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ABSTRACT. We present a survey of some recent results regarding the class
numbers of quadratic fields

1. INTRODUCTION

The concept of class number first occurs in Gauss’s Disquisitiones Arithmeticae
written in 1801. In this work, we find the beginnings of modern number theory.
Here, Gauss laid the foundations of the theory of binary quadratic forms which
is closely related to the theory of quadratic fields. Motivated by the problem of
representing natural numbers as the values of certain positive definite binary qua-
dratic forms, he isolated the notions of class number and genera. Later, Dirichlet
related the class number to special values L(1, x) where x is a quadratic (Dirichlet)
character and L(s, x) is the Dirichlet series attached to the character x.

After the development of algebraic number theory through the works of Kum-
mer and Dedekind, it became apparent that the failure of the unique factorization
property in algebraic number fields is measured by the ideal class group. With Fer-
mat’s last theorem as the motivating muse, Kummer developed his theory of ideal
numbers in the context of cyclotomic fields. But it was Dedekind who enunciated a
larger theoretical framework that has now become part of the modern parlance. For
any algebraic number field K, he introduced the ring of integers Ok and showed
that every non-zero ideal of this ring has finite index and can be factored uniquely
as a product of prime ideals. He also introduced what we now call the Dedekind
zeta function (g (s) which is defined for Re(s) > 1 by the Dirichlet series
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where Na := [Of : a]. Dedekind’s unique factorization theorem leads to the Euler
product:
1\ !
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where the product is over all the non-zero prime ideals of Ok. If K = Q, then (g(s)
is the familiar Riemann zeta function and the above is the classical Euler product.

We say two non-zero ideals a and b of Ok are equivalent if there are elements
a, B € Ok such that (a)a = (5)b. This defines an equivalence relation on the set
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of all ideals of Ok and one can even define an abelian group structure on the set
of equivalence classes giving rise to the ideal class group €x. That this ideal class
group is a finite group is a famous theorem of Minkowski and his celebrated theory
now called the geometry of numbers first arose in this context. The order of € is
called the class number and denoted hy. Thus, hx = 1 if and only if the ring Ok
is a principal ideal domain (PID).

2. CLASS NUMBERS OF IMAGINARY QUADRATIC FIELDS

In his foundational work of 1801, Gauss conjectured that if K runs through
imaginary quadratic fields, then the class number tends to infinity. In particular,
he conjectured that there are only finitely many imaginary quadratic fields with
class number one. In fact, he even predicted the complete list of such fields. They
are Q(v/—d) where

d=1,2,3,7,11,19,43,67, 163.

This conjecture was finally proved independently by Alan Baker [2] and Harold
Stark [53] in 1966. Baker developed his celebrated theory of linear forms in log-
arithms and applied his new theory to resolve this problem. Baker’s method is
applicable in a vast variety of Diophantine questions and so he was awarded the
Fields Medal for this theory in 1968. Stark’s method adapts an old method of
Heegner using modular functions, but ultimately, the final step is resolved using
linear forms in logarithms.

But Gauss’s class number problem and its final solution had a curious histori-
cal trajectory skirmishing around the generalized Riemann hypothesis! Although
Dedekind introduced his celebrated zeta function, he was unable to derive an an-
alytic continuation and functional equation similar to the Riemann zeta function.
Using the newly created geometry of numbers, Weber was able to extend it to the
region Re(s) > 1—1/[K : Q], but the functional equation was elusive. It was Hecke
who in 1918 used the theory of theta functions of several variables to show that
(ke (s) extends analytically to the entire complex plane with a simple pole at s =1
and satisfies a suitable functional equation similar to the one satisfied by ((s). One
expects that all the non-trivial zeros of (x (s) (that is, zeros with real part positive)
to lie on the line Re(s) = 1/2 and this is called the generalized Riemann hypothesis
(GRH). If K is a quadratic field, then we have the factorization

