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A DERIVATION OF THE HARDY-RAMANUJAN FORMULA

FROM AN ARITHMETIC FORMULA

MICHAEL DEWAR AND M. RAM MURTY

(Communicated by Ken Ono)

Abstract. We re-prove the Hardy-Ramanujan asymptotic formula for the
partition function without using the circle method. We derive our result from
recent work of Bruinier and Ono on harmonic weak Maass forms.

1. Introduction

The partition function p(n) counts the number of ways to write n as a non-
increasing sequence of positive integers. Hardy and Ramanujan [6] created the
circle method to prove the asymptotic formula

p(n) ∼ 1

4n
√
3
· eπ

√
2n
3 .(1.1)

Rademacher [7], and later Selberg [8] independently, pushed the circle method
further to obtain the exact formula

p(n) =
1

π
√
2

∞∑
m=1

√
mAm(n)
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⎤⎥⎦ ,
or equivalently,

(1.2) (24n− 1)p(n) =
∞∑

m=1

2
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m
Am(n)

(
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24n− 1
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e

π
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)
e−

π
√

24n−1
6m ,

where Am(n) is a Kloosterman sum (see [7]).
We use the algebraic formula for p(n) of Bruinier and Ono [1] (Theorem 4 below)

to prove an asymptotic formula which captures the main terms of (1.2) without
using the circle method. In particular, we prove an asymptotic formula of the form

(24n− 1)p(n) =

N∑
m=1

cm

(
1− 6m

π
√
24n− 1

)
e

π
√

24n−1
6m +O

(
h(1− 24n)e

π
√

24n−1
6(N+1)

)
,
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1904 MICHAEL DEWAR AND M. RAM MURTY

where the cm depend on the congruence classes of n (mod m) and h(1 − 24n) is
the usual class number of discriminant 1− 24n. We define a sequence of functions

cm(n) : Z/mZ → R

and implicitly provide a straightforward algorithm to compute cm(n). In particular,
cm(n) is a finite sum of 12mth roots of unity. For example,

c1(n) = 2
√
3, c2(n) = 2(−1)n

(
cos
( π

12

)
+ cos

(
5π

12

))
,

c3(n) =

⎧⎪⎨⎪⎩
4 cos

(
π
18

)
if n ≡ 0 (mod 3)

4 cos
(
11π
18

)
if n ≡ 1 (mod 3)

4 cos
(
23π
18

)
if n ≡ 2 (mod 3)

,

c4(n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2 cos

(
π
24

)
+ 2 cos

(
7π
24

)
if n ≡ 0 (mod 4)

2 cos
(
5π
24

)
+ 2 cos

(
13π
24

)
if n ≡ 1 (mod 4)

−2 cos
(

π
24

)
− 2 cos

(
7π
24

)
if n ≡ 2 (mod 4)

−2 cos
(
5π
24

)
− 2 cos

(
13π
24

)
if n ≡ 3 (mod 4)

.

Theorem 1. Let N ≥ 1 and 1 ≤ r ≤ lcm[1, 2, . . . , N ] and take cm(r) as defined in
Section 4. If n ≡ r (mod lcm[1, 2, . . . , N ]) and n ≥ 6N2, then

(24n− 1)p(n) =

N∑
m=1

cm(r)

(
1− 6m

π
√
24n− 1

)
e

π
√

24n−1
6m +O

(
h(1− 24n)e

π
√

24n−1
6(N+1)

)
,

where the implied constant is absolute.

Although it is not immediately obvious from the definitions, we must have

cm(n) = 2
√

3
mAm(n).

Since h(1− 24n) grows subexponentially, (1.1) is a corollary to Theorem 1:

Corollary 2.

p(n) ∼ 1

4n
√
3
· eπ

√
2n
3 .

Proof. Take N = 1 in the theorem. Then since 1/
√
24n− 1 = o(1), we have

p(n) =
2
√
3

24n− 1
· e

π
√

24n−1
6 + o

(
e

π
√

24n−1
6

)
.

The conclusion follows. �

In Section 2 we establish notation related to binary quadratic forms. These
preliminaries are necessary for Section 3 in which we recall Bruinier and Ono’s
work [1] on harmonic weak Maass forms. Finally, in Section 4 we prove Theorem 1.

2. Binary quadratic forms

We set notation and recall the fundamentals of positive definite quadratic forms.
There are many good introductions to this classical material; see [4] for an example.

