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§1. Introduction.

A well-known conjecture of Emil Artin predicts that every natural number a unequal to

unity or a perfect square is a primitive root (mod p) for infinitely many primes p. In 1967, C.

Hooley [Ho1] proved this conjecture assuming the generalized Riemann hypothesis (GRH)

for the Dedekind zeta functions of certain Kummer extensions. In fact, he establishes an

asymptotic formula for the number of such primes up to x. He also remarks in [Ho2] that

to deduce a positive density of primes for which a is a primitive root mod p, it suffices to

assume that the corresponding Dedekind zeta functions of the number fields Q(a1/q) do

not vanish for <(s) > 1− 1/2e.

In 1984, Rajiv Gupta and the author [GM1] proved that given three prime numbers

a, b, c, then one of

{ac2, a3b2, a2b, b3c2, b2c, a2c3, ab3, a3bc2, bc3, a2b3c, a3c, ab2c3, abc}

is a primitive root (mod p) for infinitely many primes p. Their method used a lower bound

sieve inequality implied by a theorem of Fouvry and Iwaniec. In [GMM], the authors

improved upon this to show that one of the seven numbers

{a, b, c, a2b, ab2, a2c, ac2}

is a primitive root for infinitely many primes p ≤ x. By using the Chen-Iwaniec switch-

ing and the celebrated theorem of Bombieri, Friedlander and Iwaniec, Heath-Brown [HB]

refined the above result to show that in fact one of a, b, c is a primitive root (mod p) for

infinitely many primes p. The number of such primes obtained by the method is

� x

log2 x
.

In [HB], the result is slightly more general: given three non-zero integers a, b, c which

are multiplicatively independent such that none of a, b, c,−3ab,−3ac,−3bc, abc is a perfect
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square, then one of a, b, c is a primitive root mod p for infinitely many primes p. In this

paper, we will shew that

Theorem 1. Let a, b, c be three non-zero integers which are multiplicatively independent

such that none a, b, c,−3ab,−3ac,−3bc, abc is a perfect square. Suppose further that for

some ε > 0, and each prime q, the Dedekind zeta function of Q(a1/q, b1/q, c1/q) has no

zeroes in <(s) > 1− ε. Then one of a, b, c is a primitive root mod p for a positive density

of primes p.

In 1976, Lang and Trotter [LT] formulated elliptic analogues of the Artin primitive

root conjecture. Suppose E is an elliptic curve over Q with a rational point of infinite

order. A natural question is how often does the prescribed point generate E(Fp), the

group of points (mod p) ?

More precisely, let a be a rational point of infinite order. The problem is to determine

the density of primes p for which E(Fp) is generated by a, the reduction of a( mod p).

(Here, in addition to primes of bad reduction, we may need to exclude primes dividing

the denominators of the co-ordinates of a.) Such a point will be called a primitive point

for these primes. Lang and Trotter conjectured that the density of primes for which a

is a primitive point always exists. This is the elliptic analogue of Artin’s primitive root

conjecture.

Of course, situations may (and do) arise when the density is zero. In such a case the

set of primes for which a is a primitive point is finite (and often empty). If this is the

case, then it is so for obvious reasons. However, if the density is positive, then there are

infinitely many such primes.

In considering the elliptic analogue, we see that two assertions are being made about

a prime p for which a is a primitive point. First E(Fp) is cyclic and second, that it is

generated by the image of a (mod p). Is it even true that E(Fp) is cyclic infinitely often ?

It was Serre [S] who pointed out the relevance of this question. In a course at Harvard

in the fall of 1976, he proved that Hooley’s method of proving Artin’s primitive root

conjecture can be adapted to show that the set of primes p for which E(Fp) is cyclic has a

density, assuming the GRH for the Dedekind zeta functions of fields obtained by adjoining

the `-division points of E to Q. (These fields should be viewed as the elliptic analogues of

the classical cyclotomic extenstions.)
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In 1980, the author [RM] eliminated the use of GRH in Serre’s argument for elliptic

curves with complex multiplication (CM). More precisely, he proved that the number of

primes p for which E(Fp) is cyclic is

δE
x

log x
+ o(

x

log x
)

where

δE =
∞∑

k=1

µ(k)
n(k)

,

and n(k) = [Q(E[k]) : Q] is the degree of the extension obtained by adjoining the k-division

points of E to Q. As noted by Serre, δE > 0 if and only if E has an irrational 2-division

point. That is, if E has the Weierstrass model

y2 = x3 + cx + d

we require that x3 + cx+ d has an irrational root. It is not difficult to see that the density

is positive in this case. Indeed, for ` prime and greater than some constant C (say),

n(`) � `2

in the CM case and

n(`) � `4

in the non-CM case, by a celebrated theorem of Serre. Moreover, since Q(E[`]) contains

the `-th cyclotomic field, we easily see that

δE ≥ 1
6

∏
2<`≤C

(
1− 1

`− 1

) ∏
`>C

(
1− 1

n(`)

)
> 0.

