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On a Conjecture of Chowla and Milnor

Sanoli Gun, M. Ram Murty, and Purusottam Rath

Abstract. In this paper, we investigate a conjecture due to S. and P. Chowla and its generalization by

Milnor. These are related to the delicate question of non-vanishing of L-functions associated to peri-

odic functions at integers greater than 1. We report on some progress in relation to these conjectures.

In a different vein, we link them to a conjecture of Zagier on multiple zeta values and also to linear

independence of polylogarithms.

Introduction

Let q > 1 be an integer and f be a periodic arithmetic function with period q. For a

complex number s ∈ C with Re(s) > 1, consider the Dirichlet series

L(s, f ) =

∞∑

n=1

f (n)

ns
.

This is called the L-function associated to f . For a real number x with 0 < x 6 1 and

a complex number s ∈ C with Re(s) > 1, one defines the Hurwitz zeta function as

ζ(s, x) =

∞∑

n=0

1

(n + x)s
.

Hurwitz proved that ζ(s, x) extends analytically to the entire complex plane, apart

from s = 1, where it has a simple pole with residue 1. Note that for x = 1, Hurwitz

zeta function is the classical Riemann zeta function. Since

(1) L(s, f ) = q−s

q∑

a=1

f (a)ζ(s, a/q),

L(s, f ) extends meromorphically to the complex plane with a possible simple pole at

s = 1 with residue q−1
∑q

a=1 f (a).

In this paper, we investigate the algebraic nature and non-vanishing of the num-

bers L(k, f ) for integers k > 1 when f takes rational values. The simplest example

is the Riemann zeta function, whose transcendence at even integers is well known

while its values at odd integers are mysterious. However, for an arbitrary rational-

valued function f , even the non-vanishing of L(k, f ) is not assured and has deep

significance.
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The non-vanishing as well as the transcendental nature of L(1, f ) when f is ra-

tional or even algebraic valued have been investigated in [3] and [1]. In the recent

works [6] and [7], the transcendental nature of Hecke L-functions at s = 1 has been

carried out.

The motivation for our present work germinates from the following seemingly

innocuous question, asked by P. and S. Chowla [4].

Conjecture (Chowla–Chowla) Let p be any prime and f be any rational-valued pe-

riodic function with period p. Then L(2, f ) 6= 0 except in the case when

f (1) = f (2) = · · · = f (p − 1) =
f (p)

1 − p2
.

Milnor [9] interpreted the above conjecture in terms of the linear independence

of the Hurwitz zeta function and generalized it for all k > 1. Substituting

(pk − 1)ζ(k) =

p−1∑

a=1

ζ(k, a/p)

in the expression (1), we have

L(k, f ) = p−k

p−1∑

a=1

[
f (a) +

f (p)

(pk − 1)

]
ζ(k, a/p).

Thus the Chowla–Chowla conjecture is clearly equivalent to the following conjecture

for k = 2.

Conjecture (Milnor) For any integer k > 1, the real numbers

ζ(k, 1/p), ζ(k, 2/p), . . . , ζ
(

k, (p − 1)/p
)

are linearly independent over Q.

Milnor’s conjecture appears more natural and puts the Chowla–Chowla conjec-

ture in perspective. Further, for q not necessarily prime, Milnor suggested the fol-

lowing generalisation of the Chowla conjecture.

Conjecture (Chowla–Milnor) Let k > 1, q > 2 be integers. Then the following ϕ(q)

real numbers are linearly independent over Q:

ζ(k, a/q) with (a, q) = 1, 1 ≤ a ≤ q.

In relation to the Chowla–Milnor conjecture, we define the following Q-linear

spaces.

Definition 1 For any integer k > 1, the Chowla–Milnor space is the Q-linear space

Vk(q) defined by

Vk(q) = Q − Span of {ζ(k, a/q) : 1 ≤ a < q, (a, q) = 1}.
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The Chowla–Milnor conjecture asserts that the dimension of Vk(q) for k > 1

is ϕ(q). The dimensions of the Chowla–Milnor spaces also hold the key to the un-

derstanding of Riemann zeta values at odd positive integers. In Section 1, we derive

the following non-trivial lower bound for their dimension.