An integral binary quadratic form Q(x, y) = ax2 + bxy + cy2 with discriminant
b2 − 4ac is called primitive if gcd(a, b, c) = 1. We will often write Q = [a, b, c].
Throughout this article, we restrict our attention to positive definite forms with
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A DERIVATION OF THE HARDY-RAMANUJAN FORMULA 1905

discriminant 1 − 24n for positive integers n. It is elementary to see that for such
forms 0 ≡ ac �≡ b (mod 2) and

3 | b ⇐⇒ ac ≡ 2 (mod 6),

3 � b ⇐⇒ ac ≡ 0 (mod 6).

Let H denote the upper half of the complex plane. The principal root of Q =

[a, b, c] is the unique point α = − b
2a +

√
24n−1
2a i ∈ H such that Q(α, 1) = 0. Matrices

( r s
t u ) ∈ SL2(Z) act on z ∈ H via the left action(

r s
t u

)
◦ z =

rz + s

tz + u

and on forms via the right action

Q ◦
(

r s
t u

)
(x, y) = Q(rx+ sy, tx+ uy),

which preserves the discriminant. If α is the principal root of Q and γ ∈ SL2(Z),
then γ ◦ α is the principal root of Q ◦ γ−1.

We say that Q = [a, b, c] is SL2(Z)-reduced if |b| ≤ a ≤ c. Every positive definite
form is SL2(Z)-equivalent to a reduced form. With the exception of [a, b, a] ∼
[a,−b, a] and [a, a, c] ∼ [a,−a, c], no distinct reduced forms are SL2(Z)-equivalent.
The (finite) number of SL2(Z)-equivalence classes of primitive binary quadratic
forms of discriminant 1 − 24n is called the class number h(1 − 24n). A form is
reduced if and only if its principal root lies in the closure of the usual fundamental
domain for SL2(Z),

F=

{
z ∈ H : −1

2
≤ Re z <

1

2
and |z| > 1

}
∪
{
z ∈ H : |z| = 1 and − 1

2
≤ Re z ≤ 0

}
.

Let Q1
n denote the set of primitive forms of discriminant 1 − 24n whose principal

roots lie in F . Observe that Q1
n does not double count any SL2(Z)-equivalence

class.
The congruence group Γ0(6) = {( r s

t u ) ∈ SL2(Z) : 6|t} acts on the set of primitive
forms [a, b, c] of discriminant 1 − 24n such that 6 | a and b ≡ 1 (mod 12). Let Q6

n

denote the set of Γ0(6)-equivalence classes of such forms. The group Γ0(6) has
index [SL2(Z) : Γ0(6)] = 12, and we choose right coset representatives:

(2.1)

γ∞ =

(
1 0
0 1

)
,

γ 1
3 ,r

=

(
1 0
3 1

)(
1 r
0 1

)
for r = 0, 1,

γ 1
2 ,s

=

(
1 1
2 3

)(
1 s
0 1

)
for s = 0, 1, 2,

γ0,t =

(
0 −1
1 0

)(
1 t
0 1

)
for t = 0, 1, 2, 3, 4, 5.

The proposition on page 505 of [5] says that there is a bijection between Q1
n and

Q6
n. In particular, for any Q ∈ Q1

n, there exists a unique choice from (2.1) of right
coset leader γQ such that [Q◦γ−1

Q ] ∈ Q6
n. It will be expedient to know γQ explicitly.

The proof of the following lemma obviates the appeal to [5].
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1906 MICHAEL DEWAR AND M. RAM MURTY

Table 1. The matrix γQ for Q = [a, b, c] ∈ Q1
n. Triples (a, b, c)

which can never occur are omitted or left blank.

b (mod 12)

1 3 5 7 9 11

a ≡ 0 (mod 6)

c ≡ 0 (mod 6) γ∞ γ 1
2 ,0

γ 1
3 ,1

γ0,0
c ≡ 1 (mod 6) γ∞ γ 1

2 ,2
γ 1

3 ,0
γ0,5

c ≡ 2 (mod 6) γ∞ γ 1
2 ,1

γ 1
3 ,1

γ0,4
c ≡ 3 (mod 6) γ∞ γ 1

2 ,0
γ 1

3 ,0
γ0,3

c ≡ 4 (mod 6) γ∞ γ 1
2 ,2

γ 1
3 ,1

γ0,2
c ≡ 5 (mod 6) γ∞ γ 1

2 ,1
γ 1

3 ,0
γ0,1

a ≡ 1 (mod 6)
c ≡ 0 (mod 6) γ0,1 γ0,3 γ0,4 γ0,0
c ≡ 2 (mod 6) γ0,2 γ0,5

a ≡ 2 (mod 6)

