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Non-Abelian Generalizations

of the Erdős-Kac Theorem

M. Ram Murty and Filip Saidak

Abstract. Let a be a natural number greater than 1. Let fa(n) be the order of a mod n. Denote by

ω(n) the number of distinct prime factors of n. Assuming a weak form of the generalised Riemann

hypothesis, we prove the following conjecture of Erdös and Pomerance:

The number of n ≤ x coprime to a satisfying

α ≤ ω( fa(n)) − (log log n)2/2

(log log n)3/2/
√

3
≤ β

is asymptotic to

(

1√
2π

∫ β

α
e−t2/2dt

)

xφ(a)

a
, as x tends to infinity.

1 Introduction

Let ω(n) and Ω(n) denote the number of prime factors of n, counted without multi-
plicity and with multiplicity, respectively. In 1917, Hardy and Ramanujan [7] proved
that the normal order of ω(n) and Ω(n) is log log n. This means that given any ε > 0,
the number of n ≤ x failing to satisfy the inequality

| f (n) − log log n| < ε log log n,

with f = ω or Ω, is o(x) as x → ∞. Subsequently, in 1934, Turán [23] gave a simple
proof of this fact by showing that

(1)
∑

n≤x

(ω(n) − log log n)2 � x log log x.

Recently, Saidak [19] improved Turán’s theorem by proving the asymptotic formula

∑

n≤x

(

ω(n) − log log n
) 2

= x log log x + Cx + O
( x log log x

log x

)

,

for some constant C . The underlying ideas behind these theorems form the founda-
tions of probabilistic number theory. Indeed, in 1940, Erdős and Kac [4] proved that

the quantity
ω(n) − log log n
√

log log n

Received by the editors May 15, 2002; revised August 26, 2002.
The first author was partially supported by an NSERC grant.
AMS subject classification: 11K36, 11K99.
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is distributed ‘normally’. More precisely, they proved that for any α < β,

(2) #

{

n ≤ x : α ≤ ω(n) − log log n
√

log log n
≤ β

}

∼ Φ(α, β)x,

as x → ∞, where

Φ(α, β) =
1√
2π

∫ β

α

e−t2/2 dt.

This theorem opened the way for a more general theory by Kubilius [8] and

Shapiro [22] applicable to a wider class of what are called “strongly additive” (see
definition below) functions. In the early 60s and subsequently the 70s, the theory
was refined by many authors and one can find a comprehensive treatment of it in the
monograph of Elliott [2].

For instance, a “prime” analog of the theorem of Turán can be proved using the
methods indicated in [14]:

(3)
∑

p≤x

(

ω(p − 1) − log log p
) 2 � π(x) log log x,

where the summation is over primes p ≤ x and π(x) denotes the number of primes

p ≤ x. The normal order of ω(p − 1) was first determined in 1935 by Erdős [3] by
more complicated methods. The corresponding version of the Erdős-Kac theorem
was discovered by Halberstam [6] in 1955, who proved that for all α < β,

(4) #

{

p ≤ x : α ≤ ω(p − 1) − log log p
√

log log p
≤ β

}

∼ Φ(α, β)π(x),

as x → ∞.

A new type of “Erdős-Kac” theorem, which can be described as “non-abelian”, was

discovered by Kumar and Ram Murty [14] in the early 1980’s. A special case of their
theorem will illustrate our meaning.

Let τ (n) denote the Ramanujan τ -function. Assuming a generalized Riemann
hypothesis (to be made more precise below), they proved that

#

{

p ≤ x : α ≤ ω
(

τ (p)
)

− log log p
√

log log p
≤ β

}

∼ Φ(α, β)π(x),

and assuming τ (n) never vanishes (Lehmer’s conjecture [11])

#

{

n ≤ x : α ≤ ω
(

τ (n)
)

− 1
2
(log log n)2

1√
3
(log log n)3/2

≤ β

}

∼ Φ(α, β)x,

as x → ∞. Murty and Murty [14] prove general theorems applicable to a wider class
of functions arising as Fourier coefficients of modular forms.
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What distinguishes these theorems from the classical theory is their “non-abelian”
character. Indeed, latent in the Erdős-Kac theory is the intervention of the distri-

bution of primes in cyclotomic fields, which are abelian extensions of the rational
number field. In the case of Fourier coefficients arising from normalized Hecke
eigenforms, one has the theory of l-adic representations (thanks to Deligne [1]) from
which divisibility properties of the Fourier coefficients can be deduced via the Cheb-

otarev density theorem. It is here that the generalized Riemann hypothesis inter-
venes, for in order to control the error terms in the expansions that arise, such a
hypothesis is essential. In the classical case, the generalized Riemann hypothesis can
be replaced by a direct application of the Bombieri-Vinogradov theorem (or as in the

case of Erdős [3], the Siegel-Walfisz theorem combined with Brun’s sieve).

