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1. Introduction

In the early 18th century, Euler extensively studied infinite series of the form
>
nk’
n=1
for any positive integer k > 1. After Riemann’s introduction of the zeta-function,

)= W) >,

we recognize the series studied by Euler as special values of ((s) at positive integers. In
particular, Euler’s resolution of the Basel problem leads to

C(2k) € m2* Q~,

for any positive integer k > 1. Thus, the values ((2k) are all transcendental, thanks
to Lindemann’s theorem that 7 is transcendental. However, the arithmetic nature of
C(2k + 1) for an integer k > 1 remains shrouded in mystery.

Recently, significant progress was made in this direction when Apéry [2] proved that
¢(3) is irrational, T. Rivoal [20] proved that infinitely many of {(2k + 1) are irrational
and W. Zudilin [24] showed that at least one of ¢(5), ¢(7), ¢(9) and ¢(11) is irrational.
The transcendence of the values ((2k + 1) is not known, although they are expected to
be so. Moreover, it is widely believed that

, <(3)7 <(5)7 <(7)’

are algebraically independent.

In an attempt to understand the nature of the special values of the Riemann zeta-
function, it seems fruitful to adopt a larger perspective. The values then seem intimately
connected with special values of the multi-zeta functions. A multi-zeta value (MZV) of
depth r and weight w is defined as the nested sum,

1
Cr(kth’“. ’k‘r) = Z nlkl n2k2 ’rLTkT7
ny>ng>-->np>1
where k; are positive integers, k1 > 2 and k1 + k3 + - - - + k. = w. These values not only
appear in several areas of mathematics but also in quantum physics. MZVs have been
the focus of intense research in recent times. They satisfy a wide variety of relations.
Recently, F. Brown [7] proved a remarkable theorem which states that all multiple zeta-
values of weight n are Q-linear combinations of
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{C(al,u-,ar) ca;€{2,3}for1 <i<r, a1+~-~+arn}.

The MZVs are also intricately related to the values of the Riemann zeta-function itself.
Perhaps the most striking example of such a relation is that

or more generally,

n— 1%

-2
Gn—1,1) = ") — 5 3 C) Cln— ), (1)

2 ¢

for a positive integer n > 3, which was certainly known to Euler. Thus, it is expected
that the study of MZVs will shed light upon the arithmetic nature of {(2k + 1).

These convolution sum identities suggest that there must exist similar identities for
other L-functions such as Dirichlet L-functions. Yet, to our knowledge, no one has derived
such analogues. The closest we come to such an attempt revolves around a celebrated
theorem of Ramanujan: let o, § > 0 with o3 = 72, and let k£ be any non-zero integer.
Then

1 > 1
a k{5<<2k+1>+§m}

1 - 1
= (-8 k{iﬂ%““zm}

n=1
k+1

i Baj Bogyo o Zi o
_ 92k 1y J J ofti—i 7
;O( " @) @22 P

where B,, denotes the n-th Bernoulli number (see [3]). The last term on the right hand
side of the above identity can be viewed as a convolution sum of zeta values since

(27‘(’i)2k ng

C(2h) = = (2k)!

Attempts to generalize this identity to Dirichlet L-functions have met with limited
success. For example, S. Chowla [8] derived an analog of this identity if ((s) is replaced
by L(s, x4) where x4 is the non-trivial Dirichlet character modulo 4 (see [3, pg. 277]). It
is the purpose of this note to initiate a systematic study of such convolution identities.
As Dirichlet L-functions are linear combinations of Hurwitz zeta-functions, it seems
appropriate to derive convolution sum identities for them, and more generally for the
Lerch zeta-functions.
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The Hurwitz zeta-function was isolated for independent study by A. Hurwitz [13] in
1882. For 0 < x < 1, the Hurwitz zeta-function is defined as the series

o0

o) =3 — ., R(s) > 1.

n=0 (n + .’E)

In 1887, Lerch [14] studied an exponential twist of the Hurwitz zeta-function. For |z| < 1,
a € C\{0,—1,-2,---}, the Lerch zeta-function is defined as

o0
(z;058) E —s>
— (n+ )

which converges for £(s) > 1if z =1 and R(s) > 0 otherwise. The Riemann and Hurwitz
zeta-functions are special cases of the Lerch zeta-function.