c ≡ 0 (mod 6) γ 1
2 ,2

γ 1
2 ,0

γ0,2 γ0,0
c ≡ 1 (mod 6) γ0,1 γ 1

2 ,1

c ≡ 3 (mod 6) γ 1
2 ,2

γ 1
2 ,0

γ0,5 γ0,3
c ≡ 4 (mod 6) γ0,4 γ 1

2 ,1

a ≡ 3 (mod 6)
c ≡ 0 (mod 6) γ 1

3 ,0
γ0,3 γ 1

3 ,1
γ0,0

c ≡ 2 (mod 6) γ 1
3 ,0

γ0,1 γ 1
3 ,1

γ0,4
c ≡ 4 (mod 6) γ 1

3 ,0
γ0,5 γ 1

3 ,1
γ0,2

a ≡ 4 (mod 6)

c ≡ 0 (mod 6) γ 1
2 ,1

γ 1
2 ,0

γ0,4 γ0,0
c ≡ 2 (mod 6) γ0,2 γ 1

2 ,2

c ≡ 3 (mod 6) γ 1
2 ,1

γ 1
2 ,0

γ0,1 γ0,3
c ≡ 5 (mod 6) γ0,5 γ 1

2 ,2

a ≡ 5 (mod 6)
c ≡ 0 (mod 6) γ0,5 γ0,3 γ0,2 γ0,0
c ≡ 4 (mod 6) γ0,4 γ0,1

Lemma 3. If Q = [a, b, c] ∈ Q1
n, then the matrix γQ from (2.1) such that [Q◦γ−1

Q ] ∈
Q6

n is as given in Table 1.

Proof. Consider γ 1
2 ,0

= ( 1 1
2 3 ). We compute that [a, b, c] ◦ γ−1

1
2 ,0

= [A,B,C], where

A = 9a− 6b+ 4c,

B = −6a+ 5b− 4c.

Clearly 2 | a, 3 | c and b ≡ 5 (mod 12) if and only if A ≡ 0 (mod 6) and B ≡ 1
(mod 12). The latter conditions are precisely the requirements for [A,B,C] =
[a, b, c] ◦ γ−1

1
2 ,0

∈ Q6
n. This gives six entries in Table 1. The other 11 matrices from

(2.1) are analogous. �

3. Harmonic weak Maass forms

We recall notation from [1]. We adopt the convention that z = x+ iy ∈ H with
x, y ∈ R. The Maass raising operator (see Section 2 of [2]) Rk acts on functions
f : H → C and is defined by

Rk = 2i
∂

∂z
+

k

y
= i

(
∂

∂x
− i

∂

∂y

)
+

k

y
.
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A DERIVATION OF THE HARDY-RAMANUJAN FORMULA 1907

Given γ = ( r s
t u ) ∈ SL2(Z), we define the Petersson slash operator which also acts

on functions f : H → C by

f |k γ = (tz + u)−kf

(
rz + s

tz + u

)
.

The slash operator intertwines with the raising operator

Rk (f |k γ) = (Rkf) |k+2 γ.(3.1)

Recall Dedekind’s eta function η(z) := q1/24
∏∞

n=1(1− qn), where q = e2πiz and
the Eisenstein series E2(z) := 1 − 24

∑∞
n=1 σ(n)q

n, where σ(n) =
∑

d|n d. Define

the Γ0(6) weight −2 weakly holomorphic modular form

F (z) :=
1

2
· E2(z)− 2E2(2z)− 3E2(3z) + 6E2(6z)

η2(z)η2(2z)η2(3z)η2(6z)
= q−1 − 10− 29q − · · · .

Set ζ6 := e2πi/6. Fourier expansions of F at the cusps 1
3 ,

1
2 and 0 are given by

F |−2 γ 1
3 ,r

= 2(−1)rq−1/2 + 20− (−1)r34q1/2 + · · · ,

F |−2 γ 1
2 ,s

= 3ζ3−2s
6 q−1/3 + 30− 87ζ3+2s

6 q1/3 + · · · ,(3.2)

F |−2 γ0,t = 6ζ−t
6 q−1/6 − 60− 174ζt6q

1/6 − · · · .

For any Q ∈ Q1
n, define hQ ∈ {1, 2, 3, 6} to be the width of the cusp γQ ◦∞ on the

modular curve X0(6) and define ζQ to be the sixth root of unity such that

F |−2 γQ = hQζQq
−1/hQ +O(1).

Bruinier and Ono define the Γ0(6) weight zero weak Maass form

P (z) :=
1

4π
R−2F (z) =

(
1− 1

2πy

)
q−1 +

5

πy
+

(
29 +

29

2πy

)
q + · · · .

