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Congruences between Modular Forms

M. Ram Murty*

1. Introduction Recently, Goldfeld and Hoffstein [4] have shown, using the
theory of L-functions that if f and g are two holomorphic Hecke newforms
of weight k and squarefree levels N1, N2 respectively, then there is an n =
O(N log N), with N = lcm(N1, N2) so that

af (n) 6= ag(n).

(Here, af (n) denotes the n-th Fourier coefficient in the Fourier expansion of
f at i∞.) In other words, there is a constant c so that the first cN log N
Fourier coefficients determine the newform. They obtain an analogous result
if the weights are distinct. Assuming the generalized Riemann hypothesis for
the Rankin-Selberg L-functions attached to these eigenforms, they deduce that
the bound above can be improved to O((log N)2(log log N)4).

We will show that these results can be established without the use of L-
functions. Our approach leads to sharper results and is applicable in the wider
context of two arbitrary cusp forms of any weight and level. In fact, we will
prove a more general and sharper:

Theorem 1 Let f and g be two distinct holomorphic modular forms of weight

k and levels N1 and N2 respectively. Let N = lcm(N1, N2). Then, for some

n ≤
k

12
N
∏

p|N

(

1 +
1

p

)

we must have af (n) 6= ag(n). (Here, the product is over primes p dividing N .)

Remark Note that we do not assume that f and g are Hecke eigenforms
nor that they are of squarefree levels as in the Goldfeld - Hoffstein [4] paper.
Moreover, let us observe that if ν(N) denotes the number of prime factors of
N , and pi denotes the i-th prime, then

∏

p|N

(

1 +
1

p

)

≤
∏

1≤i≤ν(N)

(

1 +
1

pi

)

≤
∏

1≤i≤ν(N)

(

1 −
1

pi

)−1

≪ log log N
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which is a sharper bound than the one given in [4, p. 387].

Proof Let φ = f − g, and suppose af (n) = ag(n) for n ≤ M . Then, φ has a
zero of order ≥ M at i∞. If ∆ denotes Ramanujan’s cusp form, then φ12/∆k

is of weight zero and hence a meromorphic function on the compact Riemann
surface X0(N). Since ∆ does not vanish on the upper half-plane, and has a
simple zero at i∞, the number of zeroes of φ, which is at least 12M − k, is
equal to the number of poles, which cannot exceed k times the index of Γ0(N)
in Γ(1) minus one (to account for i∞ which already contributed to the zero
count). The index of Γ0(N) in Γ(1) is equal to

N
∏

p|N

(

1 +
1

p

)

.

The result is now immediate.

We can make a few remarks. The first is that the method can be applied
to any discrete subgroup contained in Γ(1) to get an analogous result. One can
also adapt it to deal with f and g of different weights.

The proof of Theorem 1 can be modified to handle different weights. In-
deed, if

an(f) = an(g)

for all n ≤ M , then
φ = (fk2 − gk1)12/∆k1k2

is a function on X0(N). The order of the zero at i∞ is ≥ 12M − k1k2. The
number of poles, on the other hand is ≤ k1k2([Γ(1) : Γ0(N)]−1) by an analogous
argument as before.

Let us introduce the following notation. Suppose

f(z) =

∞
∑

n=1

an(f)e2πinz

is the Fourier expansion of f at i∞. Then, define

ord∞(f) = min{n : an(f) 6= 0}.

We have therefore proved:

Theorem 2 If f and g are holomorphic modular forms such that

ord∞(f − g) >
k1k2

12
([Γ(1) : Γ0(N)])
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then f = g.
The result which we state below will be proved by a different method

in Section 5 as an application of the Riemann-Roch theorem and is a small
improvement of Theorem 2.

Theorem 3 Suppose that f and g are two holomorphic cusp forms of weights

k1 and k2 and levels N1 and N2 respectively. If

ord∞(f − g) > k1k2(µ − 1),

where µ is the genus of X0(N) and N = lcm(N1, N2), then f = g.