Theorem 1 Let k > 1 and q > 2, then

dimQ Vk(q) ≥ ϕ(q)

2
.

Any improvement of the above bound will have remarkable consequences. For

instance, any improvement of the above lower bound for odd k = 2d + 1 would

establish the irrationality of numbers of the form ζ(2d + 1)/π2d+1 for d > 1. In this

connection, we prove the following theorem.

Theorem 2 Let k > 1 be an odd integer and q > 2 and r > 2 be two co-prime

integers. Then either

dimQ Vk(q) ≥ ϕ(q)

2
+ 1

or

dimQ Vk(r) ≥ ϕ(r)

2
+ 1.

Thus in particular, there exists q0 such that

dimQ Vk(q) ≥ ϕ(q)

2
+ 1

for any q co-prime to q0.

In Section 2, we establish a link between the Chowla–Milnor conjecture and the

multiple zeta values (MZVs).

Definition 2 Let l, s1, . . . , sl be positive integers with s1 > 1. Then the multiple

zeta values (MZVs) are defined as

ζ(s1, . . . , sl) =
∑

n1>···>nl≥1

1

ns1

1

· · · 1

nsl

l

.

When l = 1, we get the classical zeta values. The sum s1 + · · · + sl is called the

weight while l is called the length of ζ(s1, . . . , sl).

Definition 3 Let k > 2 be an integer. Then Wk is the Q-linear space spanned by all

ζ(s1, . . . , sl) with integers l > 1, s1 > 1 such that s1 + · · · + sl = k.

We have the following interesting conjecture due to Zagier [14] about the dimen-

sion of Wk.
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Conjecture (Zagier) The dimension dk of the space Wk for k ≥ 3 is given by the

recurrence

δk = δk−2 + δk−3

with δ0 = 1, δ1 = 0 and δ2 = 1.

It is now known, thanks to the works of Goncharov [5] and Terasoma [13], that

dk ≤ δk. The only known cases of Zagier’s conjecture are d2 = d3 = d4 = 1. Thus

we do not have a single example where the dimension of Wk is at least 2. In this

connection, we prove the following result.

Theorem 3 The Chowla–Milnor conjecture implies that the dimension of W4d+2 is at

least 2 for all d > 1.

Thus, in particular, the Chowla–Milnor conjecture shows that there is an infinite

family of Wk’s with dimension at least 2.

In Section 3, we investigate the Chowla–Milnor conjecture in terms of linear in-

dependence of polylogarithms.

Definition 4 For an integer k > 2 and complex numbers z ∈ C with |z| 6 1, the

polylogarithm function Lik(z) is defined by

Lik(z) =

∞∑

n=1

zn

nk
.

For k = 1, the series is − log(1 − z), provided that |z| < 1. Analogous to Baker’s

theorem on linear forms in logarithms, we may have the following conjecture about

polylogarithms.

Conjecture (Polylog) Suppose that α1, . . . , αn are algebraic numbers |αi | 6 1 such

that Lik(α1), . . . , Lik(αn) are linearly independent over Q. Then they are linearly inde-

pendent over the field of algebraic numbers Q.

Apart from the case k = 1, which is a special case of Baker’s theorem, almost

nothing is known about the above conjecture. We prove the following theorem using

a method developed by Baker, Birch, and Wirsing.

Theorem 4 Assume that the polylog conjecture is true. Then the Chowla–Milnor

conjecture is true for all q > 1 and k > 1.

In the final section, we derive some interesting consequences of the Chowla–

Milnor conjecture. We also formulate a stronger version of it that appears natural

to us. We note that this is related to some long-standing conjectures in number the-

ory.

1 Proofs of Theorems 1 and 2

The crucial ingredient for the proof of Theorem 1 is the following lemma due to

Okada [12] about the linear independence of co-tangent values at rational argu-

ments.
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Lemma 1 Let k and q be positive integers with k > 0 and q > 2. Let T be a set of

ϕ(q)/2 representations mod q such that the union T ∪ (−T) constitutes a complete set

of co-prime residue classes mod q. Then the set of real numbers

dk−1

dzk−1
cot(πz)|z=a/q, a ∈ T

is linearly independent over Q.