Part of Theorem 1.1 of [1] says:

Theorem 4 (Bruinier-Ono). For all positive integers n,

(24n− 1)p(n) =
∑

[Q]∈Q6
n

P (αQ),

where αQ denotes the principal root of Q.

Ono has informed us that an upcoming article [3] will use the theory of elliptic
curves with complex multiplication to compute the polynomials whose roots are the
singular moduli for P (z) modulo primes p. By the Chinese Remainder Theorem,
they then obtain a fast algorithm for deriving these polynomials exactly.

4. Proof of Theorem 1

The key to the proof of Theorem 1 is that if P (αQ) is evaluated using a Fourier
expansion centered at the cusp closest – on X0(6) – to αQ, then the first term of
the Fourier expansion dominates the tail.

Lemma 5. Let γ be one of the 12 matrices from (2.1) and suppose that

(F |−2 γ)(z) = hζq−1/h + a(0) + a(1)q1/h + · · · ,
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1908 MICHAEL DEWAR AND M. RAM MURTY

where h is the width of the cusp γ ◦ ∞ on the modular curve X0(6) and ζ ∈ C.
Then for z ∈ F ,

(P |0 γ)(z) = ζ

(
1− h

2πy

)
e−2πiz/h +O(1),

where the implied constant is absolute.

Proof. The intertwining property (3.1) of R−2 implies that

P |0 γ =

(
1

4π
R−2F

)
|0 γ

=
1

4π
R−2 (F |−2 γ)

=
1

4π
R−2

(
hζq−1/h +

(
F |−2 γ − hζq−1/h

))
= ζ

(
1− h

2πy

)
e−2πiz/h +

1

4π
R−2

(
F |−2 γ − hζq−1/h

)
.

Thus, it suffices to show that the second term is bounded by a constant depending
only on γ, since there are only 12 possible choices for γ.

Suppose z ∈ F . Then clearly

z ∈ U :=

{
z ∈ H : −h

2
≤ Re z <

h

2
, Im z ≥

√
3

2

}
.

Recall that the Fourier expansion of the meromorphic modular form F (z) at a cusp
of width h is in fact a Laurent expansion of a meromorphic function on a punctured
disc in the local variable qh := q1/h = e2πiz/h. Hence, f(qh) := F |−2 γ − hζq−1

h

is bounded on the closure of the punctured disc. Since F (z) is holomorphic for all
z ∈ H, the qh-series expansion of f converges for all |qh| < 1. In particular, f(qh)

is bounded on
{
qh : |qh| ≤ e−π

√
3/h
}
.

Now − 1
2πi

d
dz = 1

hqh
d

dqh
, and hence

− 1

2πi

d

dz

(
F |−2 γ − hζq−1/h

)
=

1

h
qh

d

dqh
f(qh)

is holomorphic, and hence bounded, for |qh| ≤ e−π
√
3/h, and hence for z ∈ F ⊂ U .

Additionally, 1/(2πy) is bounded on U . Hence, for z ∈ U , we have

1

4π
R−2

(
F |−2 γ − hζq−1/h

)
= O(1).

�

We let αQ denote the principal root of Q. Now by the explicit bijection Q1
n �

Q6
n and Theorem 4, we have

(24n− 1)p(n) =
∑

[Q]∈Q6
n

P (αQ) =
∑

Q∈Q1
n

P (γQ ◦ αQ) =
∑

Q∈Q1
n

(P |0 γQ) (αQ).(4.1)
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A DERIVATION OF THE HARDY-RAMANUJAN FORMULA 1909

The widths of the cusps γ∞ ◦ ∞, γ 1
3 ,r

◦ ∞, γ 1
2 ,s

◦ ∞, and γ0,t ◦ ∞, are, respec-

tively, 1, 2, 3, and 6. Observe from Table 1 that for any Q = [a, b, c] ∈ Q1
n, the

product

a · hQ ≡ 0 (mod 6).

We group the summands in (4.1) accordingly and apply Lemma 5 using αQ =

− b
2a +

√
24n−1
2a i:

(24n− 1)p(n) =

∞∑
m=1

∑
[a,b,c]∈Q1

n
a·h[a,b,c]=6m

(P |0 γQ) (αQ)

=
∞∑

m=1

⎛⎜⎜⎜⎝ ∑
[a,b,c]∈Q1

n
a·h[a,b,c]=6m

ζ[a,b,c]e
πib/6m

⎞⎟⎟⎟⎠
(
1− 6m

π
√
24n− 1

)
e

π
√

24n−1
6m

+O(h(1− 24n))

=

N∑
m=1

⎛⎜⎜⎜⎝ ∑
[a,b,c]∈Q1

n
a·h[a,b,c]=6m

ζ[a,b,c]e
πib/6m

⎞⎟⎟⎟⎠
(
1− 6m

π
√
24n− 1

)
e

π
√

24n−1
6m

+O
(
h(1− 24n)e

π
√

24n−1
6(N+1)

)
.