Moreover, this function generalizes another special function that makes an appearance

in the theory of special values of zeta-functions, namely, the polylogarithm. For |z| < 1,
the s-th polylogarithm is defined as

(oo}
Lis(z Z

This series converges for s > 1 when z =1 and s > 0 when |z| <1 and z # 1.

§|N:

(2,1, 9).

Fix a positive integer ¢ > 3. A Dirichlet character x modulo ¢ is a group homomor-
phism, x : (Z/qZ)* — C*, extended as a completely multiplicative, periodic function on
the integers. The L-function associated to y is defined as

_ i x(n)

which converges absolutely for R(s) > 1. It can be shown that (see [16, Section 5] for

details) L(k;x) € 7" Q* when k and x have the same parity, i.e., both are either odd or
even. However, when k and x have the opposite parity, the nature of the values L(k;x)
is unknown. Since the function y is periodic, for £(s) > 1,

L(s; x) = %zq:x(a)c <s; g) :

a=1

Thus, the Hurwitz zeta-functions are building blocks of the Dirichlet L-series.

That the above functions are inter-related is immediate from the following observa-
tions.
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1 k . 2
C(hi5) = (@5 =1) ¢, Lin(=1) = =(-1; 1 8) = (1- = ) <(K)
1 k
@155 k) =2"L(k; xa), (2)
where x4 is the non-trivial character modulo 4.

Multi-variable analogs of the above zeta-functions have been studied by various au-
thors. The theory of meromorphic continuation of multiple Hurwitz zeta-function was
studied by Akiyama and Ishikawa [1] and by the first author and Kaneenika Sinha [18].
Around the same time, the multiple Hurwitz zeta-functions were also studied in [15].
The multiple Hurwitz zeta-function,

~ 1
C(817"'7S7~;$L‘1,"',$T)Z: Z S0

S1
ny>ng>>na>1 (nl + 1:1) T (nr + J;T)
converges when x; € (0,00) and
R(s1)>1, R(si+s2)>2, -+, R(sy+---+s8.)>r. (3)

The analytic continuation of these multiple Hurwitz zeta-functions was the center of
interest in [18]. However, the arithmetic nature of special values of the multiple Hurwitz
zeta-functions has not been studied previously in full generality. In the special case that
x; = 1/2, the multiple Hurwitz zeta-values are called multiple t-values. A detailed study
of these special values in the spirit of multiple zeta-values has been carried out by M.
E. Hoffman in [12], who conjectured that the dimension of the Q-vector space generated
by the weight k& multiple ¢t-values is the kth Fibonacci number. A basis for this vector
space was conjectured by B. Saha in [22].

In order to ensure elegance of our formulas, we modify the above definition slightly to
include the indices equal to 0 and ensure that x; ¢ {0,—1,—2,---}. Thus, throughout
this paper, we will consider the multiple Hurwitz zeta-function to be

(81,0 4 8p; X1y yXyp) = Z 1 ) (4)

ni>ng>-->n,.>0 (nl + 1.1)51 T (nr + xr)sr

Adopting this convention implies that

<(517"' »Sr 3 17 71):CT(517"' 757")7

the usual multi-zeta function. Note that

4(817"' 3y Spy L1y 0 7xr>:Z(sla"' ySpy L1,y 71:7")

+ = Q81,0 81 T, T ).
Ty
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In the same vein, the meromorphic continuation of multiple Lerch zeta-function was
studied by S. Gun and B. Saha in [11]. We will define a multiple Lerch-zeta function as

zZhr

ML
D21, 5205 QL, Q81,4 Sp) 1= Z 131 n _®
ni>ng > >n.>0 (711 + 0[1) o (nr + Oér) "

for a; € (0,00), s1, - s, satisfying (3) and z; such that HZ:I lz;) <1lforalll<j<r
(for a proof, see [21, Section 2.2]). Note that we include the term corresponding to n, = 0
to ensure clean identities, so our definition includes more terms than that used in [11].
It is then easy to see that ®(1, -+, 1, -+ ,ap; 81, ,8r) = C(S1,+ ,Sp; 1, , Q)
and the multiple polylogarithms (see [23]),

Lig, ... s, (21, , %)
Zlnl Zrnr
— g 57:2:1”'ZT‘¢(217”'7ZT‘;17“'71;517”'757‘)'
ny 1 ... nrsr

ny>-->n,>1

When z; = £1, the corresponding multiple polylogarithms are called alternating Euler-
Zagier sums, which have been extensively studied in the literature (for example, see
[5] and [6]). In order to maintain consistency of notation for depth 2 sums, we use the
following convention.