Proof of Theorem 1 To start with, we note that the space Vk(q) is also spanned by

the following sets of real numbers:

{ζ(k, a/q) + ζ(k, 1 − a/q) | (a, q) = 1, 1 ≤ a < q/2},
{ζ(k, a/q) − ζ(k, 1 − a/q) | (a, q) = 1, 1 ≤ a < q/2}.

We define the following Q-linear subspaces of Vk(q):

Vk(q)+
= Q − span of {ζ(k, a/q) + ζ(k, 1 − a/q) | (a, q) = 1, 1 ≤ a < q/2},

Vk(q)− = Q − span of {ζ(k, a/q) − ζ(k, 1 − a/q) | (a, q) = 1, 1 ≤ a < q/2}.

Then we have the following (see [11], for instance)

(2) ζ(k, a/q) + (−1)kζ(k, 1 − a/q) =
(−1)k−1

(k − 1)!
Dk−1(π cotπz)|z=a/q

where Dk
=

dk

dzk . Applying the above lemma, we see that

dimQ Vk(q) ≥ ϕ(q)

2
.

This completes the proof of Theorem 1.

For the proof of Theorem 2, we shall need the following proposition, which is of

independent interest.

Proposition 1 Let k > 1 be an odd integer. For q ≥ 3, let Zk(a, q) for any (a, q) = 1

and 1 ≤ a < q/2 be the number

Zk(a, q) :=
ζ(k, a/q) − ζ(k, 1 − a/q)

(2πi)k
.

If ϕ(q) ≥ 4, then the numbers
Zk(a, q)

i

are all real irrational algebraic numbers.
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Proof For any odd periodic function f with period q, we have (see [11])

2L(k, f ) =
(2πi)k

k!

q∑

a=1

f̂ (a)Bk(a/q),

where

Bk(x) =
−k!

(2πi)k

∞∑

n=−∞
n6=0

e2πinx

nk

is the k-th Bernoulli polynomial and

f̂ (n) :=
1

q

q∑

b=1

f (b)e2πibn/q

is the Fourier transform of f . For a co-prime to q, we consider the following odd

function

δa(n) =





1, if n = a

−1, if n = q − a

0, otherwise.

Then

2L(k, δa) =
(2πi)k

k!

q∑

b=1

δ̂a(b)Bk(b/q),

where δ̂a(n) = 1
q

∑q
b=1 δa(b)e

2iπbn
q =

1
q
[ζan

q − ζ−an
q ], where ζq = e

2πi
q . Since

L(k, δa) =
1

qk

q∑

b=1

δa(b)ζ(k, b/q) =
1

qk
[ζ(k, a/q) − ζ(k, 1 − a/q)],

we have

ζ(k, a/q) − ζ(k, 1 − a/q)

(2πi)k
=

qk−1

2k!

q∑

b=1

(ζab
q − ζ−ab

q )Bk(b/q).

Thus we have

Zk(a, q) =
qk−1

2k!

q∑

b=1

(ζab
q − ζ−ab

q )Bk(b/q).

Clearly,

Zk(a, q) ∈ Q(ζq).

We have

ζ(k, a/q) − ζ(k, 1 − a/q) =
1

(k − 1)!
Dk−1(π cotπz)|z=a/q,

Zk(a, q)

i
= ±ζ(k, a/q) − ζ(k, 1 − a/q)

(2π)k
.
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Thus, by Lemma 1, the set of real algebraic numbers

(3)
Zk(a, q)

i
with (a, q) = 1, 1 ≤ a < q/2

is linearly independent over the rationals.

Let G be the Galois group of Q(ζq) over Q which is given by the maps

σc(ζq) = ζc
q

where c runs over the co-prime residue classes modulo q. We see immediately that

σc

(
Zk(a, q)

)
= Zk(ac, q).