The truncation in the last step omits at most h(1− 24n) summands, each of which

is clearly bounded by e
π
√

24n−1
6(N+1) ≥ 1. Hence the implied constants are still absolute.

It remains to consider the finite sums

ĉm(n) :=
∑

[a,b,c]∈Q1
n

a·h[a,b,c]=6m

ζ[a,b,c]e
πib/6m.

As an example, we first consider ĉ1(n). It is easy to determine that the forms
[a, b, c] ∈ Q1

n with a ≤ 6 are exactly:

[1, 1, 6n]
if n ≡ 0 (mod 5)

{ [
5, 1, 6n5

]
[2, 1, 3n]

[
5,−1, 6n

5

]
[2,−1, 3n]

if n ≡ 3 (mod 5)

{ [
5, 3, 6n+2

5

]
[3, 1, 2n]

[
5,−3, 6n+2

5

]
[3,−1, 2n] if n ≡ 4 (mod 5)

{ [
5, 5, 6n+6

5

]
if n even

{ [
4, 1, 3n2

]
[6, 1, n][

4,−1, 3n
2

]
[6,−1, n]

if n odd

{ [
4, 3, 3n+1

2

]
[6, 5, n+ 1][

4,−3, 3n+1
2

]
[6,−5, n+ 1].
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1910 MICHAEL DEWAR AND M. RAM MURTY

For each of these, Table 1 indicates the γQ for which Q ◦ γ−1
Q = [A,B,C] ∈ Q6

n.
For example,

(4.2)

[1, 1, 6n] ◦ γ−1
0,1 = [6n, 1, 1]

[2, 1, 3n] ◦ γ−1
1
2 ,−1

= [84 + 12n,−71− 12n, 15 + 3n]

[3, 1, 2n] ◦ γ−1
1
3 ,0

= [126 + 18n,−71− 12n, 10 + 2n]

[6, 1, n] ◦ γ∞ = [6, 1, n]

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
∈ Q6

n.

For each of these four forms, we see that ah = 6. Moreover, it is easy to check that
for all other forms, we have ah ≥ 12. That is, for all Q ∈ Q6

n other than the four
listed in (4.2), we have

P (αQ) = O
(
eπ

√
24n−1
12

)
.

Finally, we compute that if n ≥ 2, we have

ĉ1(n) = ζ−1
6 · eπi/6 + ζ

3−2(−1)
6 · eπi/6 + (−1)0 · eπi/6 + 1 · eπi/6 = 4 cos

(π
6

)
= 2

√
3.

More generally, we have the following lemma.

Lemma 6. If n ≥ 6m2, then ĉm(n) only depends on n (mod m).

Proof. For a given m, we consider forms with a = m, 2m, 3m, and 6m. From
Table 1, we see that h[a,b,c] depends only on a (mod 6) and b (mod 12). Thus, for
each of the four choices of a, we consider all b with |b| ≤ a and such that b (mod 12)
would yield the proper width h[a,b,∗] = 6m/a. We stress that the set of pairs of a
and b which we consider depends only on m.

For each pair a and b, the only possible c for which b2−4ac = 1−24n is obviously

c =
6n+

(
b2−1
4

)
a

.

Thus, [a, b, c] ∈ Q1
n if and only if 6n+

(
b2−1
4

)
≡ 0 (mod a) and 6n+

(
b2−1
4

)
≥ a2.

The latter condition is satisfied whenever n ≥ 6m2. By (3.2) and Lemma 3, if
[a, b, c] ∈ Q1

n, then ζ[a,b,c] depends on c (mod h). Thus, the contribution of the pair
a and b, if any, to ĉm(n) depends on 6n modulo ah = 6m. That is, ĉm(n) depends
only on n (mod m). �

In light of the previous lemma, ĉm(n) induces (in the obvious way) the function

cm(n) : Z/mZ → C

referred to in Section 1. To see that cm(n) in fact maps to R, we take real parts of

the asymptotic expansion for Re
(
(24n− 1)p(n)

)
= (24n− 1)p(n). This concludes

the proof of Theorem 1.
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