Cr(s) = ¢(s)L(s, x)
where x is the quadratic Dirichlet character mod |dk |, where d is the discriminant
of K. One expects L(s, x) to satisfy the Riemann hypothesis. Hecke noted that if
K = Q(v/—d) is an imaginary quadratic field with class number h(—d) and there is
some constant ¢ > 0 such that L(s, x) has no real zero with real part greater than
1 — ¢/ logd, then for some positive constant c;, we have

Cl\/g
logd "

h(d) >

In particular, the class number of imaginary quadratic fields tends to infinity and
consequently, there are only finitely many imaginary quadratic fields with class
number one. The reader will note that Hecke’s hypothesis is substantially weaker
than GRH and is certainly implied by it. It is surprising (and annoying to some)
that we have been unable to show that this hypothesis always holds, an assertion
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which is far far away from the claim made by GRH. This is the problem of the
so-called Siegel zero.

The years 1933 to 1935 saw a series of remarkable theorems related to this
theme. Given Hecke’s theorem, it was a surprise when Deuring proved in 1933
that the falsity of the classical Riemann hypothesis implies that h(—d) > 2 if d
is sufficiently large. A year later, in 1934, Mordell proved that the falsity of the
classical Riemann hypothesis also implies that h(—d) tends to infinity. The final
step came later that year when Heilbronn proved that the falsity of GRH implies
h(—d) tends to infinity. Thus, combining this strange mélange of theorems with
the result of Hecke, we obtained an unconditional proof of Gauss’s conjecture. We
refer the reader to Chapter 21 [20] for the chronology of these puzzling sequence of
discoveries.

Later in 1934, Heilbronn and Linfoot made their result partially effective in that
they proved there is at most one more field in Gauss’s list of imaginary quadratic
fields with class number one. Perhaps the most significant of these developments
is the 1935 theorem of Siegel that states that for any ¢ > 0, there is a constant
C(€e) > 0 such that

h(—d) > C(e)d"/>.
We should compare this with Dirichlet’s class number formula for imaginary qua-

dratic fields
_ 2mh(—d)

— wy/dx]

where w is the number of roots of unity in K, di is the discriminant of K and y
is the Kronecker symbol (dg/-), from which we can deduce

L(1,x)

h(—d) < Vdlogd.

Combining this with Siegel’s theorem, we learn that h(—d) “grows like” V/d. More
precisely,

logh(—d) 1

iSeo  logd 2’

An important consequence of Siegel’s theorem is that for any given value ¢ there
are only finitely many imaginary quadratic fields with class number ¢.

Siegel’s theorem is ineffective in the sense that we do not know C(e) explicitly.
This ineffectivity does not facilitate an effective determination of all imaginary
quadratic fields with a given class number. Although Baker and Stark could apply
their methods to determine all imaginary quadratic fields with class number 2, their
methods did not show us a way to tackle the general problem. In this direction,
Goldfeld [27] took a major step in 1976 when he related this problem to L-series
attached to elliptic curves. Without going into too much detail, Goldfeld showed
that if there is an elliptic curve E over Q, whose associated L-series, Lg(s) is entire
and has a triple order zero at the point s = 1/2, then for any ¢ > 0, there is an
effectively computable constant c(e) > 0 such that

h(—d) > c(e)(logd)'~¢.

In 1986, Gross and Zagier [28] showed that such an elliptic curve exists and thus
completed the search for an effective theorem.
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3. CLASS NUMBERS OF REAL QUADRATIC FIELDS

In his work on class numbers, Gauss also conjectured that there are infinitely
many real quadratic fields with class number one. This conjecture is still unresolved
as of today. Let K = Q(ﬁ), with d > 1 and square-free, and ¢4 be the fundamental
unit of K. The class number formula gives us

h(d)logeq = \/di L(1, x).
In this case, the difficulty arises because it is not possible to separate the factor
log €4 while finding bounds for h(d). One may however consider real quadratic
fields with a small fundamental unit. More precisely, one can consider real qua-
dratic fields such that €5 < logd. In such cases, we get the existence of only finitely
many d > 0 such that h(d) = 1, a result which mirrors the situation for imaginary
quadratic fields.

