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BASE CHANGE AND THE 

BIRCH-SWINNERTON-DYER CONJECTURE 

M. RAM MURTY AND V. KUMAR MURTY* 

Dedicated to the memory of Emil Grosswald 

1. Introduction. 

Let k be a number field andEan elliptic curve defined over k. It is well known 
that the set of k- rational points E(k) is a finitely generated abelian group. Let 
L k ( s) denote the £-series of E over k. This is defined for Re ( s) > 3/2 as an 
Euler product: 

v 

where v runs through all the finite places of k and for v coprime to the conductor 
of E, 

where 
Nv + 1- av 

represents the number of points of E mod v and Nv is the absolute norm of v. 

Birch and Swinnerton-Dyer conjecture that Lk(s) extends to an entire function, 
satisfies a suitable functional equation and at s = 1 has a zero of order equal to 
the rank of the group E ( k). 

If K is a finite extension of k, it is evident that 

rank E(K) 2:: rank E(k ). 
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482 M. R. MURTY AND V. K. MURTY 

This observation motivates several natural questions concerning LK(s). Given 

that Lk(s) extends to an entire function, does it follow that LK(s) extends to an 
entire function ? This is the first question. As we shall see below, this is related 

to the problem of base change in the Langlands program. An affirmative answer 
to this question leads us to inquire whether 

whenever K 2 k. 

In this paper, we prove the following theorems. 

Theorem 1. Let E be an elliptic curve defined over k. Suppose that E has 

complex multiplication (CM) and K is a finite extension of k. Then, LK(s) 

extends to an entire function of s. If K is Galois over k or if K is contained in 

a solvable extension of k, then LK(s )/ Lk(s) is entire. In particular, 

A classical conjecture of Taniyama predicts that every elliptic curve defined 

over Q occurs as a factor of the Jacobian of the modular curve. For CM elliptic 
curves, Shimura [11, 12] proved Taniyama's conjecture. If such is the case in gen-
eral, one can prove that for E defined over Q and K a finite solvable extension 
of Q, we have an analytic continuation of LK(s) . More generally, denote by Ak 
the adele ring of k and let !21( G £ 2 ( Ak)) be the space of automorphic representa-
tions of G£2(Ak)· Langlands [8] has shown how to attach an £-function L(s, 1r) 
for each 1r E !21( G £ 2 ( Ak)). He established the analytic continuation and the 
functional equation for each L(s,1r). It is suspected that Lk(s) (after a suitable 
translation) is equal to L(s,1r) for some cuspidal1r E !2t(G£2(Ak)). This we shall 
call the Taniyama conjecture over k (or the generalised Taniyama conjecture). 

Theorem 2. Suppose that E satisfies the Taniyama conjecture over k. If 

K is a solvable extension of k, then L K ( s) extends to an entire function and 

LK(s)/Lk(s) is entire. In particular, 

The theorems are highly reminiscent of the classical Aramata-Brauer theorem 
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BASE CHANGE AND THE BIRCH-SWINNERTON-DYER CONJECTURE 483 

that (K(s)/(k(s) is entire if K/k is a Galois extension. This was also proved in 
the case when K is contained in a solvable extension of k by Uchida [14] and van 
der Waall [15]. It is a conjecture of Dedekind that (K(s)/(k(s) is always entire 
if K is a finite algebraic extension of k. A similar conjecture can be made here 
for LK(s)/Lk(s) the truth of which would follow from the Langlands program. 

There are two key ingredients in the proof of these theorems. The first is the 
theory of base change as initiated by Saito, Shintani, Langlands [9] and further 
developed by Arthur-Clozel [1]. As we shall see, the constraints of Theorem 
2 are forced upon us by the present state of development of this theory. The 
second ingredient is a zero-counting formalism implicit in the work of Heilbronn 
[5] and Stark [13]. This formalism was made more explicit and applied to Artin's 
holomorphy conjecture in Kumar Murty [10] and R. Foote and K. Murty [4]. We 
will begin with the formalism first and then discuss base change. In the final 
section, we apply these ideas to complete the proofs of the theorems. 

2. Formalism. 

Our approach applies in a wider context of an £-function formalism which is 
satisfied by a variety of objects in number theory and algebraic geometry. Let 
G be a finite group. For every subgroup H of G and complex character 1/J of H, 
we attach a complex number n(H, 1/J) satisfying the following properties: 

(1) Additivity: n(H, 1/J + 1/J') = n(H, 1/J) + n(H, 1/J'), 
(2) Invariance under induction: n(G,Ind~ 1/J) = n(H,'Ij;). 