o)=Y CET L =y CETEN

m=2 n=1 m=2 n=1

Multiple Dirichlet L-functions were considered by Akiyama and Ishikawa [1] and also
appear in the work of Goncharov [10]. Let x1, X2, - - -, X» be primitive Dirichlet characters
of the same modulus ¢. Then the associated multiple Dirichlet L-function is defined as

,Xr) = Z x1(n1) "'Xr(”r)'

L<sla"'7ST;X17"' s s
nl 1 ...nTv‘

ny>ng>->n.>1

The convolution of values of Dirichlet L-functions is considerably more involved. The
multiple L-functions that appear are more general than the multiple Dirichlet L-functions
above, namely, if f1, fo, -+, fr are functions on the integers, that are periodic modulo
the same modulus ¢, then define the multiple L-function,

L(steee s froee o fi) = ¥ fl(n1)~..fr(nr)’ )

nyst - .. n,.Sr
ny>ng>->n.>1 1 r

which converges for sq, - - -, s, satisfying (3).

Another multiple Dirichlet series allied to (7) are quasi-multiple L-functions, where
the strict inequality in (7) is replaced by a possible equality. Analogously, one can also
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define the quasi-multiple Hurwitz zeta-functions. They are a special case of a general
multiple zeta-function introduced by Matsumoto [15] and are discussed in [18, pg. 13].
In particular, the quasi-multiple L-functions that appear in our work will be

L*(Sl7"'75r;f17"'7fr) — Z fl(nl)-.-fT(nr)7 (8)

n S1 ... n Sr
m>ng>>n,>1 L r

for s; satisfying (3). These can be related to the multiple L-functions via a simple
inclusion-exclusion principle.

The identities we obtain naturally also include the digamma function ¢ (z), which
is defined as the logarithmic derivative of the gamma function. Owing to the infinite
product of I'(z), one obtains a series expansion for 1 (z), namely

 — 1 1
1/1(2)3:* ;Z(z—&—nﬁ)’ 2#07717723""

Here 7 denotes the Euler-Mascheroni constant. Thus, (1) = —7.

We first prove convolution sum identities for Lerch zeta-functions where the argument
z # 1. From these identities, we derive the analogous expressions for Hurwitz zeta-
functions by careful analysis of the effect of taking limit as z — 17. Thus, our main
theorem is

Theorem 1.1. Let k > 3 be a positive integer, o € C\{0,—1,—2,---} and 21, 22 € C with
0 < |z, |22| <1, 21 # 1 and zo # 1. Then

k—1

Zq)(zl;a;j) O(20; 05k — j)

j=1
=(k—1)P(21 20; k) — (log(l —21) +log(1 — 22)) D(z1 2950k — 1)
—z;lq>(zlzg, 2 a1 k:—1,1)—,2171<I>(,21,227 2t a1l k—1,1),
where the last two terms are multiple Lerch zeta-functions as defined in (5).

As an easy corollary of this theorem using (2), we deduce the following identity for
values of L(s; x4), where x4 denotes the non-trivial Dirichlet character modulo 4.

Corollary 1.1. Let k > 3 be a positive integer and x4 denote the non-trivial Dirichlet
character modulo 4. Then,
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k—1

LG ) 05— ) = (= 1) (1= 5 ) ¢tk = tog2 (1= g ) <h= )
j=1
20| 1; 1'1 1, k—1,1
i)

Now, we fix zo and take the limit as z; — 1~ in Theorem 1.1. This gives the following
theorem for values of the Lerch and the Hurwitz zeta-function.

Theorem 1.2. Let k > 3 be a positive integer, 0 < |z] < 1 and z # 1 and « €
C\{0,—-1,-2,---}. Then

S
Ju

C(J;)P(2z; a5 k—j) = (k—1)P(z; a; k) + (’(/J(Oé) + v —log(1 — Z))‘MZ? a; k—1)

<
I|
S

— 2 0z, a1 E—1,1) — (2,1 o, 1 k—1,1)
where the last two terms are multiple Lerch zeta-functions as defined in (5).
Similarly, on taking the limit as z — 1~ in the above theorem, we get

Corollary 1.2. Let k > 4 be a positive integer and oo € C\{0,—1,—2,---}. Then

k—2
> ¢ a) ¢k = jia) = (k= 1)¢(k; ) +2 <¢(a) +7)C(k — L) =2¢(k—1,1; a,1).