Our purpose here is to indicate yet another new type of the Erdős-Kac theorem
formulated in a conjecture of Erdős and Pomerance [5]. Let a be a natural number
greater than 1. For any n coprime to a, define fa(n) to be the order of a (mod n).
Erdős and Pomerance [5] conjectured that for any α < β,

#

{

n ≤ x : (a, n) = 1, α ≤ ω
(

fa(n)
)

− 1
2
(log log n)2

1√
3
(log log n)3/2

≤ β

}

∼ Φ(α, β)
φ(a)

a
x,

as x → ∞, where φ(a) denotes the number of positive integers less than a and co-

prime to a. In this paper we prove this conjecture assuming a hypothesis substantially
weaker than the generalized Riemann hypothesis. Again, certain non-abelian exten-
sions of Q intervene in a natural way.

In the course of our investigations, we prove a variety of interesting results related

to the study of fa(n) and these we state in the next section. Most notable is Theorem 6,
which is unconditional.

2 Statements of Theorems

Before stating the main results of the paper, we elucidate the precise nature of the gen-

eralized Riemann hypothesis, or quasi-Riemann hypothesis, invoked in Theorems 1
to 4.

In the study of fa(p), or more generally, fa(n), the non-abelian extensions

Lq = Q(ωq,
q
√

a),

where q is a prime and ωq denotes a primitive q-th root of unity, intervene in a natural
way. More precisely, if ζq(s) denotes the Dedekind zeta function of Lq, we assume that
for some θ < 1, ζq(s) has no zeros in the region Re(s) > θ, for every prime q. This

we refer to as a quasi-Riemann hypothesis. Of course, θ = 1/2 is the celebrated
generalized Riemann hypothesis. In the last section of the paper, we discuss how we
can weaken the assumption of a quasi-Riemann hypothesis.

Theorem 1 Let a ≥ 2 be squarefree. Assuming there is a θ < 1 such that every
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ζq(s) 6= 0 in Re(s) > θ, for every prime q, we have

(5)
∑

p≤x
(a,p)=1

(

ω
(

fa(p)
)

− log log p
) 2

� π(x) log log x.

Remark A quasi-GRH allows us to prove that the number of primes p ≤ x which
split completely in Lq is

Li x

qφ(q)
+ O(xθ log qax), where Li x =

∫ x

2

dt

log t
.

If a were not squarefree, we would expect an analogous result as Theorem 1 to hold.

However, the main term in the special case of the Chebotarev density theorem cited
above will have to be slightly adjusted for those q that may divide the exponents of
the prime powers in the unique factorization of a.

Theorem 2 Under the same hypotheses as in Theorem 1, we have

(6) #

{

p ≤ x : (a, p) = 1, α ≤ ω
(

fa(p)
)

− log log p
√

log log p
≤ β

}

∼ Φ(α, β)π(x),

as x → ∞.

We will deduce Theorem 2 from Theorem (4) of Halberstam [6]. If we let ia(p)
denote the index of the subgroup generated by a (mod p) in F∗

p, then

ω(p − 1) = ω
(

fa(p)
)

+ O
(

ω
(

ia(p)
)

)

.

A quasi-GRH is needed to ensure that for almost all p, ω
(

ia(p)
)

is not as large as

ω(p−1). The technical lemma we invoke to make the transition is of an independent
interest in its own right.

Theorem 2 can be proved directly without invoking the theorem of Halberstam by
considering all the higher moments, as was done in the thesis [20]. We relegate this

proof to a future paper [21].

Theorem 3 Under the same hypotheses as in Theorem 1, we have

(7)
∑

n≤x
(a,n)=1

(

ω
(

fa(n)
)

− 1

2
(log log n)2

) 2

� x(log log x)3.