In the non-CM case, it is still unknown if E(Fp) is cyclic for a positive density of

primes whenever E has an irrational 2-division point. However, R. Gupta and the author

[GM2] proved that if E has an irrational 2-division point, the number of primes p for which

E(Fp) is cyclic is

� x

log2 x
.

The method used to prove Theorem 1 can be utilised to prove the following:
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Theorem 2. Let E be an elliptic curve over Q without complex multiplication. Suppose

E has an irrational 2 division point. Suppose for some ε > 0, and each prime q, the

Dedekind zeta function of the fields Q(E[q]) does not have any zeroes in the region <(s) >

1− ε, then E(Fp) is cyclic for a positive density of prime numbers.

Returning to the original conjecture of Lang and Trotter, it was recognized by Serre,

Lang and Trotter that the method of Hooley cannot be adapted to the elliptic curve

case owing to the large error terms introduced by the Chebotarev density theorem. This

problem was, however, circumvented by R. Gupta and the author [GM3] in the CM case.

They proved: if E is an elliptic curve /Q, with CM, and a is a rational point of infinite order,

then the number of primes p for which E(Fp) is generated by a has a density, assuming the

GRH for the Dedekind zeta functions associated to extensions of the form Q(E[`], `−1a).

(These extensions are the elliptic analogues of the classical Kummer extensions.) If E

is an elliptic curve over Q with CM by k, then k can be one of nine fields. If k =

Q(
√
−11), Q(

√
−19), Q(

√
−43), Q(

√
−67), or Q(

√
−163), then it is shown in [GM3, p. 30]

that the density is positive. It is also shown to be positive in certain instances when k is

one of the four remaining fields. At the end of their paper, they proved: there is a finite

set S which can be given explicitly, such that for some a ∈ S, E(Fp) = 〈a〉( mod p) for

infinitely many primes p, provided the Mordell-Weil rank of E(Q) ≥ 6. They did not give

the size of S, but an examination of their paper shows that |S| = 218.

We will shew:

Theorem 3. Let E be an elliptic curve with CM. Suppose

{P1, ..., P6}

are independent points of infinite order in E(Q). Then, for infinitely many primes p, one

of {P1, ..., P6} generates a subgroup of E(Fp) of index bounded by 4.

Remark. This is a substantial improvement of the result of Gupta & Murty. Note that

we assume rank of E(Q) ≥ 6. Mestre [M] has shown that there are infinitely many elliptic

curves E defined over Q with j-invariant equal to zero (and hence with CM) such that the

rank of E(Q) ≥ 6. Such curves are twists of the curve

y2 = x3 + 1.
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By a more careful and detailed analysis, it should be possible to obtain index 1 in the case

E has an irrational 2-division point.

We will now give a brief description of the basic strategy involved in proving these

theorems. Let us first consider Theorem 1. In [HB], the lower bound sieve method,

combined with the Chen-Iwaniec switching method gave rise to

� x

log2 x

primes p ≤ x such that either p − 1 = 2eq for some odd prime q or p − 1 = 2eq1q2 with

q1 < q2 and q1 satisfying pα < q < pδ for some α > 1/4 and δ < 1/2. By imposing a

suitable initial congruence condition, one can also ensure that none of a, b, c is a quadratic

residue mod p for these primes and that e is bounded. It is now clear that if p−1 = 2eq with

q prime, then each of a, b, c is a primitive root mod p for all but finitely many such primes.

So we only need to deal with the second case. By essentially the pigeonhole principle,

one can show that for almost all of these primes, the subgroup generated by a, b, c mod p

cannot have order < x1−α which would be the case if either q1 or q2 divides the index of

[F∗p : 〈a, b, c〉]. But now, there are only two possible orders for each of a, b, c. Two must

have the same order by pigeonhole again! Once more by the pigeonhole principle, this can

happen for at most O(x1−2δ) such primes p ≤ x.

The essential ingredients in the proof are the sieve exponents of α > 1/4 and δ < 1/2.

As indicated in [HB, p. 34], the theorem of Bombieri, Friedlander and Iwaniec alluded

to above gives α = .276. Since all that is needed in the proof is an exponent greater

than 1/4, there is some room for introducing certain degrees of freedom. We relax the

conditions on p − 1 and consider primes of the form p − 1 = 2emq or p − 1 = 2emq1q2

where q, q1, q2 are primes satisfying the same constraints above and m < xε for some small

ε > 0. This relaxation produces a positive proportion of primes satisfying these conditions.