=2

In particular, when k¥ = 3 and a = 1, the above corollary implies ((3) = (2(2,1).
Moreover, we can take z = —1 and o = 1 in Theorem 1.2 to obtain

Corollary 1.3. For any integer k > 4,

k—2
2 . . 2
> (1 55 ) €Yl =) = (= )6k = (1= 525 ) log2) ¢tk -1
j=2
+ Gk —1,1) — Gk —1,1),
where the last terms are alternating Euler-Zagier sums, defined in (6).

This identity has been discussed in detail in [5, Section 4, (15)].

In [17], the first author emphasized that ((2) = 72/6 itself implies the more general
fact that ((2k) € m?*Q, simply because of the neat identity

k—1
(k ¥ %)a%) =3 c@)) ¢k - 2)). 9)

J=1
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This is another relation among the zeta-values that Euler was familiar with. It is natural
to inquire if convolutions of values of the Lerch zeta-functions at even positive integers
lead to new identities, different from the ones described previously. Towards this question,
we prove the following.

Theorem 1.3. Let k > 2 be a positive integer and complex numbers zy and zo such that
0<|z1]=|22| <1 and z1, 29 # 1. Then

k—1
> D(21; 0;24) (223 a5 2k — 25)
j=1
1 1
= (k - 5) D(z129; a; 2k) — 5@(,21,22; a; 2k — 1) (log(l —z1) +log(1 — 22)>
1

1
— 5@(21_12'2; a; 2k — 1) (215 205 1) — 5@(2122_1; a; 2k — 1) D(29; 25 1)
—1
1
- %@(2122,22_1; a,1;2k—1,1) + 5@(2122_1722; a,2a; 2k —1,1)

1
- 217(1)(2122,21_1; a,1;2k—1,1) + §<I)(z1_122,zl; a,2a; 2k —1,1).
Taking z; = 2o = —1 and @ = 1/2 in the above theorem, we deduce that

Corollary 1.4. Let x4 denote the non-trivial character modulo 4 and k > 2 be an integer.
Then

k—1
> L(2j; xa) L(2k — 245 x4)

j=1

1 1 1
- (1 - 2_k> (’“ - 5) ¢(2k) - (1 - 2T> (log 2) ¢(2k — 1)
+22%<I> <1,—1; %,1; 2k—1,1) _

On the other hand, considering the equation in Theorem 1.3 at z = 213 = 29, |2| < 1
and taking the limit as z — 17, we deduce the following identity for the values of Hurwitz
zeta-functions.

Corollary 1.5. Let k > 2 be an integer and o € C\{0,—1,—2,---}. Then

k—1

> C(27;a) C(2k — 25;0) = (k - ;) C(2k; @) + (1/1(204) + 'y) C(2k — 1;0)

_<(2k_171a a,1)+<(2k_1ala 04,201),
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where the last two terms are multiple Hurwitz zeta-functions as in (4).

For Dirichlet L-functions associated to primitive Dirichlet characters, we have the
following theorem.

Theorem 1.4. Let x1, x2 be primitive Dirichlet characters modulo ¢ > 3 and k > 3 be an
integer. For a primitive Dirichlet character x mod q, define two allied periodic functions
mod q by

Tyaln) == Can and Ty q,x(n) == x(n) (;ma

for any a € Z. Also, let 7(x) = >.0_, x(a)(g be the Gauss sum associated to x. Then,
k—1
> L) Lk = i x2)
j=1
qg—1
= (= DLk v — s Y (a(0) o1 = 6 Lk = 150 )
a:l
g—1
Y (xl ) loE(1 = ) Lk = LTy
a=1
1 9
_ ) Xz(a) (q_a L*(k—1,1; i Th.a XmTq,fa)
a=1
R
- e X1(a) G L*(k = 1,15 Tgaxs, Tg—a)
a=1

where the last terms involve multiple L*-function as defined in (8).

