$\lim_{x\to\infty} T_0(x)/x \leqslant \sum_{m=1}^{\infty} \mu(m)[Q_m:Q]^{-1},$$

we deduce the asymptotic formula for $T_0(x)$.

We must relate this to f(x, Q). We have

$$(\log x^{1-\delta}) \sum_{x^{1-\delta}$$

where $\delta > 0$ and the dash on the summation means that we sum over those p for which $E(\mathbb{F}_p)$ is cyclic.

The above shows that

$$\frac{T_0(x)}{\log x} \leqslant f(x, Q) \leqslant \frac{T_0(x) - T_0(x^{1-\delta})}{(1-\delta)\log x}$$

Choosing $\delta = 2 \log \log x / \log x$ gives

THEOREM 3. For any elliptic curve E over Q with complex multiplication, we have

$$\lim_{x\to\infty}\frac{f(x,Q)}{x/\log x}=\sum_{m=1}^{\infty}\mu(m)[Q_m:Q]^{-1}.$$

ACKNOWLEDGMENTS

I would like to thank Bob Rumely and Professor H. M. Stark for their help and useful discussions.

REFERENCES

- E. ARTIN, "The Collected Papers of Emil Artin" (S. Lang and J. Tate, Eds.), Addison-Wesley, Reading, Mass., 1965; Math. Rev. 31, #1159.
- H. BILHARZ, Primdivisoren mit vorgegebener Primitivwurzel, Math. Ann. 114 (1937), 476-492.
- 3. P. Erdős, On a problem of Golomb, J. Austral. Math. Soc. 2 (1961), 1-8.
- C. F. GAUSS, "Disquisitiones Arithmeticae," Yale Univ. Press, New Haven, Conn./London, 1966.
- L. J. GOLDSTEIN, Some remarks on arithmetic density questions, in "Proceedings, Symposium in Pure Mathematics," St. Louis, Mo., Amer. Math. Soc., Providence, R. I., 1972.
- L. J. GOLDSTEIN, Analogues of Artin's conjecture, Trans. Amer. Math. Soc. 149 (1970), 431-442.
- 7. S. GOLOMB. Sets of primes with intermediate density, Math. Scand. 3 (1956), 264-274.
- P. HALL. The Eulerian functions of a group, Quart. J. Math. Oxford Ser. (2) (1936), 134-151.
- H. HEILBRONN. See A. WESTERN AND J. MILLER, Tables of indices and primitive roots, in "Royal Society Mathematical Tables," Vol. 9, p. xxxviii, Cambridge, 1968.
- 10. C. Hooley. On Artin's conjecture, J. Reine Angew. Math. 225 (1967), 209-220.
- J. LAGARIAS AND A. ODLYZKO, Effective versions of the Tchebotarev density theorem, in "Algebraic Number Fields" (A. Fröhlich, Ed.), Proceedings of the 1975 Durham Symposium, Academic Press, London/New York, 1977.
- 12. S. Lang. "Elliptic Functions," Addison-Wesley, Reading, Mass., 1973.
- S. LANG AND H. TROTTER, Primitive points on elliptic curves, Bull. Amer. Math. Soc. 83 (1977), 289-291.

- D. H. LEHMER AND E. LEHMER, Heuristics anyone?, in "Studies in Mathematical Analysis and Related Topics" (G. Szego et al., Eds.), Stanford Univ. Press, Stanford, Calif., 1962.
- H. W. LENSTRA, JR., On Artin's conjecture and Euclid's algorithm in gobal fields, *Invent. Math.* 42 (1977), 201-224.
- G. C. Rota, On the foundations of combinatorial theory, I. Theory of Möbius functions, Z. Wahrsch. Verw. Gebiete 2 (1964), 340-368.
- 17. J. P. SERRE, "Local Fields," Springer-Verlag, Berlin/New York, 1979.
- J. P. Serre, "Résumé des cours de l'année scolaire," 1977-78, Collège de France, Paris, 1979.
- J. P. Serre, Propriétés galoisiennes des points d'ordre fini des courbes élliptiques, Invent. Math. 15 (1972), 259-331.
- G. SHIMURA, "Introduction to the Arithmetic Theory of Automorphic Functions," Iwanami Shoten, Tokyo, 1971.
- P. J. Weinberger, A counterexample to an analogue of Artin's conjecture, Proc. Amer. Math. Soc. 35 (1972), 49-52.
- R. J. WILSON, The large sieve in algebraic number fields, Mathematika 16 (1969), 189-204.