Let us note that the genus µ satisfies the inequality

µ ≤ 1 +
N

12

∏

p|N

(

1 +
1

p

)

and thus, the bound of Theorem 3 is comparable to the one of Theorem 1.

In case that f and g are normalized newforms of distinct weights k1 and
k2 and levels N1 and N2 respectively, we can in fact do better and derive an
estimate superior to the conditional estimate of Goldfeld and Hoffstein [4, p.
386].

Theorem 4 Let f and g be two holomorphic Hecke newforms of distinct

weights k1 and k2 on Γ0(N1) and Γ0(N2) respectively. Then, there is an n <
4(log N)2 with N = lcm(N1, N2) so that

an(f) 6= an(g).

Proof We can view f and g as cusp forms on Γ0(N). Let us first note that
there is a p < 2 logN which is coprime to N for otherwise N would be divisible
by all the primes < 2 log N and hence by their product. By a classical estimate
of Chebycheff, this product is

∏

p<2 log N

p = exp
(

∑

p<2 log N

log p
)

> N,

which is a contradiction. Thus, fixing such a prime p, and observing that

ap2(f) = a2
p(f) − pk1−1

and
ap2(g) = a2

p(g) − pk2−1
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we deduce that k1 = k2. Noting that p2 < 4 log2 N , we have a contradiction.

If we view Theorems 1, 2 and 3 as statements at the “infinite prime”
then it is natural to ask for analogous results at the “finite primes”. That
is, if we have a congruence between coefficients of modular forms (mod p) up
to a certain natural number, can we conclude that the coefficients are always
congruent? In the case the two forms have equal weight, such a result was
first established by Sturm [12]. Sturm’s proof is sketchy in some places and
therefore, for the sake of clarity of exposition and emphasis with the analogy
above, we give the complete proof in Sections 2, 3 and 4. Sturm’s argument
however cannot be easily modified to handle different weights. In Section 5,
we therefore take a different approach through the Riemann-Roch theorem.
This has the merit of being conceptually simple and at the same time working
(mod p) (for p not dividing N = lcm(N1, N2), however) thanks to the algebro-
geometric generalization of the Riemann-Roch theorem. Recently, K. Ono
[7] applied the theorem of Sturm in investigating the parity of the partition
function.

2. Preliminaries In our paper [8], we indicated how the celebrated ABC
conjecture leads naturally to the problem of congruences between modular
forms. We will not discuss this connection here, but refer the reader to the
forthcoming paper [8] for a detailed derivation. The purpose of this paper is
to determine the (finite) amount of calculation necessary in order to establish
a congruence between two modular forms.

More precisely, let us fix an algebraic number field F with ring of integers
OF . Fix a prime ideal p of OF and for a formal power series

s =
∞
∑

n=0

cs(n)qk , cs(n) ∈ OF ,

define
ordp(s) = min{n : p ∤ cs(n)}

with the convention that ordp(s) = ∞ if p|cs(n) for all n. Recall that k[[q]] with
k = OF /p is a discrete valuation ring. In particular, this implies the following.
Notice that if

f =
∑

n≥0

cf(n)qn

g =
∑

n≥0

cg(n)qn

then
cfg(n) =

∑

i+j=n

cf (i)cg(j),
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so that, if ordp(f) = nf < ∞ and ordp(g) = ng < ∞, then from the above
formula, we see

cfg(nf + ng) ≡ cf(nf )cg(ng) mod p

6≡ 0 mod p.

We also note that cfg(n) ≡ 0 mod p if n < nf + ng. Hence,

ordp(fg) = ordp(f) + ordp(g)

when each of the terms on the right hand side is finite. By the convention made
above, the equality also holds if either one of ordp(f) or ordp(g) is infinity.