It is not even known if there are infinitely many algebraic number fields with
class number 1. There are some intriguing conjectures in this context. Let B, ,
denote the n-th layer of the cyclotomic Z,-extension of @, that is, the unique real
subfield of the cyclotomic field Q((,n+1) of degree p™ over Q for odd primes p, and
Q (cos (52%5)) for p = 2. Let hy, be the class number of B, ,. In [55], Weber
showed that hg, is odd for all n > 1. Subsequently, Iwasawa [38] generalized
Weber’s result to show that for all n > 1, the class number hy, , is not divisible
by p. Then, in [25], Fukuda and Komatsu proved that hs ,, is not divisible by any
prime less than 10°. This led to the following conjecture, often called Weber’s class
number problem:

Conjecture 1. Foe every positive integer n, the class number ha , is 1.

In [15], Cohn proved that he s = 1. Since then many special cases have been
verified to be true [3, 54, 45, 46] but the conjecture still remains elusive in general.
Miller has conjectured that even a stronger statement should be true [45] (see also
[18]):

Conjecture 2. For any prime p and positive integer n, the class number hy, , is
1.

Some progress in this direction was made by Buhler, Pomerance and Robertson
[9] who used an extension of Cohen-Lenstra heuristics (see Section 4 for details) to
estimate the probability that h,, > 1. Consequently, they were led to the following
conjecture.

Conjecture 3. Let p be a prime and n be a positive integer. For all but finitely
many pairs (p,n), the class number of the real cyclotomic field of conductor p™**
1s equal to the class number of the real cyclotomic field of conductor p™. That is,

h (Q <<p7‘+1 + CI;}“)) =h (Q (Cp” + C;z;l)) :

Returning to quadratic fields, let p = m? + 1 be a prime and consider Q(\/&)
In [17], Chowla and Friedlander conjectured that m = 26 is the largest value for
which h(p) = 1. In other words, h(p) > 1 for p > 677. Mollin and Williams [43]
proved this conjecture using the Generalized Riemann Hypothesis (GRH). They
numerically verified that h(p) > 1 for 677 < p < 10 and used a result of Cor-
nell and Washington[19] which guarantees, under the assumption of GRH for the
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Dedekind zeta function of Q(v/d), that h(p) > 1 for p > 10'3. In [6], Biro provided
an unconditional proof that h(4m? + 1) > 1 for m > 13. Let m be an odd, positive
integer and d = m? + 4 be square-free. In [7], Biro also proved the so-called Yokoi
conjecture, which states that h(d) > 1 for m > 17.

In [11], Byeon, Kim and Lee prove that h(v/n? —4) > 1 for n > 21. Then,
Byeon and Lee [12] proved that there are exactly four quadratic fields of the form
Q(v'm?2 4 1) with class number equal to 2.

4. COHEN-LENSTRA HEURISTICS

In 1984, Cohen and Lenstra [14] made a number of conjectures about the struc-
ture of the class group and divisibility properties of class numbers of real and
imaginary quadratic fields based on certain numerical computations. Let K be a
quadratic field and €}, be the odd part of the class group €, that is, the subgroup
of ideal classes with odd orders. Given a finitely generated abelian group A and
a prime p, define the p-rank of A as Rk,(A) = dimp, (A/AP). It is essentially the
number of invariant factors of the p-part of A. Following [23], if f is a real-valued
function on the set of positive or negative discriminants d, we say that f(dg) has
average value a € R if, as x — 0o, we have

> fldx)=(a+o(l) > 1L
O0<tdrg <z O0t+dg <z
In the case of imaginary quadratic fields, Cohen and Lenstra predict the follow-
ing:

Conjecture 4 (Cohen-Lenstra). Let K be an imaginary quadratic field and p be
an odd prime. Then,

(i) The probability that p|hy is

(ii) The probability that rk,(C5) =1 is
e} —2
2 1 1
P () 05
j=1 P 7 Sier p
(iii) For a non-negative integer «, the average value of
H <prkp(¢;<) _ pi)
0<i<a

is one. In particular, the average value of p*r(€x) is two and that of
P> e(Ck) s p 4 2.