Theorem 4 Under the same hypotheses as in Theorem 1,

(8) #

{

n ≤ x : (a, n) = 1, α ≤ ω
(

fa(n)
)

− 1
2
(log log n)2

1√
3
(log log n)3/2

≤ β

}

∼ Φ(α, β)
φ(a)

a
x,

as x → ∞.
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Remark This theorem establishes the conjecture of Erdős and Pomerance [5] as-
suming a quasi-GRH as defined in the remark following Theorem 1.

By invoking a method of Kubilius and Shapiro we deduce the following. Let

(9) A(x) =

∑

p≤x
(a,p)=1

ω
(

fa(p)
)

p
, B(x) =

∑

p≤x
(a,p)=1

ω2
(

fa(p)
)

p
.

Theorem 5 Without any hypothesis, we have

(10) #

{

n ≤ x : (a, n) = 1, α ≤ ω
(

fa(n)
)

− A(x)√
B(x)

≤ β

}

∼ Φ(α, β)
φ(a)

a
x,

as x → ∞.

Theorem 6 For any β > 0, as x → ∞,

#

{

n ≤ x : (a, n) = 1, ω
(

fa(n)
)

<
1

2
(log log n)2 +

β√
3

(log log n)3/2

}

& Φ(−∞, β)
φ(a)

a
x.(11)

Even though Theorem 5 is “well-known” or can be deduced from general theory,
we isolate it here to show where the quasi-GRH enters in the proof of Theorem 4. It
is to determine the asymptotic behaviour of A(x) and B(x). Even a weak assertion

such as

A(x) =
1

2
(log log x)2 + o

(

(log log x)2
)

would allow us to prove that ω
(

fa(p)
)

has normal order log log p, without any hy-

potheses. But this seems to be beyond reach at the moment. The central assertion to
be proved is

∑

p≤x

ω
(

ia(p)
)

p
= o
(

(log log x)2
)

.

3 Technical Preparation

What we will need in the proofs of the theorems stated in the previous section are
two technical lemmas which are of independent interest.

Lemma 1 Let f , g and h be arithmetical functions, and suppose that for all n we have

| f (n) − g(n)| ≤ h(n). Let us define

(12) A(x) =

∑

p≤x

f (p)

p
and B(x) =

∑

p≤x

f 2(p)

p
,
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and assume that the following condition is satisfied:

(13)
∑

n≤x

h(n) = o
(

x
√

B(x)
)

.

Suppose that for all constants α and β (with α ≤ β) we have:

#

{

n ≤ x : α ≤ f (n) − A(x)√
B(x)

≤ β

}

∼ x

(

1√
2π

∫ β

α

e−t2/2 dt

)

,

as x → ∞, then also

#

{

n ≤ x : α ≤ g(n) − A(x)√
B(x)

≤ β

}

∼ x

(

1√
2π

∫ β

α

e−t2/2 dt

)

.

Proof First, let us define the functions:

S f (x ; α, β)
def
== #

{

n ≤ x : α ≤ f (n) − A(x)√
B(x)

≤ β

}

, and(14)

Sg(x ; α, β)
def
== #

{

n ≤ x : α ≤ g(n) − A(x)√
B(x)

≤ β

}

.

What we will prove is that if S f (x ; α, β) ∼ xΦ(α, β), then Sg(x ; α, β) ∼ xΦ(α, β).

Fix ε > 0. Then by the assumption, the number of n ≤ x, for which |h(n)| > ε
√

B(x)
is o(x). Hence for almost all n ≤ x, we may suppose that |h(n)| ≤ ε

√
B(x).

Now,

α ≤ f (n) − A(x)√
B(x)

≤ β ⇒ A(x) + α
√

B(x) ≤ f (n) ≤ A(x) + β
√

B(x),

and g(n) − h(n) ≤ f (n) ≤ g(n) + h(n), together imply

g(n) − h(n) ≤ A(x) + β
√

B(x) and g(n) + h(n) ≥ A(x) + α
√

B(x).