For each positive integer N , let

Γ(N) =

{(

a b
c d

)

∈ SL2(Z) :

(

a b
c d

)

≡

(

1 0
0 1

)

mod N

}

and fix Γ, a subgroup of Γ(1) containing Γ(N). As usual, h will denote the
upper half-plane, k will be a positive integer and we will consider functions

f : h → C

satisfying certain conditions. Mk(Γ) will denote the C-vector space of modular
forms of weight k for Γ. To be precise, let us define for each γ ∈ GL+

2 (R), the
function

(f |γ)(z) = f

(

az + b

cz + d

)

(cz + d)−k(ad − bc)k/2

where

γ =

(

a b
c d

)

is a matrix of GL2(R) of positive determinant. Then Mk(Γ) consists of holo-
morphic functions of the extended upper half-plane:

f : h∗ = h ∪ Q ∪ {i∞} → C

satisfying f |γ = f for all γ ∈ Γ.

Since
(

1 N
0 1

)

∈ Γ,

such an f ∈ Mk(Γ) has a Fourier expansion of the following type:

f(z) =
∑

n≥0

n∈N−1Z

af (n)e(nz)
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where e(x) = e2πix. If R is a subring of C, we denote by Mk(Γ, R) those forms
of Mk(Γ) whose Fourier coefficients lie in R. That is, af (n) ∈ R for all n.

Our purpose now is to explain in some detail a fundamental result of Sturm
[12] regarding congruences between modular forms. To this end, let us fix as
before an algebraic number field F and let OF be the ring of integers of F . Let
p be a prime ideal of OF . We will explain the following:

Theorem 5 (Sturm) Let f, g ∈ Mk(Γ,OF ). Suppose ordp(f − g) > k[Γ(1) :
Γ]/12. Then f ≡ g mod p with Γ a congruence subgroup.

Notice that the bound does not depend on p.

3. Sturm’s theorem: the level one case To prove the theorem, we first
consider the level one case. That is, N = 1. Recall that Ramanujan’s cusp
form

∆(z) =

∞
∑

n=1

τ(n)e(nz) ∈ M12(Γ(1), Z)

and can be written in terms of the standard Eisenstein series:

∆(z) =
1

1728
(E3

4 − E2
6)

with

E4(z) = 1 + 240

∞
∑

n=1

σ3(n)e(nz),

E6(z) = 1 − 504
∞
∑

n=1

σ5(n)e(nz)

and

σk(n) =
∑

d|n
d>0

dk.

Also, the modular function j(z) is

j(z) = E3
4/∆.

We reproduce below a result that is well-known for Mk(Γ(1)). We adapt it to
the case Mk(Γ(1),OF ).

Proposition 6 Let Φ ∈ M12k(Γ(1),OF ), satisfying ordp(Φ) > k. Then

Φ/∆k ∈ p[j]
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is a polynomial in j of degree at most k, all of whose coefficients are divisible

by p.

Remark This fact is stated without proof in [12]. It is more or less evident
from the fact that any modular function with only a pole at infinity must be
a polynomial in j. However, the divisibility of the coefficients is not so clear.
One can see this by comparing q-expansions. For the sake of completeness, we
give a proof that assumes minimal background.

Proof We induct on k. For k = 1, Φ has weight 12 and so we can write it as
an OF -linear combination of E3

4 and ∆, as is easily checked. Dividing by ∆
gives the result. Since ordpΦ/∆ > 0, we observe that writing

Φ/∆ =
∑

n≥−1

c(n)e(nz),

we have c(n) ∈ OF and p|c(n) if n ≤ 0.

For general k, let us find i and j so that

12k = 4i + 6j.

Then for some c ∈ OF ,
Φ − cEi

4E
j
6

is a cusp form of weight 12k.

Thus, we can write
Φ = cEi

4E
j
6 + ∆f1

with f1 ∈ M12(k−1)(Γ(1),OF ). Dividing by ∆k yields

Φ/∆k = cEi
4E

j
6/∆k + f1/∆k−1.

By induction hypothesis,
f1/∆k−1 ∈ p[j].

Noting that 4i + 6j = 12k implies that i ≡ 0 mod 3 and j ≡ 0 mod 2 we can
write i = 3i0 , j = 2j0 so that

Ei
4E

j
6/∆k = (E3

4/∆)i0(E2
6/∆)j0

and E3
4/∆ = j , E2

6/∆ = j−1728. This completes the proof of the proposition.