This is a generalization of Corollary 1.1 and gives an idea of the various combinations
of special values involved. It is not difficult to see that for r,s € N with 1 < rand 1 <'s,
and a primitive character y mod g,

oo

00 am am am M
L*(r,8; Tyans Ty—a) ZX C C +2X C ZCJ_
m=1

m=1

i=1

=L(r+s,x)+L(r,s; Tyax:Tga)

Using this in the above theorem, together with the fact that for a primitive Dirichlet
character x mod g,
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simplifies the identity as follows:

k—1

Z L(j; x1) Lk —j; x2) = (k= 1)L(k; x1x2) — x2(=1) L(k; x1) — x1(=1) L(k; x2)

1 =
- Ya(a) log(l — ¢ Lk — 1; Tya,
o 2 (0 a1~ 10k~ 15Ty
1 =
- xi(a) log(1 = C3) Lk — 15 Ty 0.y,
7 2 (X 081 = G 2013 Ty )
1 =
- (@) ULk —1,1: Tyaris Ty —a
G v Toa)
1 =

Xi(a) Cq_a Lk = 1,15 Ty axs: Tg,—a)-
1

\]
o]

2
Il

(

Remark. It is evident from the above theorem that in order to study the special values of
Dirichlet L-function, one must investigate the allied functions

n

. = x(n)z
Lig(zx) =) (nl el <,
n=1

for a Dirichlet character x modulo q. By the duality between Dirichlet characters and
arithmetic progressions, these sums will be naturally related to the function,

oo

n=1,
n=a mod ¢q

which is essentially the Lerch zeta-function ®(z; a/q; k).
2. Proof of main theorems

The method of summation in evaluating the sums that arise in our theorems is based
on the same general principle, which we outline below. Fix a positive integer » > 1 and
a positive integer k > 3. For complex numbers 21, zo with |z;| < land z; #1,i =1, 2,
a € C\{0,—1,-2,---}, let the r-level convolution be defined as

k—1
Cr(z1,22;0a) == ZCI)(zl; a; 1)) D(z2;a;5r(k — ).

j=1

Then we expand the right hand side as
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_ 0o Zg
C ZlaZQa Z Z m+a : (n—}—a)r(k_j)
> (21 2 S = 1 1
=(k-1) ! 2T + P — -
nz (n—!—a k anO 1 <2 = (m—|—o¢) J (n_’_a)r(kfj)
n#m

amoan R n+a\”
=(k—1)®(21 20; a; Tk) + L 72 ( ) .
(k — 1)&( ) n,mZ:Q(Ha),k mia
n#m

Now, the inner sum can be evaluated as a geometric series,

n—+ « /
n+arkz<m+a>

1 (TL + a)r(kfl) . (m + a)r(krfl)
B (m+ a)T(k_l) (n+ oz)r(k_l) < (n+a) —(m+a) > .

Thus we get
C k—1)® k) 3 i 3 %
r(21,22;00) = — 2122, Q; T —i— - =
(o) = (k= 0= ZO (m+a) Y 2 Ty -t a)
n=0,
n#m
+Z r(k ) z:: (m+a) (n—i—a) '

n

(10)

Therefore, the above computations naturally lead one into the study of the auxiliary
sums

71

Z n+a) —(m+a)”’ (11)

n:,

n#m

where z € C with |z] <1, 2 # 1 and a € C\{0,—1,—-2,---}. Our focus will mostly be
on the cases r = 1 and r = 2. We will also later indicate the difficulties in obtaining neat
formulas for r > 3 using the above method.



M.R. Murty, S. Pathak / Journal of Number Theory 217 (2020) 1-22 13

2.1. Fwvaluation of auziliary sums

For a non-negative integer m, let H,,, denote the mth harmonic number, that is,

1
H,, = Jz:; 3,
if m is a strictly positive integer and Hy := 0. It is not difficult to see that
HN_logN+'y+O<%>. (12)

Analogous to the harmonic numbers, we introduce the generalized harmonic numbers,
defined as

k 27 .
> i W if k>0,

0 otherwise,

Hy(z,a) = {

for |z] <1and a € C\{0, =1, =2, --- }. Let Hi(a) := Hy(1, ), so that Hy, = Hp,—1(1).
The asymptotic behavior of these numbers is evident from the following lemma.

Lemma 2.1. Let |z| <1, a € C\{0,—1,—2,---} and k be a non-negative integer. Then,

Hy(a) = logh — (a) + O (%) ,

as k — oco. If z # 1, then

lim Hg(z,a) = ®(z;a51).

k—o0

Proof. When z # 1, the series

n

,;)(Wra)

can be shown to converge using Abel’s theorem. When z = 1, the asymptotics follow
from (12) and the series representation of the digamma function,

LS (e 2) oo

n=1

fora#0, -1, -2, ---. O
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Also note that for z # 1 and 0 < |z| <1,
B(z;1;1) = 27 log(1 — 2).
With this background, the auxiliary sum in the case r = 1 can be expressed as follows.