Due to the celebrated work of Davenport and Heilbronn [21], Conjecture 4(iii) is
known to be true in the case a =1 and p = 3. They proved the following theorem
on the number of 3-torsion elements in the class groups of quadratic fields with
bounded discriminants.
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Theorem 5 (Davenport and Heilbronn). Let dx denote the discriminant of a
quadratic field K and €3(K) be the 3-torsion subgroup of the ideal class group €.
Then

S #G(E) =5 Y T+l

O<dg <z O<dg <z
Y #GE) =2 > 1+ox)
—x<dr <0 —x<dg<0

It follows that the average value of 3%%s(®x) is 2. In [5], Bhargava, Shankar and
Tsimermann provided a simple proof of Theorem 5 and a precise form of the second
main term. Other than these results, almost nothing is known about Conjecture 4
(except in the trivial case & = 0 and any p). In the case of real quadratic fields,
Cohen and Lenstra conjecture the following.

Conjecture 6 (Cohen-Lenstra). Let K be a real quadratic field and p be an odd
prime. Then,
(i) The probability that p|hy is
i 1
()
i=2 b’

(ii) The probability that rk,(C5) =1 is
e’} 1 1 -1 1 —1
—r(r+1) - = =
P H<1 pj) 11 <1 p’“) 11 (1 p’“) '
j=1 1<k<r 1<k<r41
(iii) For a non-negative integer «, the average value of
H <pmp(¢;() _pi)
0<i<a

is p~. In particular, the average value of p™»(€x) is 1+ p~' and that of
p2RE(€5) s 9 4 p=1 4 p2.

Again, by the work of Davenport and Heilbronn [21], Conjecture 6 (iii) is known
to be true for &« = 1 and p = 3. In [26], Gerth has extended the Cohen-Lenstra
conjectures to include the case p = 2 by considering the group €% := {a? : a € €x}
and in [24], Fouvry and Kluners have proved the corresponding modifications of
Conjecture 1(iii) and Conjecture 2(iii) in the case p =2 and o > 0,

5. DIVISIBILITY OF CLASS NUMBERS

5.1. Quantitative results. Cohen and Lenstra predict that the quadratic fields
with class number divisible by n should have positive density among all quadratic
fields. To state quantitative results in this direction, for a square-free positive
integer d, we define

N,(z) = #{d: n|h(—d), and |dg| < z}.
Then, according to Cohen-Lenstra heuristics, we must have

Ny (z) ~ epz
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for a positive constant ¢,. In particular, for an odd prime p they predict that

. 51— 12, (1- z% , real quadratic fields
P ﬂ% 1-— H;’;l 1-— z% , imaginary quadratic fields.

In [47], Ram Murty proved, using the ABC conjecture, that for an integer g > 3,
at least > x!/97¢ imaginary quadratic fields with absolute discriminant < z have
an element of order g in their class group. That is, N,(z) > z!/97¢. In the real
quadratic case, he found a lower bound of Ny(z) > 21/ (29)=¢ for such quadratic
fields. Later in [48], Murty gave stronger results without using the ABC conjecture.
He proved that Ny(x) > 2275 for g > 3. For real quadratic fields, he proved that
Ny(z) > 225 for any €, and g odd, where the implied constant may depend on e.