We can now prove the theorem in the level one case. Let φ = f − g. Then,
ordp(φ

12) > k implies

φ12/∆k =
∑

n≥−k

c(n)e(nz)
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with c(n) ∈ OF and p|c(n) if n ≤ 0. By the proposition, φ12/∆k ∈ p[j] is a
polynomial in j of degree at most k. Thus, φ12 ∈ ∆kp[j] implies ordpφ

12 = ∞
so that ordpφ = ∞, as desired.

4. Sturm’s theorem: the general level case We begin by discussing
some preliminaries.

Let Γ contain Γ(N). We want to reduce the proof of the Theorem to the
level one case by constructing a map:

T : M12k(Γ(N),OF )→M12k(Γ(1),OF )

such that

ordp(T (φ)) ≥ ordp(φ).

Theorem 3.52 of Shimura [10, p. 85] assures us that the space Sk(Γ(N)),
the space of cups forms of weight k for Γ(N) has a basis of cusp forms whose
Fourier coefficients at i∞ are rational integers, provided k ≥ 2. This means
that any element of Sk(Γ(N), F ) has the bounded denominator property. That
is, given an element f ∈ Sk(Γ(N), F ), there is an element A ∈ F so that
Af ∈ Sk(Γ(N),OF ).

By the theory of Eisenstein series, we conclude that Mk(Γ(N)) has a basis
whose Fourier coefficients are rational over Q(ζN ) where ζN denotes a primitive
N -th root of unity. (See also Theorems 6.6 and 6.9 of Shimura [10, pp. 136-
140]).

Now we can prove the theorem in the general case. As in [12, p. 276], let
φ = f − g. Our aim is to show that under the hypotheses of the Theorem,
ordp(φ) = ∞. Thus, replacing φ by φ12 if necessary, we may suppose 12|k.
Then, φ∆−k/12 is a modular function of level N . Since Γ(N) is a normal
subgroup of Γ(1), we note that for any γ ∈ Γ(1),

φ|γ ∈ Mk(Γ(N) , F (ζN )).

By what we have said in the previous paragraph, φ|γ has bounded denomina-
tors. Now let K be the Hilbert class field of F (ζN ). Then pOK is a principal
ideal in OK . Let ℘ be a prime ideal of OK dividing pOK .

For every γ ∈ Γ(1), we can clearly find A(γ) ∈ K∗ such that ord℘A(γ)(φ|γ)
is finite, simply by dividing by a suitable power of ℘. Moreover, by the Chinese
remainder theorem, we can arrange

A(γ)(φ|γ) ∈ Mk(Γ(N) , OK)
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Now consider the “norm function from Γ(N) to Γ(1)”, namely,

Φ = φ

m
∏

i=2

A(γi)(φ|γi)

where 1 = γ1 , γ2 , ..., γm is a set of coset representatives of Γ(N) in Γ(1)
Note that

Φ ∈ Mkm(Γ(1))

because if σ ∈ Γ(1),

Φ|σ =

(

m
∏

i=2

A(γi)

)

m
∏

i=1

(φ|γiσ)

and γ1σ , γ2σ , ... γmσ is again a set of coset representatives of Γ(N) in Γ(1)
so that Φ|σ = Φ. Note also that

ord℘(Φ) ≥ ord℘φ = ordpφ > km/12.

By the level one cases we deduce that ord℘Φ = ∞. Thus,

ord℘φ +

m
∑

i=2

ord℘(A(γi)φ|γi) = ∞

Since ord℘(A(γi)φ|γi) < ∞ for i = 2, ..., m, we conclude that ord℘φ = ∞.
Hence ordpφ = ∞. This completes the proof.

5. An application of the Riemann-Roch theorem

Theorem 7 Suppose that f and g are holomorphic cusp forms on Γ0(N),
of weight k and levels N1, N2 respectively. Let N be the lcm of N1 and N2.