Hence for almost all integers n ≤ x, we have:

g(n) ≤ A(x) + β
√

B(x) + ε
√

B(x) and g(n) ≥ A(x) + α
√

B(x) − ε
√

B(x),

and hence also: S f (x ; α, β) ≤ Sg(x ; α − ε, β + ε) + o(x), or in other words:

Sg(x ; α, β) ≥ S f (x ; α + ε, β − ε) + o(x)(15)

∼ xΦ(α + ε, β − ε) + o(x),

by assumption (concerning the normality of the function f (n)), where we easily see

that Φ(α + ε, β − ε) = Φ(α, β) + O(ε). Similarly, we can write:

α ≤ g(n) − A(x)√
B(x)

≤ β ⇒ A(x) + α
√

B(x) ≤ g(n) ≤ A(x) + β
√

B(x) ⇒

f (n) − h(n) ≤ A(x) + β
√

B(x) and f (n) + h(n) ≥ A(x) + α
√

B(x).
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and so, for almost all integers n ≤ x we have:

f (n) ≤ A(x) + β
√

B(x) + ε
√

B(x) and f (n) ≥ A(x) + α
√

B(x) − ε
√

B(x).

This proves that Sg(x ; α, β) ≤ S f (x ; α − ε, β + ε) + o(x), or in other words:

Sg(x ; α, β) ≤ S f (x ; α − ε, β + ε) + o(x)(16)

∼ xΦ(α − ε, β + ε) + o(x),

and since again Φ(α − ε, β + ε) = Φ(α, β) + O(ε), the result follows.

Lemma 2 Suppose that P ⊂ N, i.e. P is a subset of natural numbers, and let P(x) =

|{n ∈ P, n ≤ x}|. Let f , g and h be arithmetical functions, and suppose that for all n

we have | f (n) − g(n)| ≤ ch(n), where c > 0 is a constant. Define A(x) and B(x) as in

(12), and assume that the following condition is satisfied:

(17)
∑

n≤x

h(n) = o
(

P(x)
√

B(x)
)

.

Suppose that for all constants α and β (with α ≤ β) we have:

#

{

n ≤ x, n ∈ P : α ≤ f (n) − A(x)√
B(x)

≤ β

}

∼ P(x)

(

1√
2π

∫ β

α

e−t2/2 dt

)

,

as x → ∞, then also

#

{

n ≤ x, n ∈ P : α ≤ g(n) − A(x)√
B(x)

≤ β

}

∼ P(x)

(

1√
2π

∫ β

α

e−t2/2 dt

)

.

Proof The proof is similar to Lemma 1, and we suppress it.

4 Proof of Theorem 1

Let ia(p) be the index in F∗
p of the subgroup generated by a (mod p). It is easily seen

that q|ia(p) if and only if p splits completely in Lq (see [12]). Clearly, we have

ω(p − 1) − ω
(

ia(p)
)

≤ ω
(

fa(p)
)

≤ ω(p − 1).

By [14], we know that (see (3))

∑

p≤x

(

ω(p − 1) − log log p
) 2 � π(x) log log x.

Recall that

ω
(

fa(p)
)

− log log p =
(

ω(p − 1) − log log p
)

+ O
(

ω
(

ia(p)
)

)

.
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Squaring both sides and summing over all p ≤ x, we have

∑

p≤x

(

ω
(

fa(p)
)

− log log p
) 2

�
∑

p≤x

(

ω(p − 1) − log log p
) 2

+
∑

p≤x

ω2
(

ia(p)
)

.

An application of (3) shows that it suffices to prove:

∑

p≤x

ω2
(

ia(p)
)

� π(x) log log x,

in order to establish Theorem 1. In fact, we will show that a quasi-GRH implies the
stronger result:

(18)
∑

p≤x

ω2
(

ia(p)
)

� π(x).

Indeed, defining

ωy(n) =

∑

p|n
p<y

1,

we have for y = xδ , δ < 1/4,

∑

p≤x

ω2
(

ia(p)
)

�
∑

p≤x

ω2
y

(

ia(p)
)

+ O
(

π(x)
)

But
∑

p≤x

ω2
y

(

ia(p)
)

=

∑

q1,q2≤y2

q1 6=q2

π(x, Lq1q2
) +
∑

q≤y

π(x, Lq),

where π(x, Lk) denotes the number of primes p ≤ x which split completely in Lk,
because as was pointed out earlier, q|ia(p) if and only if p splits completely in Lq.

A quasi-GRH (with no zeros of ζq(s) for Re(s) > θ) gives

(19) π(x, Lk) =
Li x

kφ(k)
+ O(xθ log kax).

Hence, if we choose 2δ < θ, we obtain
∑

p≤x

ω2
(

ia(p)
)

� π(x),

which completes the proof of Theorem 1.