The formalism can be applied to the case when G is the Galois group of a 
normal extension K I k and n( H, 1/J) is the order of the zero at s = s0 of the Artin 
£-series attached to 1/J corresponding to the Galois extension K I K H. It can 
also be applied to the situation when E is an elliptic curve over k and n(H, 1/J) 
corresponds to the order of the zero at s = s0 of the "twist" by 1/J (see definition 
below) of L K H ( s) in the notation of section 1. 

Set 

where the sum is over all irreducible characters 1/J of H. Our first step is to show 
that 
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484 M. R. MURTY AND V. K. MURTY 

Proposition 1. Oaln =On. 

Proof. 
Oaln = L:n(G,x)xln 

= ~n(G,x) ( pxiH,tP)tP) 
where the inner sum is over all irreducible characters of H and the outer sum 
is over all irreducible characters of G. By Frobenius reciprocity, (xln>¢) = 
(x ,I nd~ 1/J) and so 

But now, by property (1), the inner sum is n(G,Ind~t/J) which equals n(H, 1/J) 
by property (2). Thus, Oaln =On. 

This immediately implies: 

Proposition 2. Let reg denote the regular representation of G. Suppose for 

every cyclic subgroup H of G, we have n(H, 1/J) ~ 0. Then n(G, x) is real for 

every irreducible character x of G and 

L n(G,x) 2 ~ n(G,reg)2 • 

X 

Proof. By Artin's theorem, every character can be written as a rational linear 
combination of characters induced from cyclic subgroups and so n( G, x) is real. 
By the orthogonality relations, 

On the other hand, 

By Proposition 1, 

(Oa,Oa) = L:n(G,x)2 • 

X 

(Oa, Oa) = l~l L IOa(g)l 2 • 
gEG 

Oa(g) = O(g)(g) = :L:n((g},t/J)t/J(g) 
.p 
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BASE CHANGE AND THE BIRCH-SWINNERTON-DYER CONJECTURE 485 

which is bounded by n( G, reg) in absolute value by our hypothesis and property 

(1). This completes the proof. 

Similar reasoning implies 

Proposition 3. Let p be an arbitrary character of G. Suppose for every cyclic 

subgroup H of G, and irreducible character 'ljJ of H, we have n(H, PIH 0 'ljJ) ~ 0, 

then n( G, p 0 x) is real for every irreducible character x of G and 

L n(G, p 0 x)2 ~ n(G, p 0 reg)2 • 

X 

3. Base change and automorphic induction. 

Let K/k be a Galois extension and let G = Gal(K/k). If pis an irreducible 

representation of G, let L(s, p, Kjk) denote the Artin L-series attached top. We 
can extend the definition of Artin L-series to an arbitrary representation of G 

by additivity: 

L(s, Pl EB p2, Kjk) = L(s, Pll Kjk)L(s, P2, Kjk). 

If now 'ljJ is a representation of a subgroup H of G, then L(s, 'ljJ, K/ KH) is the 
Artin L-series belonging to the extension K j K H where K H denotes the field 

fixed by H. A simple calculation shows that Artin L-series are invariant under 
induction: 

L(s,Ind<fi'IjJ, Kjk) = L(s, '1/J, KjKH). 

Recall the Langlands' reciprocity conjecture [8]: for each p, there is 1r(p) E 

2t(GLn(Ak)) (n = deg p) so that 

L(s, p, Kjk) = L(s, 1r). 

It is easy to see that 

But Ind5}1 = regH is the permutation representation on the cosets of H. This 
suggests that we make the following definition. Let 1r E 2!( G Ln ( Ak)). For each 

unramified 1r v, let Av E G Ln (C) be the semi-simple conjugacy class attached by 
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486 M. R. MURTY AND V. K. MURTY 

Langlands [8]. If in addition, v is unramified in K, define 

where av is the Artin symbol of v. The idea is that there should be a B(1r) E 

2l( GLn(AM )), where M = KH, so that the v-factor in the definition of L(s, B(1r)) 

coincides with Lv(s, B(1r)) as defined above for all but finitely many places v. 

The problem of base change is to determine when this map exists. 

For n = 2, this was done by Langlands [9]. He then used these ideas to deal 
with the tetrahedral case of Artin's conjecture. The case n = 3 was considered 

by Flicker [2]. For arbitrary n, it is a recent breakthrough achieved by Arthur 

and Clozel [1]. Again, the situation is for M / k cyclic. 