Thus the set of algebraic numbers

Zk(a, q) with (a, q) = 1, 1 ≤ a < q/2

are all conjugates of each other. Since they are linearly independent over Q and since

ϕ(q) > 4, all the numbers in equation (3) are necessarily irrational.

Thus, we have the following bound

ϕ(q)

2
≤ dimQ Vk(q) ≤ ϕ(q).

We now proceed to prove Theorem 2 which improves the lower bound for infinitely

many q.

Proof of Theorem 2 Let q and r be two co-prime integers. Suppose that

dimQ Vk(q) =
ϕ(q)

2
.

Then the numbers

ζ(k, a/q) − ζ(k, 1 − a/q), where (a, q) = 1, 1 ≤ a < q/2

generate Vk(q). Now

qkζ(k)
∏
p|q

(1 − p−k) =

q−1∑

a=1
(a,q)=1

ζ(k, a/q) ∈ Vk(q).

and hence

ζ(k) =
∑

(a,q)=1
1≤a<q/2

λa[ζ(k, a/q) − ζ(k, 1 − a/q)], λa ∈ Q

= (2πi)k
∑

(a,q)=1
1≤a<q/2

Zk(a, q)λa, λa ∈ Q.
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Thus by Proposition 1, we have

ζ(k)

iπk
∈ Q(ζq).

Similarly, if

dimQ Vk(r) =
ϕ(r)

2
,

then
ζ(k)

iπk
∈ Q(ζr)

and hence
ζ(k)

iπk
∈ Q(ζq) ∩ Q(ζr).

Since q and r are co-prime, Q(ζq)∩Q(ζr) = Q and hence we arrive at a contradiction.

Thus

dimQ Vk(q) >
ϕ(q)

2
or dimQ Vk(r) >

ϕ(r)

2
.

We have the following immediate corollary.

Corollary 1 Let k be an odd integer. Then dimQ Vk(3) = 2 or dimQ Vk(4) = 2.

This should be compared with Proposition 7 in the last section.

We now consider the case when k is an even integer. Here, we have the following

proposition.

Proposition 2 Let k > 1 be an even integer. For q ≥ 3, let Zk(a, q) for any (a, q) = 1

and 1 ≤ a < q/2 be the number

Zk(a, q) :=
ζ(k, a/q) + ζ(k, 1 − a/q)

(2πi)k
.

If ϕ(q) ≥ 4, then the Zk(a, q)’s are all irrational real numbers lying in Q(ζq). Further,

q/2∑

a=1
(a,q)=1

caZk(a, q) ∈ Q, ca ∈ Q

if and only if all the ca’s are equal.

Proof The proof of first part follows exactly as the proof of Proposition 1. For the

last assertion, suppose that

q/2∑

a=1
(a,q)=1

caZk(a, q) = α
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where ca, α ∈ Q. We note that (Z/qZ)×/±1 acts transitively on the set

{Zk(a, q) : 1 ≤ a < q/2, (a, q) = 1}.

Since the set

{Zk(a, q) : 1 ≤ a < q/2, (a, q) = 1}

is linearly independent over Q, we see that all the ca’s are necessarily equal. The

converse is also true as
q∑

a=1
(a,q)=1

ζ(k, a/q)

is a rational multiple of ζ(k).

We have the following immediate corollary.

Corollary 2 Let k > 1 be an even integer and χ be a non-trivial even quadratic

character modulo q. Then
L(k, χ)

πk
∈ Q(ζq) \ Q.

Proof Let χ be a non-trivial quadratic character modulo q which is even. For such a

character, we have

L(k, χ) =

q∑

a=1

χ(a)ζ(k, a/q)

=

q/2∑

a=1

χ(a)[ζ(k, a/q) + ζ(k, 1 − a/q)]

= (2πi)k

q/2∑

a=1

χ(a)Zk(a, q).

Hence the assertion.

We note that for k even, π−kL(k, χ) is rational when χ is the trivial character.

2 Proof of Theorem 3

We shall need the following lemma for the proof of Theorem 3.

Lemma 2 If [ ζ(2k + 1)

π2k+1

] 2

is not a rational number, then d4k+2 ≥ 2.
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Proof We have

ζ(s1)ζ(s2) = ζ(s1, s2) + ζ(s2, s1) + ζ(s1 + s2).