For imaginary quadratic fields, Soundararajan [52] improved Murty’s bounds to
Ny(z) > 22157 when g =0 (mod4) and N,(z) > 221552 ¢ when g =2 (mod4).
Note that his result contains bounds for Ng4(z) when d is odd since Ng(x) > Nag(x).
In these results, the exponent is still asymptotic to % as g goes to infinity. Some
substantially new idea is needed to break through the “%” barrier in this problem.

In the case of real quadratic fields, Murty’s bounds were improved by Luca [44]
to Ng(z) > :Eé/ log « for g even and by Yu [56] to Ng(x) > 25~ for g odd. Inspite
of these encouraging results, we seem to be still far away from any resolution of the
Cohen-Lenstra conjectures.

5.2. Certain infinite families of quadratic fields. We first consider the follow-
ing family of quadratic fields. For an integer n > 1 let

Ka;,y,n ::Q<V$2 —y”) 3 €,y € Z.
In [1] Ankeny and Chowla studied the family K, 3 ,, and proved the following result.

Theorem 7 (Ankeny-Chowla). Let n be an even positive integer and let
d =22 — 3" < 0 be a square-free integer with x even and 0 < x < V/2-37~1, then
n diwides the class number of the imaginary quadratic field Q(v/d).

In [29], Gross and Rohrlich proved that the class number of the imaginary qua-
dratic field Q (\/ 1— 4a”) is divisible by n for any odd integer n > 3 and any integer
a > 2. In the case of real quadratic fields, a similar result was obtained by Ichimura
[36], who showed that the class number of Q (vVa?" + 4) is divisible by any integer
n > 2 and any odd integer a > 3. Cohn [16] proved that for n > 2 and n # 6, the
class number of K 5 5, is divisible by (n —2) if 2" —1 is not a square. In [39], Kishi
proved that, for z = 2%, k > 1, Theorem 7 is true for all n such that 22* < 3™. Kishi
[40] also proved that if n > 3 is odd then the class number of Ks 3, is divisible by
3. Subsequently, there have been further generalisations of these results by Ito [37]
as well as Chakraborty, Hoque, Kishi and Pandey [13]. An important ingredient in
these proofs is a result by Bugeuad and Shorey [8] on the number of solutions in
positive integers of the generalized Ramanujan-Nagell equation.

6. NON-DIVISIBILITY OF CLASS NUMBERS OF QUADRATIC FIELDS

6.1. Imaginary quadratic fields. It follows from Gauss’ genus theory that there
are infinitely many imaginary quadratic fields with class number not divisible by
2. In [30], Hartung showed that given an odd prime p, there are infinitely many
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imaginary quadratic fields K for which p 1 hx. To state further results in this
direction, we require the following terminology. Let p be a fixed prime and let
Z,, be the p-adic integer ring. Let K be a finite algebraic number field with class
number hg. Further, we denote by A,(K) and pu,(K) respectively, the Iwasawa A-
and p—invariants associated to the basic Z, extension over K (see [49] for more
details). In [33], Horie used a modification of Hartung’s approach to prove that
given a prime p, there are infinitely many imaginary quadratic fields K for which
p { hx and in which p is not split. It then follows from Iwasawa’s criterion [38]
that there exist infinitely many imaginary quadratic fields K with Ax = pg. The
proof is based on the Eichler-Selberg trace formula as well as the p-adic Galois
representation associated to the Jacobian of the modular curve Xg(p).

Let p be a prime number and let Py, P_; and Py be finite mutually disjoint
subsets of the set of primes numbers such that 2 ¢ P, U P_y. In [34], Horie proved
that for sufficient large p, there exist infinitely many imaginary quadratic fields K
such that p ¥ hx and (dﬁ") = j for m € P;, j = {0,1,2}. Here (—) is the usual
Legendre symbol. Next, let e = —1,0 or 1. In [35], Horie and Onishi proved that,
given a prime p > 5, there exist infinitely many imaginary quadratic fields K such

m%p+M<wdC%):a
In [41], Kohnen and Ono proved that for a prime p > 3 and € > 0, the following

lower bound exists for the number of quadratic fields whose class number is not
divisible by p and whose absolute discriminant is less than z.