Now suppose that 1/J is a representation of H. Corresponding to 1/J there 

should be a 7f E 2l(GLn(AM)) where n = deg't/J. But the invariance of Artin 

£-series under induction implies that there should be an I(1r) E 2l(GLnr(Ak)) 

(r = [G : H]) so that 

L(s,I(1r)) = L(s,Indf£1/J, K/k). 

This map 7f t--t I(1r), called the automorphic induction map, is conjectured to 
exist. Again, Arthur and Clozel [1] showed this exists when M/k is cyclic and 
n is arbitrary. Thus, if M/k is a solvable extension of k, the base change and 
automorphic induction maps exist. 

We have used the theory of Artin £-series to motivate the discussion of base 
change and automorphic induction. We will now use the existence of these maps 
to prove Theorems 1 and 2. We state the theorem of Arthur and Clozel [1) for 
future reference. We first need a few definitions. 

Denote by Mr a generic r by r matrix and by Ir the r x r identity matrix. 
The standard parabolic subgroups of G Ln are in one-one correspondence with the 
partitions of n = n 1 + · · · + nr. The standard parabolic subgroup corresponding 

to a partition n = n 1 + · · · + nr consists of matrices of the form 

and any parabolic subgroup is a GLn conjugate of a standard parabolic subgroup. 
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Any parabolic subgroup P has a decomposition (called the Levi decomposition) 

of the form P = M N where N is the unipotent radical. In the case of a standard 

parabolic, M and N can be described as consisting of matrices of the form 

respectively. An automorphic representation 1r of GLn(Ak) is said to be induced 

from cuspidal if there is a cuspidal unitary representation a of M(Ak) where 

P = MN is a k-parabolic subgroup of GLn such that 

I d GLn(Ak} ( 1) 
7r = n M(Ak)N(Ak) a® . 

If M is a standard parabolic subgroup corresponding to the partition n1 + · · · + 
nr of n, then a is of the form a1 ® · · · ® ar with ai E !l(GLn; (Ak)). In this 
case, we write 

7r = a1 x · · · X ar. 

Of course, a cuspidal automorphic representation of GLn(Ak) is (trivially, by 
definition) induced from cuspidal. 

Proposition 4. (Arthur and Clozel [1] ) Let E/F be a cyclic extension and 
1r, TI denote representations which are induced from cuspidal of GLn(AF) and 
GLn(AE) respectively. Then B(1r) and I(TI) exist. 

We will also need results concerning the Rankin-Selberg convolution of two 
£-functions. Let 1r and a be two cuspidal, unitary automorphic representations 
of GLn(Ak) and GLm(Ak) respectively. Let S be a finite set of primes such that 
1r and a are unramified outside of S. Form the £-function 

L(s, 7r ®a)= IT det(1- Au,v ® A1r,v Nv-s)- 1 

v~S 

where A1r,v and Au,v are the semi-simple conjugacy classes of GLn(C) and 
G Lm (C) attached to 1r v and a v respectively. 

The following proposition follows, in principle, from the work of Jacquet, 
Piatetski-Shapiro and Shalika [7], but a proof can be derived also from the theory 
of Eisenstein series as in Arthur and Clozel [1]. ( An introduction to the work 
of [7] can be found in Jacquet [6].) 
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488 M. R. MURTY AND V. K. MURTY 

Proposition 5. The £-function L( s, 1r 0 o-) extends to a meromorphic function 

of s. 

The following is a simple consequence of the definitions and was used by 
Arthur and Clozel to construct B(1r) and I(o-) in Proposition 4. 

Proposition 6. Let E/F be a cyclic extension and suppose 1r E 2l(GLn(AF)) 
and o- E 2l(GLm(AE)). Then, the Rankin-Selberg £-function satisfies the formal 

identity: 

L(s, B(1r) 0 o-) = L(s, 1r 0 I(o-)). 

4. Lemmas. 

We record in this section the necessary facts from the theory of elliptic curves 

that will be needed in the proofs of Theorems 1 and 2. 

Lemma 1. (Deuring (2]) Let E be an elliptic curve defined over k. Suppose 

that E has CM by an order in an imaginary quadratic field F. If k 2 F, then 

Lk ( s) is the product of two Heeke L-series of k. If k R_ F, then Lk ( s) is equal to 

a Heeke L-series of the quadratic extension kF of k. 

Lemma 2. The generalised Taniyama conjecture is true for CM elliptic curves. 