The argument briefly indicated above shows that for almost all these primes, one of a, b, c

has order divisible by 2eq (in the first case) and 2eq1q2 (in the second case). We still

need to rule out the possibility that a prime divisor q of m can divide the index of one of

[F∗p : 〈a〉], [F∗p : 〈b〉], [F∗p : 〈c〉]. This is done by the effective Chebotarev density theorem.

This theorem implies that the number of primes p ≤ x for which a prime q divides the

index [F∗p : 〈a〉] is
lix

q(q − 1)
+ O(x1−ε)
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uniformly for q < xε if we are assuming a quasi-Riemann hypothesis of the type stated in

Theorem 1. (The best unconditional result is due to F. Pappalardi [Pa, p. 40] has proved

an asymptotic formula of the type

lix
q(q − 1)

+ O(
x

logA x
)

uniformly for q < log1−η x.) Invoking this result in the appropriate range leads to Theorem

1.

Theorems 2 and 3 are proved analogously using the elliptic analogues of the appro-

priate pigenhole arguments. (See §6 below.)

Acknowledgements. It is a pleasure to thank C.S. Rajan, V. Kumar Murty, John

Friedlander and Henryk Iwaniec for useful discussions and the Institute for Advanced

Study for its hospitality and financial support.

§2. Sieve preliminaries

For a positive integer k, we define τk(n) as the the number of ways of writing n as a

product of k positive integers. An arithmetical function λ(q) is said to be of level Q and

of order k if

λ(q) = 0 for q > Q

|λ(q)| ≤ τk(q).

λ is well-factorable if for any Q1, Q2 ≥ 1, with Q1Q2 = Q, there exist two arithmetical

functions λ1, λ2 of levels Q1, Q2 and of order k such that λ = λ1 ∗λ2. (Here ∗ indicates the

Dirichlet convolution of two arithmetical functions.) Well-factorable coefficients appear

in the error term of the Rosser-Iwaniec linear sieve (see lemma below). We make the

convention that λ(q) will always denote a well-factorable function of level Q and of order

k. It is clear that if λ′ is another arithmetical function of level Q′ (with Q′ ≤ Q), and of

order k′, then the arithmetical function λ ∗ λ′ is well-factorable of level QQ′ and of order

k + k′.

We now state the formula of the Rosser-Iwaniec sieve. For A a finite sequence of

integers, and P a set of prime numbers, we are interested in evaluating for z ≥ 2,

S(A,P, z) = #{a ∈ A : (a, P (z)) = 1}
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where

P (z) =
∏
p≤z
p∈P

p.

If d is a squarefree integer with all its prime factors belonging to P, we denote by

(1) Ad =
ω(d)

d
X + rd(A)

where X > 1 is independent of d, and ω(d) is a multiplicative function satisfying

(2) 0 ≤ ω(p) < p for p ∈ P.

We define

(3) V (z) =
∏
p<z
p∈P

(1− ω(p)
p

).

and suppose that

V (z1)/V (z2) ≤
log z2

log z1
(1 +

K

log z1
) for z2 ≥ z1 ≥ 2

where K is some constant > 1. Then,

Lemma 1. (Rosser-Iwaniec sieve) Let 0 < ε < 1/8, 2 ≤ z ≤ Q1/2. Under (1), (2), (3)

above, we have

S(A,P, z) ≤ XV (z)(F (log Q/ log z) + E) +
∑
`<L

∑
q|P (z)

λ+
` (q)rq(A),

and

S(A,P, z) ≥ XV (z)(f(log Q/ log z)− E)−
∑
`<L

∑
q|P (z)

λ−` (q)rq(A).

Here, L depends only on ε, λ+
` , λ−` are well-factorable functions of order 1 and of level Q.

The constant E satisfies

E = O(ε + ε−8eK(log Q)−1/3).

The continuous functions F (s) and f(s) are defined recursively by

F (s) = 2eγs−1, f(s) = 0, for s ≤ 2
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and

(sF (s))′ = f(s− 1)

(sf(s))′ = F (s− 1)

for s > 2 and γ denotes Euler’s constant.

Proof. See [Iw1] and [Iw2].

Lemma 2. Let (u, v) = 1. For any q such that (q, v) = 1, define u∗ to be the solution of

the congruences u∗ ≡ u( mod v), u∗ ≡ 1( mod q). Suppose that ε > 0 and A > 0. Then,

for any well-factorable function λ of level x4/7−ε, one has

∑
q,v)=1

λ(q)
(

π(x, qv, u∗)− lix
φ(qv)

)
� x

logA x

where the implied constant depends only on u, v, ε and A.

Proof. This is Heath-Brown’s [HB, p. 29] slight adjustment of Theorem 10 of Bombieri,

Friedlander and Iwaniec [BFI].