Thus

ζ(2k + 1)2
= 2ζ(2k + 1, 2k + 1) + ζ(4k + 2).

Since [ ζ(2k + 1)

π2k+1

] 2

/∈ Q and
ζ(4k + 2)

π4k+2
∈ Q,

we see that ζ(2k+1, 2k+1) is not in the Q-span of ζ(4k+2) and hence the dimension

of the space W4k+2 is at least 2.

We shall also need the following proposition for proof of Theorem 3.

Proposition 3 Suppose that the Chowla–Milnor conjecture is true. Then

[ ζ(2d + 1)

π2d+1

] 2

is irrational for all d > 1.

Proof We require a few generalities on the theory of Gauss sums associated with

quadratic characters. Let ∆ < 0 be a fundamental discriminant. Then the Kronecker

symbol

χ(n) =
(
∆

n

)

is an odd, primitive, quadratic character modulo |∆| (see [10, p. 297]). Let q = |∆|.
For each such character χ, the associated Gauss sum τ (χ) is given by [10, Theo-

rem 9.17, p. 300]:

τ (χ) =

q∑

a=1

χ(a)ζa
q = i

√
q.

Further, by primitivity of χ, we have:

τ (χ, b) =

q∑

a=1

χ(a)ζab
q = χ(b)τ (χ) = χ(b)i

√
q.

Since χ is odd, we have

q/2∑

a=1

χ(a)(ζab
q − ζ−ab

q ) = χ(b)i
√

q.

We multiply both sides by B2d+1(b/q) and sum over b = 1 to q to get

q/2∑

a=1

χ(a)

q∑

b=1

(ζab
q − ζ−ab

q )B2d+1(b/q) = i
√

q

q∑

b=1

χ(b)B2d+1(b/q).
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Let k = 2d + 1. Recall that for any such odd k and q > 2, as mentioned in the proof

of Proposition 1, we have

ζ(k, a/q) − ζ(k, 1 − a/q)

(2πi)k
=

qk−1

2k!

q∑

b=1

(ζab
q − ζ−ab

q )Bk(b/q)

for any (a, q) = 1 and 1 ≤ a < q/2. Thus the number i
√

q lies in the Q-linear space

generated by the real numbers

ζ(k, a/q) − ζ(k, 1 − a/q)

(2πi)k
with (a, q) = 1, 1 ≤ a < q/2.

On the other hand, since ζ(k) is a rational multiple of

q/2∑

a=1
(a,q)=1

(
ζ(k, a/q) + ζ(k, 1 − a/q)

)
,

we see that ζ(k)/(2πi)k lies in the subspace generated by

ζ(k, a/q) + ζ(k, 1 − a/q)

(2πi)k
with (a, q) = 1, 1 ≤ a < q/2.

Thus the Chowla–Milnor conjecture for the modulus q implies that ζ(k)/(2πi)k and

i
√

q lie in disjoint Q-spaces. Thus their ratio is irrational and hence for any such q,

we have
ζ(2d + 1)

π2d+1√q
/∈ Q.

Thus, if the Chowla–Milnor conjecture is true for all modulus, then

[ ζ(2d + 1)

π2d+1

] 2

is irrational for all d > 1.

Finally, we give a proof of Theorem 3.

Proof of Theorem 3 Now suppose that that the dimension of the space W4d+2 is 1.

Then by Lemma 2, we have

ζ(2d + 1)

π2d+1
= r

√
q, where q ∈ N, r ∈ Q.

But then by Proposition 3, the Chowla–Milnor conjecture is false for the modulus q.
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3 Proof of Theorem 4

For the proof of Theorem 4, we shall need the following lemma (see [8, p. 548]).

Lemma 3 Let G be any finite abelian group of order n and F : G → C be any complex-

valued function on G. The determinant of the n × n matrix given by
(

F(xy−1)
)

as x, y

range over the group elements is called the Dedekind determinant and is equal to

∏
χ

(∑

x∈G

χ(x)F(x)
)
,

where the product is over all characters χ of G.