Lemma 2.2. Let z € C with |z] <1, z # 1 and m be a non-negative integer. Then

Sm(z2) = Z nz_m = —2"log(l—2)—2z"""H,_ (271 1),

n=0,
n#m

where the last term involves a generalized harmonic number.

Proof. Separating the sum into two parts gives

D D D S

=—z"log(l—2) —
=0

=—2"log(l—2)—2""'H, 1(z7%1). O

j+1

In the case r = 2, we have

Lemma 2.3. Let z € C with |z| <1, z # 1 and m be a non-negative integer. Then

o0 n

Som(z,a) = Z i

n=0, (TL + a)2 - (m + a)

2

n#m
= = — ! {zm log(1 —2) + 2" ' H,_1(271 1)}
4m+a)® 2(m+a) ¢ " ’
1

- St a) {chp(z; 20;1) — 2™ Hyp 1 (2, 2a)}

Proof. By partial fractions, we know that

1 1 1 1
(n+a)’ —(m+a)  2(m+a) (n—m_n+m+2a>'

The required sum can then be re-written as

1 zZ™m 1 > z
Som(z,0) = ST e Sm(2) + o iar >
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The last sum can be determined as follows

(o) n N n N+m Zjim

z z
i i
;n—i—m—i—%t Nglloo;n+m+2a Ngnooj;nj+2a

N+m . m—1

:Zimz\}iinoo Z]+2a Z

Jj=

J+

=z"" lim <HN+m(z7 2a) — Hp—1 (2, 2a))
N—o0
=2 "®(z; 2a; 1) — 27 Hpp—1(2, 200).

The evaluation of Sz, (2, ) is now evident from Lemma 2.2. O

Remark. Using partial fractions, it is possible to obtain that for |z2| <1 and z # 1,

ST,m(Zva) 7" T r—1 ZQ" Z n-|—a) —ZC,’I? (m—l—a)’

= n=0,
n;ﬁm
where (. denotes a primitive r-th root of unity. However, for r > 3, since the roots

of unity are complez, the evaluation of inner sums is not immediate. Moreover, when
r = 2%, the sums arising above have the special form

oo 77/

Z t o 0<t<s-1.

S (n+a)” +(m+a)

Whent =1, a = 1 and z = 1, the resulting sum can be evaluated using [19, Theorem
2]. This highlights the importance of the study of the series

> A
B(n) "
n=0

where A(X) and B(X) are suitable polynomials with rational coefficients and |z| < 1.
2.2. Proof of Theorem 1.1
Let r =1 in (10). Then, we have
Ci(z1,22;0a) = (k= 1)®(21, 225 o k)

+z(

m+a
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The above two sums can be simplified using the expressions for S,,(z) obtained in
Lemma 2.2. For instance,

i ((Lkl 'Sm(22))

m=0 m+a)
:—log(l—zz)z(h#— 712 (2122)" — Hy1(25 4, 1)
m=0 (m+a)* (m+a)*
= —log(l — 29) P(z120; ; Kk — 1) — z2_1 B(z122,25 55 o, 1 k —1,1),

where the last term is a multiple Lerch zeta-function as defined in (5). The remaining
sum can also be evaluated similarly. This proves Theorem 1.1.

2.3. Proof of Theorem 1.2

The idea of the proof is that for a fixed integer & > 1, a € C\{0,—1,—-2,---}, the
function

oo

D(z; a3 k) = Z (_j—iT)k

=0

is a continuous function of z on the disk {z € C : |z| < 1}. However, when k = 1, the
limit lim,_,;- ®(z; ;1) does not exist because of the pole of the Hurwitz zeta-function
at s = 1. Therefore, we re-write the identity obtained in Theorem 1.1 as follows.