Lemma 3. Let

π(X; a, d, `) =
∑

ap≤X
ap≡`( mod d)

1

and let f(a) be a real-valued function satisfying the conditions∑
n≤x

|f(n)| � x logc1 x

∑
n≤x

∑
d|n

|f(d)| � x logc2 x

where c1, c2 are positive constants. For any A > 0, there is a B = B(A, c1, c2) such that

∑
d≤X1/2 log−B X

max
y≤X

max
(`,d)=1

∣∣ ∑
a≤X1−ε

(a,d)=1

f(a)
(

π(y; a, d, `)− π(y; a, 1, 1)
φ(d)

)∣∣ � X

logA X

and 0 < ε < 1.

Proof. This is Theorem 3, combined with the remark on p. 281 in Pan [P].
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Lemma 4. Fix a prime p1 < x1/2. The number of primes p ≤ x such that p− 1 = 4p1p2

with p2 a prime is

� x

p1 log2 x
.

Proof. This is standard application of the Brun’s sieve (see e.g. Theorem 3.12 of

Halberstam and Richert [HR]).

§3. An application of the lower bound sieve.

Our goal in this section and the next is to set up the apparatus to prove Theorem 4

stated below. We begin as in [HB].

Let K = 2k with k = 1, 2 or 3 and let u and v be coprime integers such that K|u− 1,

16|v and ((u− 1)/K, v) = 1. Fix an integer m coprime to v. Define

Am = {p− 1
Km

: p ≤ x, p ≡ u( mod v), p ≡ 1( mod m)}

and Pm will denote the set of odd primes coprime to vm. We will use lemma 1 to derive

a lower bound for S(Am,Pm, z). Indeed, if q is coprime to vm, we may write

#{a ∈ Am : q|a} = π(x, vqm, u∗)

=
lix

φ(qvm)
+ rvqm (say).

The conditions u ≡ 1( mod K), v ≡ 0( mod K) and (q, v) = 1 imply that if p ≡ u( mod v),

then the conditions p ≡ 1( mod Kq) and p ≡ 1( mod q) are equivalent. Define

X =
lix

φ(v)φ(m)
, ω(d) =

d

φ(d)
.

Applying lemma 1 yields for z = xα, Q = xµ,

S(Am,Pm, xα) ≥ X
∏

p≤xα

p|/vm

(
1− 1

p− 1

)
{f(µ/α)− ε} −

∑
`<L

∑
q|Pm(xα)

λ−` (q)rqm

for some well-factorable functions λ−` of level xµ and L depends only on ε.

Fix an integer N and sum the above inequality over m ≤ z with (m,N) = 1 and

z ≤ xε1 (with ε1 sufficiently small and to be chosen later), to obtain∑
m≤z

(m,N)=1

S(Am,Pm, xα) ≥
∑
m≤z

lix
φ(vm)

∏
p≤xα

p|/vm

(
1− 1

p− 1

)
{f(4/7α)− ε}+ O(

x

logA x
)
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by lemma 1 and lemma 2 and noting that summing over m introduces only new well-

factorable functions of essentially the same level. The sum on the right is an enumeration

of disjoint sets and is easily evaluated:

1
φ(vm)

∏
p≤xα

p|/vm

(
1− 1

p− 1

)
=

1
φ(vm)

∏
2<p|vm

p− 1
p− 2

∏
2<p≤xα

(
1− 1

p− 1

)

and it is not difficult to see by standard methods of analytic number theory that the sum

is for some absolute constant c1 (which may depend on v),

≥ c1
φ(N)

N

x log z

log2 x
{2e−γα−1f(4/7α)− ε}+ O(

x

logA x
).

§4. The upper bound sieve.

As in [HB], we employ the Chen-Iwaniec switching method. We now consider

Bm = {1 + Kmp1p2p3 ≤ x : pi ≥ xα, 1 + Kmp1p2p3 ≡ u( mod v)}

where the different orderings of p1, p2, p3 are to be counted as distinct so that Bm is a

multiset. If (q, mv) = 1, then

#{b ∈ Bm : q|m} = #{p1p2p3 ≤ y : pi ≥ xα, p1p2p3 ≡ `( mod mqv/K)}

where y = (x − 1)/Km and ` is the common solution of Km` + 1 ≡ u( mod v) and

K` + 1 ≡ 0( mod q). Let

gm(a) = #{mp2p3 = a : p2, p3 ≥ xα}

and note that gm(a) ≤ τ3(a). By the upper bound sieve (lemma 1), we obtain

S(Bm,Pm, x1/2−ε′) ≤ Y
∏

p≤x1/2−ε′

p|/vm

(
1− ω(p)

p

)
{F (1) + ε}+ Rm

where F (1) = 2eγ ,

Y =
1

φ(mv/K)

∑
a≤yx−α

gm(a){π(y/a)− π(xα)},

34



and

Rm =
∑

q≤x1/2 log−A x
(q,mv)=1

λ+
` (q)rq(Bm)

rq(Bm) =
∑

a≤yx−α

gm(a)
(
E(y; a,mqv/K, `)− E(axα; a,mqv/K, `)

)
where

E(y; a,mqv/K, `) = π(y; a,mqv/K, `)− π(y/a)
φ(mqv/K)

.