#{—z < —d < 0 fundamental : p{h(—d)} > (2(1)_2) - e) VT .
V3(p—1) logz
6.2. Real quadratic fields. By the work of Davenport and Heilbronn [21], it is
know that for € > 0, we have
#{O0<d<z:3th(d)} _5
#{0<d <z} =6 ©
The non-divisibility of class number of real quadratic fields K is closely related
to the Greenberg conjecture which says that for every prime p and totally real
number field K, we must have A\,(K) = 0 = p,(K). From the work of Ferrero and
Washington, it is know that for K = Q(v/d) we have y,(K) = 0. However, the
conjecture that \,(Q(v/d)) = 0 has not been resolved yet. In this direction, Ono
[50] and Byeon [10] have shown that for each prime p, there exist infinitely many
real quadratic fields Q(v/d) such that \,(Q(v/d)) = 0.
Our short survey should convince the reader that this topic is a fertile area of
research with many open questions. It is a confluence of several branches of number
theory that will inspire further investigation for generations to come.

REFERENCES

[1] N. C. Ankeny and S. Chowla, On the divisibility of the class number of quadratic fields,
Pacific J. Math., 5 (1955).

[2] A. Baker, On the class number of imaginary quadratic fields, Bulletin of the American
Math. Society, 77 (1971), no. 5, 678-684.

(3] H. Bauer, Numerische Bestimmung von Klassenzahlen reeller zyklischer Zahlkrper. J. Num-
ber Theory 1 (1969), 161-162;

[4] K. Belabas, E. Fouvry, On the 3-rank of quadratic fields with prime or almost prime
discriminant, Duke Math. J., 98(1999), 217-268.



(5]
[6]
[7]
(8]

(9]

(10]

(11]
(12]

[13]
[14]
[15]
[16]
[17]

(18]

(19]
20]
(21]
(22]

23]

[24]
[25]
[26]
[27]
28]
[29]
[30]

(31]

(32]

CLASS NUMBERS OF QUADRATIC FIELDS 9

M. Bhargava, A. Shankar and J. Tsimermann, On the Davenport-Heilbronn theorems and
second order terms. (English summary) Invent. Math. 193 (2013), no. 2, 439-499.

A. Biro, Chowla’s conjecture. Acta Arith. 107 (2003), no. 2, 179-194.

A. Bir, Yokoi’s conjecture, Acta Arith. 106 (2003), 85-104.

Y. Bugeaud and T. N. Shorey, On the number of solutions of the generalized Ramanujan-
Nagell equation, J. Reine Angew. Math. 539 (2001), 55-74.

J. Buhler, C. Pomerance, L. Robertson, Heuristics for class numbers of prime-power real
cyclotomic fields, in: High Primes and Misdemeanours: Lectures in Honour of the 60th
Birthday of Hugh Cowie Williams, in: Fields Inst. Commun., vol. 41, Amer. Math. Soc.,
Providence, RI, 2004, pp. 149-157. modular forms, Duke Math. J. 98 (1999), 595-611.

D. Byeon. Indivisibility of class numbers and Iwasawa A-invariants of real quadratic fields,
Compositio Math. 126 (2001), 249-256.

D. Byeon, M. Kim, J. Lee, Mollins conjecture, Acta Arith. 126 (2007) 99-114

Byeon, D., Lee, J.: Class number 2 problem for certain real quadratic fields of Richaud-
Degert type. J. Number Theory 128, 865-883 (2008)

Chakraborty, K.; Hoque, A. Kishi, Y.; Pandey, P. P. Divisibility of the class numbers of
imaginary quadratic fields. J. Number Theory 185 (2018), 339-348.