Corollary 1 With the same hypotheses as Theorem 1,

∑

p≤x

ω
(

fa(p)
)

= π(x) log log x + O
(

π(x)
)

, and(20)

∑

p≤x

ω2
(

fa(p)
)

= π(x)(log log x)2 + O
(

π(x) log log x
)

.(21)
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Corollary 2 With the same hypotheses as Theorem 1,

∑

p≤x

Ω
(

fa(p)
)

= π(x) log log x + O
(

π(x)
)

, and(22)

∑

p≤x

Ω
2
(

fa(p)
)

= π(x)(log log x)2 + O
(

π(x) log log x
)

.(23)

By a partial summation, we deduce:

Corollary 3 Under the same hypotheses as Theorem 1,

∑

p≤x

Ω
(

fa(p)
)

p
=

1

2
(log log x)2 + O(log log x), and(24)

∑

p≤x

Ω
2
(

fa(p)
)

p
=

1

3
(log log x)3 + O

(

(log log x)2
)

.(25)

5 Proof of Theorem 2

By the theorem (4) of Halberstam [6] we know that

ω(p − 1) − log log p
√

log log p

obeys a normal distribution. Since ω(p − 1) = ω
(

fa(p)
)

+ O
(

ω
(

ia(p)
))

, we may
apply Lemma 2 of Section 3 to deduce that

ω
(

fa(p)
)

− log log p
√

log log p

has a normal distribution. This is because

∑

p≤x

ω
(

ia(p)
)

� π(x) = o
(

π(x)
√

log log x
)

,

so that the hypotheses of Lemma 2 are satisfied. This completes the proof of Theo-
rem 2.

6 Transition From Ω
(

fa(n)
)

to ω
(

fa(n)
)

It will be convenient to prove the analogs of Theorems 3 and 4 for Ω
(

fa(n)
)

, and

then deduce the corresponding result for ω
(

fa(n)
)

. In this section we will indicate
how this can be done, and then, in the next section, we establish Theorem 3 for
Ω
(

fa(n)
)

. The same strategy will be applied in our proof of Theorem 4. It will be
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efficacious to extend the definition of fa(n) when (a, n) 6= 1, by setting fa(1) = 1,
and fa(n) = fa(n2), where n = n1n2, with (n1, n2) = 1 and p|n1 ⇒ p|a.

For all 3 < y ≤ x, let us define the truncated functions

(26) ωy

(

fa(n)
)

=

∑

p| fa(n)
p<y

1, and Ωy

(

fa(n)
)

=

∑

pα‖ fa(n)
pα<y

α,

and observe that ω
(

fa(n)
)

≤ Ω
(

fa(n)
)

. We will be using:

Lemma 3 For all x ≥ 2, and 2 ≤ k ≤ x,

(27)
∑

p≤x
p≡1(mod k)

1

p
=

log log x

φ(k)
+ O
( log k

k

)

.

Proof This follows easily by partial summation and the Brun-Titchmarsh theorem
(see Norton [16] or Pomerance [17] for a complete proof).

The following lemma will also be applied several times in the discussion below:

Lemma 4 If, for all x, we have

∑

n≤x

(

Ω
(

fa(n)
)

− 1

2
(log log n)2

) 2

� x(log log x)3, then

∑

n≤x

(

ω
(

fa(n)
)

− 1

2
(log log n)2

) 2

� x(log log x)3.(28)

Proof Let ω+
y (n) be the number of primes > y, dividing n. Similarly we define

Ω
+
y (n). Then ω(n) = ωy(n) + ω+

y (n), so that if y = (log x)k, for some constant k,
then

∑

n≤x

(

ω+
y

(

fa(n)
)

− 1

2
(log log n)2 + ωy( fa(n)

)

) 2

(29)

�
∑

n≤x

(

ω+
y

(

fa(n)
)

− 1

2
(log log n)2

) 2

+
∑

n≤x

ωy

(

fa(n)
) 2

.