Again, we sum over m ≤ z (m,N) = 1:∑
m≤z

S(Bm,Pm, x1/2−ε′)

and find that the main term of the upper bound is

≤ c1
φ(N)x log z

N log2 x

{
8e−γIF (1) + ε′

}
where

I =
∫ 1−2α

α

log
(

1− α− θ

α

)
dθ

θ(1− θ)
.

The error term is ∑
m≤z

∑
`<L

∑
q<x1/2−ε′

λ+
` (q)rq(Bm)

and we can apply Pan’s theorem (lemma 3) with

f(a) =
∑
m≤z

gm(a)

which is bounded by a divisor function. Hence for some ε1 > 0 we have established the

following:

Theorem 4. Let (u, v) = 1 and N be a fixed integers and z ≤ xε1 . The number of

primes p ≤ x such that p ≡ u( mod v) and every odd prime divisor q of p− 1 satisfies one

of the conditions:

q ≥ x1/4+ε

or q|m, with m ≤ z, (m,N) = 1 is at least

� φ(N)x log z

N log2 x
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Proof. As in [HB, p. 31], the quantity we want to enumerate is at least∑
m≤z

(m,N)=1

S(Am,Pm, xα)− 1
6
S(Bm,Pm, x1/2) + O(x1−α).

By the lower bound obtained in section 3 and the upper bound obtained above, we are

done after analyzing the constants. But this is the same analysis as in [HB, p. 34].

A similar result can be stated with p− 1 replaced by p+1 in Theorem 4. This will be

useful in considering elliptic analogues of the Artin primitive root conjecture in section 9.

We can refine Theorem 4 to ensure that if p − 1 has at least two prime divisors

q2 > q1 > x1/4+ε, then q1 < x1/2−δ for some δ > 0. To see this, for fixed q1, let us

enumerate the number of primes p ≤ x such that p−1 = q1n and n is free of prime factors

in the interval (z, x1/2). By Brun’s sieve, the number of such primes is

� x log z

q1 log2 x
.

Summing over x1/2−δ < q1 < x1/2, we get an estimate of

δx log z

log2 x

for the number of such primes. Choosing δ sufficiently small yields:

Theorem 4∗. Let (u, v) = 1 and N be fixed integers. Let ε1 be as in Theorem 4 and let

z ≤ xε1 . There is a δ = δ(ε1) > 0 such that there are at least

� φ(N)x log z

N log2 x

primes p ≤ x such that p − 1 has no prime factor in the interval (x1/2−δ, x1/2) and p ≡
u( mod v) and every odd prime divisor q of p−1 satisfies one of the conditions: q > x1/4+ε,

or q|m, with m ≤ z, (m,N) = 1.

If E is an elliptic curve defined over Q with complex multiplication by an imaginary

quadratic field F , then F is one of nine fields of class number one. If p is a prime of good

reduction for E and inert in F , then |E(Fp)| = p + 1. Such primes are determined by
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congruence conditions modulo the discriminant of F and form a set of Dirichlet density

1/2. We will sieve the sequence

S = {p + 1, p ≤ x, p inert inF}

and apply the same reasoning to deduce:

Theorem 5. Let F be one of the nine imaginary quadratic fields with class number

one. Let N be a fixed integer. There is an ε1 > 0 and a δ = δ(ε1) > 0, such that at least

� φ(N)x log z

N log2 x

primes p ≤ x have the following properties: p + 1 has no prime factor in the interval

(x1/2−δ, x1/2), p is inert in F , and every odd prime divisor q of p + 1 satisfies one of the

conditions q > x1/4+ε or q|m with m ≤ z, (m,N) = 1 where z ≤ xε1 . In addition, the

power of 2 dividing p + 1 is bounded.

§5. Results on the Chebotarev density theorem.

We record in this section two lemmas derived from the effective Chebotarev density

theorem (see [MMS], [Se], and [LO]).

Lemma 5. Let a be squarefree and q an odd prime. The number of primes p ≤ x such

that q|[F∗p : 〈a〉] is
lix

q(q − 1)
+ O(

x

logA x
)

for any A > 0 and uniformly for q ≤ (log x)1/4. Suppose that for some ε > 0, and each

prime q the Dedekind zeta function of Q(a1/q) has no zeros for <(s) > 1 − ε. Then, the

number of primes p ≤ x such that q|[F∗p : 〈a〉] is

lix
q(q − 1)

+ O(x1−ε/2)

uniformly for q ≤ xε.