We shall now give a proof of Theorem 4 following the methodology employed

in [1].

Proof of Theorem 4 Let k, q > 1 be integers. For simplicity, we prove the theorem

when q = p is a prime. The proof of the general case is identical.

Let f be a rational-valued periodic function with prime period p and suppose that

L(k, f ) = 0. As before, let

f̂ (n) =

p∑

a=1

f (a)ζ−an
p

and by Fourier inversion

f (n) =

p∑

a=1

f̂ (a)ζan
p .

Then

L(k, f ) =

∞∑

n=1

f (n)

nk
=

∞∑

n=1

1

nk

p∑

a=1

f̂ (a)ζan
p

and hence

L(k, f ) =

p∑

a=1

f̂ (a) Lik(ζa
p) = 0.

Let

Lik(α1), . . . , Lik(αt )

be a maximal Q-linear independent subset of

{Lik(ζa
p) | 1 ≤ a ≤ p − 1}.

Let

Lik(ζa
p) =

t∑

b=1

Aab Lik(αb),

where Aab are rational numbers. Then

β1 Lik(α1) + · · · + βt Lik(αt ) = 0
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where

βb =

p∑

a=1

f̂ (a)Aab.

Since f is rational valued, f̂ is algebraic valued. Thus by the polylog conjecture, we

have

βb =

p∑

a=1

f̂ (a)Aab = 0, 1 ≤ b ≤ t.

Thus for any automorphism σ of the field Q over Q, we have

p∑

a=1

σ
(

f̂ (a)
)

Aab = 0, 1 ≤ b ≤ t,

and hence
p∑

a=1

σ
(

f̂ (a)
)

Lik(ζa
p) = 0.

In particular, if for 1 ≤ h ≤ p − 1, σh is the element of the Galois group of Q(ζp)

over Q such that

σh(ζp) = ζh
p ,

we have,

σ
(

f̂ (n)
)
= f̂h(n)

where

fh(n) = f (nh−1).

Thus, we have

L(k, fh) =

∞∑

n=1

fh(n)

nk
= 0

for all 1 ≤ h ≤ p − 1. This gives that

L(k, fh) = p−k

p−1∑

a=1

[
fh(a) +

fh(p)

(pk − 1)

]
ζ(k, a/p) = 0

for all 1 ≤ h ≤ p − 1.

Now, making a change of variable and noting that fh(p) = f (p), we have

(4) L(k, fh) = p−k

p−1∑

a=1

[
f (a) +

f (p)

(pk − 1)

]
ζ(k, ah/p) = 0

for all 1 ≤ h ≤ p − 1. We treat this as a matrix equation with B being the (p − 1) ×
(p − 1) matrix whose (a, h)-th entry is given by ζ(k, ah/p). Then by the evaluation

of the Dedekind determinant as in Lemma 3, we have

Det(B) = ±
∏
χ

pkL(k, χ) 6= 0.
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Thus the matrix B is invertible and hence by the equation (4), we have

f (a) +
f (p)

(pk − 1)
= 0, 1 ≤ a ≤ p − 1

and hence

f (1) = f (2) = · · · = f (p)

(1 − pk)
.

Thus the proof of the theorem for the case when the modulus is a prime. The proof

for an arbitrary modulus q is identical, the final Dedekind determinant being associ-

ated to the group (Z/qZ)× and of size ϕ(q) × ϕ(q).

4 Concluding Remarks

We begin the section by mentioning some interesting consequences of the Chowla–

Milnor conjecture.

Proposition 4 The Chowla–Milnor conjecture for the single modulus q = 4 is equiv-

alent to the irrationality of ζ(2d + 1)/π2d+1 for all d ≥ 1.

Proof Let k = 2d + 1. We note that Vk(4) is generated by ζ(k, 1/4) and ζ(k, 3/4) and

(4k − 2k)ζ(k) = ζ(k, 1/4) + ζ(k, 3/4).

Also,

ζ(k, 1/4) − ζ(k, 3/4) =
1

(k − 1)!
Dk−1(π cotπz)|z=1/4.