Similarly, the same thing can be said about Ω
(

fa(n)
)

. We have

∑

n≤x

(

Ω
+
y

(

fa(n)
)

− 1

2
(log log n)2 + Ωy

(

fa(n)
)

) 2

(30)

�
∑

n≤x

(

Ω
+
y

(

fa(n)
)

− 1

2
(log log n)2

) 2

+
∑

n≤x

Ωy

(

fa(n)
) 2

.
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Notice that

∑

n≤x

ωy

(

fa(n)
) 2 ≤

∑

n≤x

Ωy

(

fa(n)
) 2 ≤

∑

n≤x

(

∑

p|n
p≤y

Ω
(

fa(p)
)

+ O
(

Ωy(n)
)

) 2

�
∑

n≤x

{(

∑

p|n
p≤y

Ω
(

fa(p)
)

) 2

+ Ωy(n)2
}

�
∑

p1,p2≤y

Ω
(

fa(p1)
)

Ω
(

fa(p2)
) x

p1 p2
+ O
(

x(log log y)2
)

� x

(

∑

p≤y

Ω
(

fa(p)
)

p

) 2

� x(log log y)4,

by Corollary 3. Thus, with our choice of y it suffices to prove that

(31)
∑

n≤x

(

ω+
y

(

fa(n)
)

− 1

2
(log log n)2

) 2

� x(log log x)3.

Let us recall that fa(n) = lcm{ fa(pα) : pα ‖ n}, and fa(pα) divides pα−1 fa(p), for
all α. So if q2| fa(n), then either (A) q|n, or (B) q2| fa(p), for some p|n, or (C) there
exist two primes p1, p2, such that q| fa(p1), q| fa(p2), and p1 p2|n. Also,

ω+
y

(

fa(n)
)

≤ Ω
+
y

(

fa(n)
)

≤ ω+
y

(

fa(n)
)

+ Ω
(

fa(n)
)

δ(n),

where δ(n) = 1, if ∃q2| fa(n), q > y, and δ(n) = 0 otherwise. We immediately have

Ω
+
y

(

fa(n)
)

= ω+
y

(

fa(n)
)

+ O
(

δ(n)Ω
(

fa(n)
)

)

,

so that

∑

n≤x

(

ω+
y

(

fa(n)
)

− 1

2
(log log n)2

) 2

�
∑

n≤x

(

Ω
+
y

(

fa(n)
)

− 1

2
(log log n)2

) 2

+
∑

n≤x

δ(n)Ω
(

fa(n)
) 2

�
∑

n≤x

(

Ω
+
y

(

fa(n)
)

− 1

2
(log log n)2

) 2

+
∑

A

+
∑

B

+
∑

C

,

where the sums
∑

A,
∑

B, and
∑

C correspond to the cases (A), (B), (C), respectively.
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But since Ω
2
(

fa(n)
)

= O
(

(log n)2
)

, we see that

∑

A

�
∑

n≤x

Ω(n) � x log log x,

∑

B

= (log x)2
∑

n≤x
n∈B

δ(n) � (log x)2
∑

q>y

∑

p≡1(mod q2)

x

p
� x log log x,

∑

C

= (log x)2
∑

n≤x
n∈C

δ(n) � (log x)2
∑

q>y

∑

p1≡1(mod q)
p2≡1(mod q)

x

p1 p2
� x(log log x)2,

if we choose y = (log x)2, for example. Here we have used Lemma 3 in estimation of
the sums

∑

B and
∑

C . This finishes the proof of (31).

7 Proof of Theorem 3

By the previous section, it suffices to prove Theorem 3 with ω
(

fa(n)
)

replaced by

Ω
(

fa(n)
)

. Evidently

(32)
∑

p|n
Ω
(

fa(p)
)

≤ Ω
(

fa(n)
)

≤
∑

p|n
Ω
(

fa(p)
)

+ Ω(n).

Therefore

(33)
∑

n≤x
(a,n)=1

Ω
(

fa(n)
)

=

∑

n≤x
(a,n)=1

(

∑

p|n
Ω
(

fa(p)
)

)

+ O
(

∑

n≤x

Ω(n)
)

.

Now, the condition (a, n) = 1 can be removed, if we insert the expression

∑

d|n,a

µ(d),

where µ is the Möbius function, into our expression above. Thus

∑

d|a
µ(d)

∑

p≤x

Ω
(

fa(p)
)

∑

n≤x
d|n,p|n

1 =

∑

d|a
µ(d)

∑

p≤x
(a,p)=1

Ω
(

fa(p)
)

[ x

pd

]

=
φ(a)

2a
x(log log x)2 + O(x log log x),

by Corollary 3. Hence

(34)
∑

n≤x
(a,n)=1

Ω
(

fa(n)
)

=
φ(a)

2a
x(log log x)2 + O(x log log x).
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Similarly, it is possible to prove the second moment estimate along the same lines,

(35)
∑

n≤x
(a,n)=1

Ω
2
(

fa(n)
)

=
φ(a)

4a
x(log log x)4 + O

(

x(log log x)3
)

.