Proof. See [RM2, p. 243] for the first part of the assertion in the lemma. For the second

part, one derives it easily by the standard method (for instance in [Ho2]). As remarked

earlier, Pappalardi [Pa] has extended the range of validity of the first part of the lemma.
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Lemma 6. Let E be an elliptic curve defined over Q without CM. Let q be a prime

> c(E) (a constant depending only on E). Then, the number of primes p ≤ x such that

E(Fp) contains a subgroup of type (q, q) is

lix
(q2 − 1)(q2 − q)

+ O(
x

logA x
)

for any A > 0, uniformly for q ≤ (log x)1/6. If we assume that for each prime q, the

Dedekind zeta function of Q(E[q]) has no zeroes in <(s) > 1 − ε, then the number of

primes p ≤ x such that E(Fp) contains a subgroup of type (q, q) is

lix
(q2 − 1)(q2 − q)

+ O(x1−ε/2)

uniformly for q ≤ xε.

Proof. This is again a direct application of the effective Chebotarev density theorym

and the proofs are analogous to those in the previous lemma.

Lemma 7. Let E be an elliptic curve defined over Q and with CM . Let a be a point

of infinite order in E(Q). There is a constant c2(E) such that for a prime q > c2(E), the

number of primes p ≤ x such that q|[E(Fp) : 〈a〉] is

lix
n(q)

+ O(
x

logA x
)

for any A > 0, uniformly for q ≤ (log x)1/5 and

n(q) � q4.

If for some ε > 0, and each prime q, the Dedekind zeta function of Q(E[q], q−1a) has no

zero in <(s) > 1− ε, then the number of primes p ≤ x such that q|[E(Fp) : 〈a〉] is

lix
n(q)

+ O(x1−ε/2)

uniformly for q ≤ xε.

Proof. Again, we apply the effective Chebotarev density theorem as in [GM1], [GM2],

and [GM3].
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§6. Further lemmata

In this section, we formalize the pigenhole principle in a quantitative manner as in

[GM1] and [GM3].

Lemma 8. Let a1, ..., ar be r multiplicatively independent integers. The number of

primes p such that the image of 〈a1, ..., ar〉 mod p has order ≤ y is O(y1+1/r).

Below we discuss the elliptic analogues of lemma 8.

Suppose we have a free subgroup Γ of rational points of rank (over Z) equal to r.

Let P1, ..., Pr be r independent generators of Γ. We will make use of the canonical height

pairing of Néron and Tate to estimate the number of primes p for which the image Γp of Γ

(mod p) is small. Such a situation arises naturally as follows. Suppose that q|[E(Fp) : Γp]

and that q > z. For primes p ≤ x, this means that

|Γp| ≤
x

z
.

Thus, if z is large, the image of Γ( mod p) is small. If we can show that the number

of primes satisfying the above inequality is small, we can conclude that for most primes

q|/[E(Fp) : Γp] with q > z. This is our basic strategy.

Recall that the canonical height pairing of Néron and Tate is a positive, semidefinite,

bilinear pairing on E(Q) with the property that 〈P, P 〉 = 0 if and only if P is a torsion

point. This height pairing is related to the naive height of Weil in the following way. If

P = (x, y) ∈ E(Q), then writing x = r/s with r, s coprime integers, we define the x-height

of P as

hx(P ) = log max(|r|, |s|).

Observe that the image of P (mod p) is the identity element if and only if p|s. Since the

number of prime divisors of s is bounded by 2 log |s|, we note that the number of primes for

which P reduces to the identity element on E(Fp) is bounded by 2hx(P ). (Recall that the

identity element on E is the point at infinity.) If we let H(P ) = 〈P, P 〉, then for P ∈ E(Q),

H(P ) = hx(P ) + O(1)

where the implied constant depends only on E. So we can use H(P ) as an upper bound

for the number of primes p for which P reduces to the identity on E(Fp).
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Lemmas 9 and 10 appear in [GM3] and are reproduced here for the sake of complete-

ness.

Lemma 9. The number of r-tuples of integers (n1, ..., nr) satisfying

H(n1P1 + · · ·+ nrPr) ≤ x

is
(πx)r/2

√
RΓ( r

2 + 1)
+ O(x

r−1
2 +ε)

where R = det(〈Pi, Pj〉).

Proof. We want to determine the integer solutions of

〈
r∑

i=1

niPi,
r∑

i=1

niPi〉 ≤ x

which is the same as ∑
i,j

ninj〈Pi, Pj〉 ≤ x.