E
—

(21505 5) ®(22; 5k — j)

<.
Il
N

(k—1)®(21 20; 5 k) — (log(l - 22)> D(z1 29505k — 1)
— 2t B(21 20, 2 k= 1,1) — 27 ®(21 2, 2 a1 k—1,1)

— {log(l —21)P(z129; a3 k— 1) + D215 a; 1) P(29; a5 k — 1)}

For a fixed 29 # 1, we would like to consider the limit z; — 17. That is, we let z; € R
with 0 < z; < 1 and then take the limit as z; — 1. For all the terms in the above identity
except the ones in curly brackets, the limit as z; — 17 exists. Hence, we concentrate on
just those two terms. Observe that

lim log(l —21) ®(z120; a5 k — 1) + P(21; a; 1) D205 a5 k — 1)

z1—1—
N J
= lim lim |®(z9; a5 k—1) Z -

z1—1— N—oo

N
—®(z129; a5 k— 1) Z

. |>—lku.
(R
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Now, note that for a fixed 29, ®(z 29; a; k — 1) is a continuous function of z. Thus, we
have that the limit equals

N Zj N Zj
w@mmmhmmn{z,l_z;}
]+« il

z1—1— N—oo .
Jj=0

N j

az]

= (i aik—1) lim lim [=+ Y —22
(225 )Zlm%i R [ G+ o) }

Jj=1

Since 3772, 1/(j (j + @)) < oo, one can interchange the limits thanks to the dominated
convergence theorem, to get that the above limit is in fact

Begs i k= 1) 2+ tim 3 (12 5)] =~ (v@+7) 22 asi -1,

(e N—o00 4
j=1
This implies Theorem 1.2.
2.4. Proof of Theorem 1.3

We take 7 = 2 in (10). Therefore, we have

m

= z
Co(z1,29; @) = (k — 1) (21295 a; 2k) + Z L D) Sam (22, @)

— (m+ a)

oo

23
+ — = 827 (2’1, Oé).
,; (n+a)?=D 7"

Using the evaluation of Sy, (2, @) from Lemma 2.3, we get

oo

Z —— 55 S2m(%2,0)

— (m+a)

1 1
= 1@(7:122; a; 2k) — 3 log(1 — 29)®(2129; v; 2k — 1)

1
— 5@(22; 20; 1) ®(2125 ;5 5 2k — 1)

-1
— %@(7;122,22 sa,l; 26— 1,1) + = @(2122 , 295 @, 2a; 2k — 1,1),

where the last two terms are multiple Lerch zeta-functions. The theorem now follows
since the remaining sum can be computed by symmetry.
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2.5. Dirichlet L-functions: Proof of Theorem 1./

Recall that for a primitive Dirichlet character y,
q
DX 6" = X (D), (13)

where (, is a primitive ¢-th root of unity and 7(x) = >.7_, x(a)(g is the Gauss sum
associated to x. Since y is primitive, 7(x) # 0. Thus, we have the following lemma.

Lemma 2.4. Let x be a primitive Dirichlet character mod q and m be a fixed positive
integer. Then,

-~ x(n) LSS (v(a) com Jog(1 —
= n—m - T(Y) ; (X( )Cq 1 g(l Cq))
n#m

= x(n 1 = 1 q_a an
;7n—mir(y);7n—m(;x<)q
1 q o0 ;Ln
ST 2w
=
— 5 S (Sul) + )

The value of S,,((7) can be calculated from Lemma 2.2. This proves the lemma. O

Applying the above lemma, one can prove Theorem 1.4 as follows. For simplicity of
notation, let

K (X1, X2) ZLJ x1) L(k = j; x2).
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Using the definition of the Dirichlet L-functions, we have

—xa(m)  xa(n)

Crlxix2) = Y

mJ nk—J
m,n=1 j=1
00 oo k-1
_ (x1 x2)(m) xi(m)  xa(n)
SR W T
m=1 m,n=1, j=1
S alm) xa(n) = (m 7
= =Dl )+ Y, el g 7
n - m
m,nfll7 j=1

Since m # n in the second sum, the inner sum can be simplified as a geometric sum,

-1

15 (n)j_ 1 1 1
nk —~\m/)  (n—m) \mk-1 pk-1)"

Jj=1

Therefore, the convolution sum becomes

X X = X2(n > x1(m
) = (= Dok xone) + 32 X0 57 220 4 52 2ely 5 )
m=1 ; n n=1 n mil’m n

The inner sums were computed in Lemma 2.4. For any Dirichlet character x mod ¢ and
L <a<gqlet Tga(m) := (™ and Ty 4 (m) := x(m) (g™ Thus, T, , and Ty 4, define
periodic functions on the integers, periodic modulo g. With this notation, the convolutlon
becomes,