Putting together the estimates (34) and (35) gives us our Theorem 3.

8 Proof of Theorem 4

The function

F(n) =

∑

p|n
Ω
(

fa(p)
)

is evidently strongly additive (that is, F satisfies the conditions: F(mn) = F(m)+F(n)
for (m, n) = 1, and F(pα) = F(p) for all α). Recall the extended definition of fa(n),
when gcd(a, n) 6= 1. For all n ∈ N, we write n = n1n2, where p|n1 ⇒ p|a, and
(n1, n2) = 1, and we set fa(n) = fa(n2), and fa(1) = 1. We will work with this

extended function first

We recall the theorem of Kubilius and Shapiro for strongly additive functions: Let
f be strongly additive, and A(x) and B(x) defined as in (12). If we suppose that for
every fixed ε > 0, as x → ∞, we have

(36)
∑

p≤x

| f (p)|>εB(x)1/2

f 2(p)

p
= o
(

B(x)
)

,

then for any real constant γ,

lim
x→∞

#{n : n ≤ x, f (n)−A(x)

B(x)1/2 ≤ γ}
x

=
1√
2π

∫ γ

−∞
e−t2/2 dt,

or equivalently, for any real constants α and β, with α < β:

(37) lim
x→∞

#{n : n ≤ x, α < f (n)−A(x)

B(x)1/2 ≤ β}
x

=
1√
2π

∫ β

α

e−t2/2 dt.

Now we can apply the Kubilius-Shapiro theorem to F(n), as long as the condition
(36) is satisfied. But note that for a prime q, one has F(q) = Ω

(

fa(q)
)

, and hence we
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can write:

∑

q≤x

|F(q)|>ε
√

B(x)

F2(q)

q
=

∑

q≤x

|F(q)|>ε
√

B(x)

Ω
2
(

fa(q)
)

q
(38)

<
∑

q≤x

Ω(q−1)>ε
√

B(x)

Ω
2
(

fa(q)
)

q

<
∑

q≤x

Ω(q−1)>ε
√

B(x)

Ω
2(q − 1)

q
= o
(

B(x)
)

,

the last inequality coming from a computation done by Erdős & Pomerance (see [5,
p. 348]). But Ω

(

fa(n)
)

=
∑

p|n Ω
(

fa(p)
)

+O
(

Ω(n)
)

, so that we can apply Lemma 1

to deduce the following result:

Theorem 4 ′ With the extended definition of fa(n), under the assumption of a quasi-

GRH, for all x > 0 we have

(39) lim
x→∞

Ha(x, α, β)

x
=

1√
2π

∫ β

α

e−t2/2 dt,

where Ha(x, α, β) is defined as

Ha(x, α, β)
def
== #

{

n ≤ x : α ≤ Ω
(

fa(n)
)

− 1
2
(log log n)2

1√
3
(log log n)3/2

≤ β

}

.

Now it is easy to prove Theorem 4, after introducing the condition (a, n) = 1 in
our enumeration. Let

(40) S =

{

n ≤ x : α ≤ Ω
(

fa(n)
)

− A(x)√
B(x)

≤ β

}

,

with A(x) and B(x) defined as in (12), and S(x) the cardinality of S. Evidently

S(x) ∼ x · Φ(α, β),

and since
∑

n∈S
(a,n)=1

1 =

∑

n∈S

∑

d|a
d|n

1 =

∑

d|a
µ(d)

∑

n∈S
d|n

1,

we want to count the number of elements Sd(x) in Sd, where

(41) Sd =

{

n ≤ x : d|n, α ≤ Ω
(

fa(n)
)

− A(x)√
B(x)

≤ β

}

,
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because then the quantity in Theorem 4 is simply

(42)
∑

d|a
µ(d)Sd(x).

Writing n = dm, we see that

Ω
(

fa(m)
)

≤ Ω
(

fa(n)
)

≤ Ω
(

fa(m)
)

+ Ω
(

fa(d)
)

,

and since d|a, and a is fixed, d itself is less than a constant, giving us

Ω
(

fa(n)
)

= Ω
(

fa(m)
)

+ O(1).