H. Cohen and H. W. Lenstra Jr., Heuristics on class groups of number fields, Lecture Notes
in Mathematics 1068 (Springer, 1984), 33-62

H. Cohn, A numerical study of Weber’s real class number of calculation, I, Numer. Math.
2 (1960) 347-362. MR0122809

J. E. H. Cohn, On the class number of certain imaginary quadratic fields, Proc. Amer.
Math. Soc., 130 (2001), no. 5, 1275-1277.

S. Chowla and J. Friedlander, Class numbers and quadratic residues, Glasgow Math. J. 17
(1976), 47-52.

J. Coates, The enigmatic Tate-Shafarevich group, in: Fifth International Congress of Chi-
nese Mathematicians, Parts 1, 2, in: AMS/IP Stud. Adv. Math., vol. 2, 51, pt. 1, Amer.
Math. Soc., Providence, RI, 2012, pp. 43-50.

G. Cornell and L. C. Washington, Class numbers of cyclotomic fields, J. Number Theory
21 (1985), 260-274.

H. Davenport, Multiplicative Number Theory, Graduate Texts in Mathematics, 74, Second
edition, Springer-Verlag, 1980.

Davenport, H.; Heilbronn, H. On the density of discriminants of cubic fields. II. Proc. Roy.
Soc. London Ser. A 322 (1971), no. 1551, 405-420.

B. Ferrero and L. C. Washington, The Iwasawa invariants A, vanishes for abelian number
fields, Ann.of Math.109 (1979) 377-395.

Fouvry, Etienne, Kluners, Jurgen. Cohen-Lenstra heuristics of quadratic number fields.
Algorithmic number theory, 4055, Lecture Notes in Comput. Sci., 4076, Springer, Berlin,
2006.

Fouvry, Etienne Kluners, Jurgen On the 4-rank of class groups of quadratic number fields.
Invent. Math. 167 (2007), no. 3, 455513

T. Fukuda, K. Komatsu, T. Morisawa, Weber’s class number one problem, in: Iwasawa
Theory 2012, in: Contrib. Math. Comput. Sci., vol. 7, Springer, Heidelberg, 2014.

Gerth III, F.: Extension of conjectures of Cohen and Lenstra. Expo. Math. 5(2), 181-184
(1987)

D. Goldfeld, The class number of quadratic fields and the conjectures of Birch and
Swinnerton-Dyer, Ann. Sc. Norm. Super. Pisa, 3 (1976), 623-663.

B. Gross and D. Zagier, Heegner points and derivatives of L-series, Inventiones Math., 84
(1986), 225-320.

B. H. Gross and D. E. Rohrlich, Some results on the Mordell-Weil group of the Jacobian
of the Fermat curve, Invent. Math. 44 (1978), 201-224.

P. Hartung, Proof of the existence of infinitely many imaginary quadratic fields whose class
number is not divisible by 3, J. Number Th. 6 276-278 (1974)

Hernndez, Santos; Luca, Florian. Divisibility of exponents of class groups of pure cubic
number fields. High primes and misdemeanours: lectures in honour of the 60th birthday of
Hugh Cowie Williams, 237-244, Fields Inst. Commun., 41, Amer. Math. Soc., Providence,
RI, 2004.

A. Herschfeld, The equation 2% — 3¥ = d, Bull. Amer. Math. Soc. 42 (1936), 231-234.



10 AJIT BHAND AND M. RAM MURTY

[33] K. Horie, A note on basic Iwasawa A-invariants of imaginary quadratic fields, Invent. Math.
88 (1987), 31-38.

[34] K. Horie, Trace formulae and imaginary quadratic fields, Math. Ann. 288 (1990), 605- 612.

[35] K. Horie and Y. Onishi, The existence of certain infinite families of imaginary quadratic
fields, J. Reine und ange. Math. 390 (1988), 97-133.

[36] H. Ichimura, Note on the class numbers of certain real quadratic fields, Abh. Math. Sem.
Univ. Hamburg 73 (2003), 281-288.