This is tantamount to counting lattice points in the r-dimensional ellipsoid determined by

the above quadratic form. By a result of Walfisz [W], the number of such lattice points is

given by the expression stated in the lemma. (Note that in [GM3], the reference to Walfisz

[W] appears with an incorrect year.)

Lemma 10. The number of primes p such that |Γp| ≤ y is O(y1+2/r).

Proof. Consider the set S of all r-tuples (n1, ..., nr) satisfying

H(n1P1 + · · ·+ nrPr) ≤ Cy2/r

where C is any constant chosen so that

(Cπ)r/2

√
RΓ(r/2 + 1)

> 1

and greater than the O constant implied by lemma 3. Then by lemma 3, the number of

elements of S is > y. If p is a prime such that |Γp| < y, then we must have for two distinct

r-tuples (n1, ..., nr) and (m1, ...,mr) the congruence

n1P1 + · · ·+ nrPr ≡ m1 + · · ·+ mrPr( mod p).
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Since P1, ..., Pr are Z independent, the point

Q =
r∑

i=1

(ni −mi)Pi

is non-zero and the above congruence (mod p) implies that p divides the denominator

of Q. As remarked above, the number of such primes is bounded by 2hx(Q) because a

natural number n has at most 2 log n prime factors. Moreover, Q is not a torsion point

since P1, ..., Pr are independent over Z. Therefore, H(Q) 6= 0 and

2hx(Q) � H(Q).

Since H(Q) ≤ 2Cy2/r, the number of such Q’s is O(y) by lemma 3. Since each Q gives rise

to only O(y2/r) primes dividing the denominator of Q, the total number of prime factors

satisfying |Γp| < y is O(y1+2/r), as desired.

§7. Primitive roots.

We are now ready to prove Theorem 1. Consider the primes enumerated by Theorem

4∗ with u and v chosen so that p ≡ u( mod v) implies each of a, b, c is a quadratic non-

residue (mod p). This can be done because

∑
p≤x

{(1− (
−3
p

))}{1− (
a

p
)}{1− (

b

p
)}{1− (

c

p
)}

is asymptotic to π(x), as x→∞, in view of the conditions imposed on a, b and c. Let us

fix y and let

N =
∏
p≤y

p.

With u( mod v) and N as above and z = xε/3, we consider the primes enumerated by

Theorem 4∗. If p is one of these primes, then two cases arise: p − 1 = 2emq or p − 1 =

2emq1q2 with q, q1, q2 primes sastisfying the various conditions of Theorem 4∗. If q divides

the index of 〈a〉, 〈b〉, 〈c〉( mod p), then by lemma 8, the number of such primes is O(x2ε).

If q1 or q2 divides the index of 〈a, b, c〉( mod p), again by lemma 8 (and r = 3), the number

of such primes is O(x1−ε′). Hence the order of 〈a, b, c〉( mod p) is divisible by q in the first

case and q1q2 in the second case. We also have 2e divides the order of each of a, b, c (mod

p) because none of a, b, c, is a quadratic residue mod p. Suppose in the second case each

of the orders of a, b, c mod p is not divisible by q1. Then, the subgroup generated by a, b, c
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(mod p) has order < x3/4−ε and by lemma 8 (and r = 3), the number of such primes is

O(x1−ε). So we may suppose that one of the orders of a, b, c is divisible by q1. Suppose,

without loss of generality that the order of a mod p is divisible by q1. If q2|[F∗p : 〈a〉],
then noting that q1 < x1/2−δ and again applying lemma 8 with r = 1, we deduce that the

number of such primes is O(x1−2δ). Thus, we have

≥ c1φ(N)x log z

N log2 x

primes p ≤ x such that if `|[F∗p : 〈a〉] then `|m, where (m,N) = 1 as in Theorem 4∗. Now,

we invoke lemma 5. The number of primes p ≤ x such that `|[F∗p : 〈a〉] is

lix
`(`− 1)

+ O(x1−ε).

We sum this in the range y < ` < xε/3. This gives an estimate of

� lix
y

+ O(x1−ε).

Since
φ(N)

N
=

∏
p≤y

(
1− 1

p

)
∼ e−γ

log y

by Merten’s theorem, we can choose y sufficiently large so that

c1εe
−γ

3 log y
� 1

y
.

This completes the proof of Theorem 1.

§8. Cyclicity of E(Fp).

We now prove Theorem 2 and proceed as in [GM2] with minor variation. Let us

observe that if E(Fp) contains a subgroup of type (q, q) then q|p − 1. This is because

the field obtained by adjoining the q-division points of E to Q contains the cyclotomic

field of the q-th roots of unity by the theory of the Weil pairing. Moreover, the condition

that E(Fp) contains a subgroup of type (q, q) is equivalent to the condition that p splits

completely in Q(E[q]). Now fix y, and set

N =
∏
p≤y

p
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and z = xε/3. Apply Theorem 4∗ and partition each of the primes enumerted into disjoing

sets Sa according to the value of

ap(E) = p + 1−#E(Fp).