Therefore

(43) Sd(x) = #

{

m ≤ x

d
: α ≤ Ω

(

fa(n)
)

− A(x)√
B(x)

≤ β

}

∼ x

d
· Φ(α, β).

This completes the proof of Theorem 4.

9 Proof of Theorems 5 and 6

The analysis of Section 8 clearly shows that a couple of important unconditional

theorems could be deduced. As stated earlier, we want to isolate for later clinical
study the precise role of the GRH. By invoking Lemma 1, we can deduce Theorems 5
and 6 from the following. We have:

Theorem 5 ′ For all constants α and β (with α ≤ β), as x → ∞,

#

{

n ≤ x : gcd(a, n) = 1, α ≤ Ω
(

fa(n)
)

− A1(x)√
B1(x)

≤ β

}

∼ x · φ(a)

a
· Φ(α, β),

where

A1(x) =

∑

p≤x

Ω
(

fa(p)
)

p
and B1(x) =

∑

p≤x

Ω
2
(

fa(p)
)

p
.

But in order to accurately estimate the behaviour of A1(x) and B1(x) one needs to
assume a certain GRH.

However, utilizing trivial upper bounds (i.e. replacing fa(p) by p − 1, and using
unconditional results known for p − 1) on the size of A1(x) and B1(x), we have the

following useful unconditional theorem:

Theorem 6 ′ For any constant α > 0, as x → ∞,

#

{

n ≤ x : gcd(a, n) = 1, Ω
(

fa(n)
)

<
1

2
(log log n)2 +

α√
3

(log log x)3/2

}

& x · φ(a)

a
·
( 1√

2π

∫ α

−∞
e−t2/2 dt

)

.
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10 Concluding Remarks

It would be desirable if one could remove the assumption of a GRH from our results.
However, at this point in time, that doesn’t seem to be very realistic, mainly because
we are lacking any kind of “mean value” theorems that could serve as replacements

of the Bombieri-Vinogradov and the Brun-Titchmarsh theorems in the non-abelian
situations. Until one can establish some versions of these theorems (at least in some
special cases, or smaller ranges), all we can hope for is to weaken the hypotheses we
are using.

As was already noted, the full strength of the Generalized Riemann Hypothesis
is not necessary. In fact, a quasi-GRH is always sufficient. Namely, it is enough to
assume that there exists a constant δ > 0, such that:

(44) π
(

x, Lq(a)
)

=
π(x)

q(q − 1)
+ O(x1−δ).

More generally, for any square-free k ≥ 2, all we need to do is to assume the Cheb-
otarev Density Theorem with the following error term:

(45) π
(

x, Lk(a)
)

=
π(x)

kφ(k)
+ O(x1−δ),

for some δ > 0. Currently, the best unconditional error version of (42) is still due to

Lagarias & Odlyzko [9] from 1977. They proved that there is a constant A > 0 such
that

(46) π
(

x, Lk(a)
)

=
π(x)

kφ(k)
+ O

(

x exp

(

−A

√

log x

kφ(k)

)

)

.

An unconditional result of this kind is good enough to deduce asymptotic be-
haviour of the sum

∑

p≤x

ωy

(

fa(p)
)

for y < (log x)1/2−ε. One can extend the range to y < (log x)1−ε with some work.
But it seems to be beyond reach at the present moment to push this to y =

exp(
c log x

log log x
), for some constant c > 0. Such a result would enable us to deduce

all of the theorems in this paper unconditionally.
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Number Fields, (ed. A. Fröhlich), Proceedings of the 1975 Durham Symposium, Academic Press,
1975.

[10] D. H. Lehmer, Ramanujan’s function τ (n). Duke Math. J. 10(1943), 483–492.
[11] , The vanishing of Ramanujan’s function τ (n). Duke Math. J. 14(1947), 429–433.
[12] R. Murty, On Artin’s conjecture. J. Number Theory 16(1983), 147–168.
[13] , Problems in Analytic Number Theory. Springer Verlag 206, New York, 2001.
[14] V. K. Murty and R. M. Murty, Prime divisors of Fourier coefficients of modular forms. Duke Math. J.

51(1984), 57–76.
[15] K. Murty and R. Murty, An analogue of the Erdős-Kac theorem for Fourier coefficients of modular
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