[37] A. Ito, Remarks on the divisibility of the class numbers of imaginary quadratic fields
Q+/22k — gn, Glasgow Math. J., 53 (2011), 379-389.

[38] Iwasawa, K.: A note on class numbers of algebraic number fields. Abh. Math. Sem. Univ.
Hamburg 20, 257-258 (1956).

[39] Y. Kishi, Note on the divisibility of the class number of certain imaginary quadratic fields,
Glasgow Math. J., 51 (2009), 187-191.

[40] Y. Kishi, On the ideal class group of certain quadratic fields, Glasgow Math. J., 52 (2010),
575-581.

[41] Kohnen, W., Ono, K., Indivisibility of class numbers of imaginary quadratic fields and
orders of TateShafarevich groups of elliptic curves with complex multiplication. Invent.
Math. 135, 387-398 (1999)

[42] R. A. Mollin, Solutions of Diophantine equations and divisibility of class numbers of com-
plex quadratic fields, Glasgow Math. J. 38 (1996), 195-197.

[43] R. A. Mollin and H. C. Williams, A conjecture of S. Chowla via the generalized Riemann
hypothesis, Proc. Amer. Math. Soc. 102 (1988), 794-796

[44] Florian Luca. A note on the divisibility of class numbers of real quadratic fields. C. R.
Math. Acad. Sci. Soc. R. Can. 25 (2003), no. 3, 71-75.

[45] J. C. Miller, Class numbers in cyclotomic Zy-extensions. J. Number Theory 150 (2015),
47-73.

[46] J. C. Miller, Class numbers of totally real fields and applications to the Weber class number
problem. Acta Arith. 164 (2014), no. 4, 381-398.

[47] M. Ram Murty, The ABC conjecture and exponents of quadratic fields, Cont. Math. 210.
(1997) pp. 85-95, in Number Theory, edited by V. Kumar Murty and Michel Waldschmidst,
Amer. Math. Soc., Providence.

[48] M. R. Murty, Exponents of class groups of quadratic number fields, Topics in Number
Theory (University Park, PA, 1997) Kluwer Acad. Publ., Dordrecht (1999), 229-239.

[49] M. Ram Murty, Introduction to p-adic analytic number theory. AMS/IP Studies in Ad-
vanced Mathematics, 27. American Mathematical Society, Providence, RI; International
Press, Somerville, MA, 2002

[50] K. Ono, indivisibility of the class numbers of real quadratic fields, Composito Math., 199
(1999), 1-11.

[51] K. Ono and C. Skinner, Nonvanishing of quadratic twists of modular L-functions, Invent.
Math. 134 (1998), 651-660.

[52] K. Soundararajan, Divisibility of class numbers of imaginary quadratic fields, J. London
Math. Soc. (2) 61 (2000), 681-690.

[53] H.M. Stark, On complex quadratic fields with class-number equal to one, Transactions of
the Amer. Math. Society, 122 (1966), 112-119.

[54] F. J. van der Linden, Class number computations of real abelian number fields. Math.
Comp. 39 (1982), no. 160, 693-707

[55] H. Weber Theorie der Abel’schen Zahlkrper Acta Math., 8 (1) (1886), pp. 193-263.

[56] Yu, Gang A note on the divisibility of class numbers of real quadratic fields. J. Number
Theory 97 (2002), no. 1, 35-44.

(Ajit Bhand) DEPARTMENT OF MATHEMATICS, INDIAN INSTITUTE OF SCIENCE EDUCATION AND
RESEARCH BHOPAL, BHOPAL BYPASS ROAD, BHAURI, BHOPAL 462 066, MADHYA PRADESH, INDIA
E-mail address: abhand@iiserb.ac.in

(M. Ram Murty) DEPARTMENT OF MATHEMATICS AND STATISTICS, QUEEN’S UNIVERSITY, KINGSTON,
ONTARIO, CANADA, K7L 3NG6
E-mail address: murty@queensu.ca