Suppose that

ord∞(f − g) >
k

2
(2µ − 1)

where µ is the genus of X0(N). Then f = g.

Proof If f 6= g, then k is even since there are no non-zero odd weight forms.
ω = (f − g)(dz)k/2 is a holomorphic differential k/2-form on X0(N). Its de-
gree is (k/2)(2µ − 2). On the other hand, the hypothesis means that at i∞,
ordi∞(ω) ≥ (k/2)(2µ − 1) − (k/2) where the extra k/2 comes from (dz)k/2.
Thus, (see for example, Shimura [10, Prop. 2.16, p. 39])

k

2
(2µ − 2) = deg(ω) ≥ ordi∞(ω) ≥

k

2
(2µ − 1) −

k

2
,
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which is a contradiction.

Proof of Theorem 3 It is now clear that Theorem 3 can be proved in an
exactly similar manner. Indeed, as before, let us consider the differential (fk2 −
gk1)(dz)k1k2/2 and proceed as in the previous proof.

Theorem 8 Suppose f and g are cusp forms of even weight k and level N
with coefficients lying in the ring of integers OF of some algebraic number field

F . Suppose that for some prime ideal p coprime to the level N , we have

ordp(f − g) >
k

2
(2µ − 1),

then, f ≡ g mod p.

Proof We apply the Riemann-Roch theorem valid in any field of characteristic
p which is coprime to N . This uses the non-trivial fact that X0(N) has good
reduction for all p ∤ N and is due to Igusa [5] (see also Deligne–Rapoport [3]).
Again, cusp forms of weight 2 can be interpreted as differentials on X0(N) over
Fp. The same argument as before is valid for arbitrary even weight k. (See
Silverman [11, p. 39] and [2, p. 96], for example.)

This approach has the advantage that it can generalize to two different
weights k1 and k2.

Theorem 9 Suppose that f and g are cusp forms of weights k1 and k2 and

levels N1 and N2 respectively. Suppose further that at least one of k1 or k2 is

even. As before, let us suppose the coefficients lie in the ring of integers OF of

some algebraic number field. If p is a prime ideal of OF , and

ordp(f − g) > k1k2(µ − 1)

then f ≡ g mod p.

We can derive better variations of Theorems 8 and 9 which are better
for small primes, if we are willing to assume the generalized Riemann hypoth-
esis for certain Dedekind zeta functions. In fact, if f and g are normalized
Hecke eigenforms of level N , we know by Deligne [1] that there exists a Galois
extension Kf/Q and a representation

ρp,f : Gal(Kf/Q)→GL2(OKf
/p)

such that for each prime v ∤ pN, we have

tr(ρp,f (σv(Kf/Q))) ≡ av(f) mod p
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where σv denotes the Artin symbol of v. An identical result holds for g. Thus,
we may consider the compositum KfKg and deduce by the Chebotarev density
theorem (see [6] or [9]) the following:

Theorem 10 Assume that the Dedekind zeta function of KfKg/Q satisfies

the analogue of the Riemann hypothesis and f and g are normalized Hecke

eigenforms as above with Fourier coefficients lying in a field F . If p is a prime

ideal of OF coprime to N and

ordp(f − g) > (log(NormF/Q(p)) + log N)4,

then f ≡ g mod p.

Proof By the Chebotarev density theorem and the Riemann hypothesis for the
Dedekind zeta function of KfKg/Q, we deduce that for any given conjugacy
class C of Gal(KfKg/Q), there is a prime v with

Norm(v) ≤ (log(NormF/Q(p)) + log N)4

so that σv(KfKg/Q) ∈ C. Thus, if

av(f) ≡ av(g) mod p

for each v whose norm satisfies the last inequality, then by Deligne’s theorem
and the effective Chebotarev density theorem as cited above, we can conclude
the desired result.

We can also remark that even if f and g are not Hecke eigenforms, a similar
result can still be established. Note however, these bounds depend on p. Also
worthy of contrast is that Theorem 5 is valid for all primes p whereas Theorems
8 and 9 are applicable only when p is coprime to N .
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