1 2 < T
Celx2) = (k= DE(k: xix2) = s D T0(0) oa(1 =) 32 St
]‘ qil— a G T,a, 2(77’)
~ ) )logufcq);1 g
1 q—17 —a S Tq,am(m) % Ct;aj
— T(E) 2 2( )C 7nz::1 mk—1 ; ]
1 4
S LG Y Z
q—1

(XQ ) log(1 - ¢%) L <k—1;Tq,a,X1>)

a:l
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q—1
Z <X1 log(1 — () L(k — 1;Tq’a’><2)>

a=1
1
— a)C L (k—1,1; Ty oy Ty —a
(%) ;X2( )Cq ( wax1s Lg,—a)
1
- X1 e L*(k-1,1;T, T, _
T(K) a:1X1(a) (q ( bl b q,ax2’+q, a)
where
Tyax(n) =x(n) " and Ty —aln) = ¢, "

This proves Theorem 1.4.

Remark. It is clear from the above proof that in order to understand r-level convolution
of values of Dirichlet L-functions, one needs to understand sums of the form

o0
Z x(n)
nt —mo’
n=1,
n#m
for a primitive Dirichlet character x mod q. These sums are interesting in their own
right and we relegate their investigation to future research.

3. Concluding remarks

The theorems included here are only the opening themes of a larger symphony of
ideas. It is now clear that to understand the nature of ((2k+ 1), it is necessary to study
the multi-zeta values. Our paper shows that a similar approach is needed to understand
L(k; x) when k and x have opposite parity.

In Theorems 1.1, 1.2 and 1.3, one can consider the more general case when the cor-
responding Lerch and Hurwitz zeta-functions have different parameters. For example,
one can compute the convolution of values of ®(z1;aq;s) and values of ®(z9; e s) with
a1 # ag. The method outlined in this paper would also go through in these cases.
However, the identities in these scenarios are not as elegant as the ones mentioned here.

Let G denote the Catalan’s constant, that is,
oo 7l

1
= L(2; =40 -1;-;2].
=3 G~ P =40 (1 52)

Then k = 3 and k = 2 cases of Corollaries 1.1 and 1.4 furnish interesting relations among
G, L(1,x4), 72, ¢(3) and values of multiple zeta-functions.
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A curious observation emerges from the identity stated in Corollary 1.2. For k = 3,
the left-hand side of the formula in Corollary 1.2 is empty and hence, zero. Substituting
a = 1/2 and simplifying the right-hand side leads to the identity

6 4
((3) =2 (log2) () + =) "
Furthermore, taking k = 3 in Corollary 1.3, we also get

((3) = § 10g2)C(2) + 5¢(31) — 5B 1).

MH

This is interesting since (it seems) Euler conjectured that
¢(3) = an?log2 + B (log?2)?

for certain rational numbers « and § (see for example, [9, pg. 60]). This observation
leads us to inquire whether

g 2n+ 7 ¢(2,1)—¢(2.0)

can be explicitly evaluated in terms of 72 log2 and (log 2)?. Perhaps not. To date, no
one has disproved Euler’s conjecture.

In this vein, we would like to highlight a conjecture by D. Bailey, J. Borwein
and R. Girgensohn [4, Section 7, pg. 27] based on numerical evidence. To each (al-
ternating) Euler-Zagier sum, ®(eq,---,€; 1,---,1; k1,--- k), ¢ € {%1}, one can
associate the weight w = ki + .-+ + k.. Moreover, the weight of the product
Dley, -y 65 1,001 kyeoe k) - @01, , 005 1,00+, 1 mq, -+ ,my) is given by the
sum ky + - - -+ k. +mq + - - - +ms. Then, the conjecture of Bailey, Borwein and Girgen-
sohn can be stated as follows.

Conjecture 1 (Bailey, J. Borwein, Girgensohn). Alternating Euler-Zagier sums of dif-
ferent weights are Q-linearly independent.

Now, ¢(3) and 72 log 2 have weight 3 each. However, (log 2)2 =®(-1;1;1)2 = 2((1,1)
(see [5, pg. 291]) and hence, has weight 2. Therefore, Conjecture 1 would imply that
¢(2,1) —¢(2,7) is a rational multiple of 72 log(2). This is not expected (see [5, pg. 291])
and thus, Euler’s conjecture seems to be false.
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