In each Sa, we count the number of primes p such that E(Fp) is not cyclic. If for a prime

q > x1/4+ε, E(Fp) contains a (q, q) group, q is uniquely determined for otherwise the size of

E(Fp) would be greater than x1+2ε. In addition p ≡ a−1( mod q2). By Hasse’s inequality,

|ap| ≤ 2
√

p and so we can never have p = a− 1. Thus, the number of such primes is

� x

q2
� x1/2−2ε.

Summing this over |a| ≤ 2
√

x gives a total estimate of

O(x1−2ε)

for the number of such primes enumerated by Theorem 4∗. After eliminating these primes

from our enumeration, we infer that if E(Fp) is not cyclic, then p splits completely in some

Q(E[`]) with ` ≤ xε/3 and (`,N) = 1. By lemma 6, the number of such primes on the

quasi-Riemann hypothesis is

� lix
`4

+ O(x1−ε)

and we sum this over y < ` < xε/3 to deduce an estimate of

� lix
y

such primes. Again, choosing y sufficiently large ensures that we have a positive density

of primes for which E(Fp) is cyclic.

§9. Primitive points on elliptic curves.

We use Theorem 5 with z = 1 and N = 1. Let p be a prime enumerated by Theorem

5. Suppose first that p+1 = 2ep1. Then, (mod p), each one of P1, ..., P6 has order dividing

2ep1. If the order divides 2e, then p divides the 2e-division polynomial evaluated at each

of the Pi’s. Since e is bounded, there are only finitely many such p’s. So for p sufficiently

large, the order divides p1 and so the index is bounded by 2e in this case.

Now suppose p + 1 = 2ep1p2 with pα < p1 < p2. If the theorem is false, for all p

sufficiently large enumerated by lemma 1, we must have the order of each Pi divisible by
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p1 or p2 but not both. If the orders are all divisible by p2, then the subgroup generated by

P1, ..., P6 (mod p) has size ≤ 4p2 ≤ 4p1−α. By lemma 4, the number of such primes p ≤ x

is O(x4(1−α)/3). Since α > 1/4, the number of such primes is o(x/ log2 x). By the same

reasoning, we conclude that the number of primes for which all the orders are divisible by

p1 is also negligible. Hence, for at least

� x

log2 x

primes enumerated by A, the order of each Pi is divisible by p1 or p2 and both possibilities

occur. Take an element P1 (say) whose order mod p is divisible by p1. If p1 < x1/3−ε, then

an application of lemma 4 with r = 1 shows the number of such primes is O(x1−ε). So we

may suppose p1 > x1/3−ε. We can in fact suppose p1 > x1/3+ε because by lemma 2, the

number of primes p ≤ x such that p + 1 = 2ep1p2 with

x1/3−ε < p1 < x1/3+ε and p2 > x1/2−δ

for some δ > 0 is by lemma 2,

� x

p1 log2 x
.

Summing this over the range x1/3−ε < p1 < x1/3+ε gives a contribution of o(εx/ log2 x)

which is negligible for sufficiently small ε. So we may suppose that

x1/3+ε < p1 < p2.

Let us say that p in A has type (s1, s2) if s1 of P1, ..., P6 have order divisible by p1 and s2

have order divisible by p2. Then we can partition A according to five types: (1,5), (2,4),

(3,3), (4,2), and (5,1).

We now consider each of the five types. If the type of p is (1,5), then five independent

points generate a group mod p of order O(p2) = O(x2/3−ε) and by lemma 4, the number

of such primes is O(x14/15−ε). If the type is (2,4) then four independent points generate

a group of order O(p2) = O(x2/3−ε) and again by lemma 4 the number of such primes

is O(x1−ε). If the type is (3,3), we have three independent points generating a group of

order p1 < x1/2 and by lemma 4, the number of such primes is O(x5/6). The remaining

two cases are similarly handled. This completes the proof.

Remark. It is clear that if we use Theorem 5 with z = xε and invoke lemma 7 with a

quasi-Riemann hypothesis, the assertion made in Theorem 3 holds for a positive density

of primes.
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§11. Numerical examples.

In [Qu], Quer produces three elliptic curves with complex multiplication such that the

Z rank of the group of rational points is 12. More precisely, let

D1 = −408368221541174183

D2 = −3082320147153282331

D3 = −3161659186633662283

and put

Ei : Y 2 = X3 + 16Di

for i = 1, 2, 3. Then, rankZEi(Q) = 12. Quer also gives explicit generators. It is remarkable

that these generators all have integral co-ordinates.
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