But Dk−1(π cotπz)|z=1/4 is a rational multiple of πk. Therefore the rationality of

ζ(k)/πk will imply that Vk(4) is one dimensional over Q.

In their paper, P. and S. Chowla [4] mention the following number

α :=
1−2 − 3−2 + 5−2 − 7−2 + − · · ·
1−2 − 2−2 + 4−2 − 5−2 + − · · · .

Questions about its irrationality have been raised by A. Borel, Lichtenstein, Milnor

and Thurston (see [4]). We note the following.

Proposition 5 The Chowla–Milnor conjecture for q = 12 and k = 2 implies that α is

irrational.

Proof We note that

α =
1−2 − 3−2 + 5−2 − 7−2 + − · · ·
1−2 − 2−2 + 4−2 − 5−2 + − · · · =

L(2, χ4)

L(2, χ3)
,
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where χ4 and χ3 are odd quadratic characters modulo 4 and 3 respectively. These

characters lift to two distinct imprimitive characters modulo 12. If α is a rational

number, then since

L(2, χ4) − αL(2, χ3) = 0,

this will imply that the dimension of V2(12) is at most 3. Thus the Chowla–Milnor

conjecture for q = 12, k = 2 implies the irrationality of α.

The Chowla–Milnor conjecture suggests the following curious assertion about

L-functions associated to periodic functions.

Proposition 6 Suppose that Chowla–Milnor conjecture is true. Then for any nonzero

rational-valued periodic function f with prime period, L(s, f ) is holomorphic at s = 1

implies that it does not vanish at all integers k > 1.

Proof Let f be as above and L(k, f ) = 0. Then by the conjecture of Chowla and

Milnor, this implies that

f (1) = f (2) = · · · = f (p − 1) =
f (p)

1 − pk
.

But since f is a non-zero function,

p∑

a=1

f (a) =
f (p)(p − 1)

1 − pk
+ f (p) 6= 0.

Thus L(s, f ) has a pole at s = 1.

Finally, motivated by our investigation, we formulate a stronger version of the

conjecture due to Chowla and Milnor.

Conjecture (Strong Chowla–Milnor) For any k, q > 1, the following ϕ(q) + 1 real

numbers are linearly independent over the rational numbers:

1, ζ(k, a/q) with 1 ≤ a ≤ q, (a, q) = 1.

For any integer k > 1, let V̂k(q) be the Q-linear space spanned by

{1, ζ(k, a/q) : 1 ≤ a < q, (a, q) = 1}.

Proposition 7 Let k > 1 be an odd integer. Then the following statements are equiv-

alent:

(i) Either dimQ V̂k(3) = 3 or dimQ V̂k(4) = 3.

(ii) The number ζ(k) is irrational.
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Proof We have

(3k − 1)ζ(k) = ζ(k, 1/3) + ζ(k, 2/3),

(4k − 1)ζ(k) = ζ(k, 1/4) + ζ(k, 3/4) + (2k − 1)ζ(k).

Therefore (i) implies (ii).

Conversely, suppose that (i) is false. To begin with, we note that Dk−1(π cotπz) is

a Z linear combination of sums of the form πk(cscπz)2 j(cotπz)k−2 j . When k − 1 is

even, Dk−1(π cotπz)|z=1/3 is a rational multiple of
√

3πk, but Dk−1(π cotπz)|z=1/4 is

a rational multiple of πk.

Then by using equation (2) in the proof of Theorem 1, we have

(3k − 1)ζ(k) = a
√

3πk + b

and

(4k − 2k)ζ(k) = cπk + d

where a, b, c, d are all rational numbers. Since π is transcendental and
√

3 is algebraic

irrational, we have a = c = 0 and hence ζ(k) is rational.

Remark Since it has been established by Apéry that ζ(3) is irrational, we have that

either dimQ V̂3(3) = 3 or dimQ V̂3(4) = 3. Further, by a result of Rivoal and Ball

[2], ζ(k) is irrational for infinitely many odd k. Thus for infinitely many odd k, either

dimQ V̂k(3) = 3 or dimQ V̂k(4) = 3.
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