Remark. This was proved by Shimura [11, 12] for elliptic curves over Q using 

Weil's converse theorem. 

Proof. Suppose that E is defined over k and has CM by an order in F. If 

k 2 F, then by Lemma 1, 

A Heeke character of k is an automorphic form ofGL1 (Ak)· Thus, the the pair of 
Heeke characters 'ljJ1 , 'ljJ2 corresponds to the induced from cuspidal representation 

of GL2(Ak)· If k R_ F, then by Lemma 1, Lk(s) equals a Heeke £-series L(s, ¢>) 

of kF, where¢> E 2l(GL1 (AkF)). We can apply proposition 4 to the quadratic 

extension kF/k to obtain I(¢>) E 2l(GL2(Ak)) with 

L(s, ¢>) = L(s, !(¢>)). 

This completes the proof. 
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Remark. This lemma could have been established by using the earlier work of 
Jacquet and Langlands as we are dealing with only quadratic extensions and the 

theory of GL2 applies. 

We now recall the definition of Artin-Hecke L-series [16]. Let K/k be a Galois 
extension with group G. Let L(s, '1/J) be a Heeke L-series of k and p a represen-
tation of G. Weil [16] defined the Artin-Hecke L-series L(s,'lj; Q9 p,Kjk) as an 
Euler product over all places v of k, which at the finite unramified places v of k 
is 

Using Brauer induction and class field theory, he proved [16] the following. 
Lemma 3. Each of these L-series L(s, 'ljJ Q9 p, K/k) extends to a meromorphic 

function and satisfies the identity: if¢ is a representation of a subgroup H of G, 

then 

5. Proof of Theorem 1. 

Fix so E C. Now suppose that K/k is a Galois extension with group G. 

Suppose first that F ~ k. Then 

where 'I/J1, 'I/J2 are two Heeke characters of k. For each subgroup H of G, and 
character ¢ of H, the Artin-Heeke L-series 

is meromorphic (Lemma 3). Let us define n(H, ¢) to be its order at s = s0 . If 
¢(1) = 1, then n(H,¢) 2::0. Moreover, the numbers {n(H,¢)}(H,¢} clearly have 
the properties (1) and (2). By proposition 2, we deduce that 

n(G, 1):::; n(G, reg). 

Since Lk(s,reg) = LK(s), we deduce that LK(s)/Lk(s) is entire. 
Now we consider the case F ~ k. Let us set M = Fk. If K 2 M, then we 

know that LK(s)/LM(s) is entire and so, it suffices to prove that LM(s)/Lk(s) 
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is entire. But this is immediate since 

Here, pis the nontrivial element of Gal(Mik) and 'lj;(P) is the conjugate Heeke 

character. 

If K R. M, let us set M' = K M. Then M' I M is Galois and 

Now, for each subgroup H of Gal(M' IM) and character¢ of H, define 

where we have written R for the fixed field of H. The definition makes sense 
because Lemma 3 ensures that the L- function is meromorphic. Once again, it 
is easy to verify that these numbers have the properties (1) and (2), and that 

n( H, ¢) ~ 0 if H is cyclic. We apply Proposition 2 and deduce as before that 

= 
L(s,'lj; o NM'/M) 

L(s, 'lj;) 

is entire. This completes the proof in the CM case when K I k is Galois. 

If now, K is contained in a solvable extension of k, then the normal closure of 
K is solvable, and we proceed as follows. We prove the theorem by induction on 
[K: k]. Let k denote the Galois closure of Kink. Set G = Gal(Kik). Let H 

be the subgroup of +G corresponding to K. It suffices to prove the result when 
H is a maximal subgroup of G because if G :2 I :2 H and M is the subfield fixed 

by I, then 

The first factor is entire by induction and the second factor is entire since we 

can take M to correspond to a maximal subgroup of G. 

Let A be a minimal normal subgroup. Then, it is elementary abelian and in 

particular A =f. 1. Thus, H A = H or G. If H A = H, then A ~ H. But then the 
subfield M fixed by A is normal over k and contains K and so M = k, contrary 
to A =f. 1. Thus, H A = G. Also, H n A is a normal subgroup of G and also 
abelian, as it is contained in A. Hence, H n A = 1 as A is minimal. 
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BASE CHANGE AND THE BIRCH-SWINNERTON-DYER CONJECTURE 491 

Let us write 

Ind~1H -1a = L mxx 
X 

where mx are non-negative integers and x ranges over irreducible characters of 
G. For any irreducible character ¢ of A, let Tq, be the inertia group of¢: 

Tq, ={a E G: ¢u = ¢}. 

Of course Tq, contains A. The main result of [14] and [15] states that for each 
x with mx =f:. 0, there exists an irreducible character ¢ of A and an abelian 
character 'lj;x of Tq, such that 

X Ind~q,'lj;X. 

IfF~ k, then 

LK(s)/Lk(s) =IT (L(s,'lj;10 x)L(s,'lj;2 0 x))m"' 
X 

By (*) and Lemma 3, 

and the latter object is entire, being a Heeke £-series of a non-trivial character. 
IfF~ k, then we proceed as follows. Consider the Galois extension KF/k 

and X as in(*). Let G' = Gal(KF/k) and 

H' = Gal(KF/F). Let Rq, be the fixed field of Tq,. Then, we may view 'lj;x 

as a character of H q, = Gal ( k F / Rq,) and we have the identity 

Moreover, 

Now, we have the identity 

LK(s)/Lk(s) =IT L(s,'lj; 0 (Ind~~'lj;x)IH')mx. 
X 

It follows from the above that 

LK(s)/ Lk(s) =IT L(s, 'tP 0 Ind~fnHq, ('lj;xiH'nHq,)rx 
X 
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and by the argument given at the end of the previous paragraph, we see that 
each of the factors is entire. This completes the proof. 

6. Proof of Theorem 2. 

If Taniyama's conjecture is true forE over k, then Lk(s) equals L(s,1r) for 
some 1r E '.2l(GL2(Ak)). We will first handle the situation when K/k is a cyclic 
extension with group G. Since the base change B(1r) of 1r to K exists, LK(s) is 
an entire function. Moreover, we know that 

LK(s) =IT L(s, 1r ® p) 
p 

where the product is over irreducible characters of Gal(K/k). (Indeed, if E is an 
elliptic curve over k and K/k is a finite extension, the £-function of E over K 

is given by the family of £-adic representations 

Pi: Gal(k/K)---+ Aut(Ti(E;K)) 

where Ti denotes the Tate module. Since Ti(E;K) = Ti(E;k) as Gal(k/ K)-

modules, it follows that Pi is the restriction of the representation 

Thus, 

'lj;i: Gal(k/k)---+ Aut(Ti(E;k)). 

L(s, Pi)= L(s, '1f;ilaal(k/K)) = L(s, 'lj;i ®reg) =IT L(s, 'lj;i ® p). 
p 

By Artin reciprocity, p corresponds to a Heeke character of finite order of k. 

Thus 1r ® p E !21(GL2 (Ak)) and is cuspidal, and so each L(s, 1r ® p) is entire. 
Thus LK(s)/Lk(s) is entire. Now, if K/k is a solvable extension, we proceed in 
cyclic stages with the help of the base change map. 

7. Concluding remarks. 

The method is capable of further generalization and application. First, an 
application of Proposition 3 to the Artin £-series L(s, p, K/k) corresponding to 
a Galois representation yields the following result which can be thought of as a 
generalization of the Aramata-Brauer theorem: 

Theorem 3. Let K/k be a Galois extension with group G. Let p be an irre-

ducible representation of G and L( s, p, K / k) the corresponding Art in L-series. 
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BASE CHANGE AND THE BIRCH-SWINNERTON-DYER CONJECTURE 493 

Then, 

L(s, p 0 reg, Klk)IL(s, p, Klk) 

is entire. 

An argument similar to that used to prove Theorem 2 also yields the following. 

Theorem 4. Let 1r be an automorphic cuspidal representation of G Ln ( Ak). If 

K is a solvable extension ofk and B(1r) denotes the base change of1r to K, then, 

L(s, B(1r))l L(s, 1r) 

is entire. 

If n = 1 and K I k is a Galois extension, then L( s, B( 1r)) I L( s, 1r) is entire by 
an application of Lemma 3 . This has arithmetic consequences. For instance, 
the zeta function of a CM abelian variety over an arbitrary number field is 
given in terms of Heeke £-series (see Yoshida [17]) and therefore the analogue 
of Theorem 1 applies to such varieties. There are other varieties for which the 
zeta functions have been identified. For instance, the Jacobians of the modular 
curves have zeta function equal to products of £-functions attached to modular 

forms by a theorem of Shimura. Recent work of Kottwitz identifies the zeta 
functions of other classes of Shimura varieties. In both instances, the appropriate 
generalization of Theorem 2 applies. 

Acknowledgement. The authors would like to thank L. Clozel and H. Kisilevsky 
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