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On the Order of a (mod P)

P4l Erdés and M. Ram Murty

1. Introduction

Let a be a fixed natural number greater than unity. For each prime p not
dividing @, let f(p) denote the order of q (mod p). A classical conjecture of E.
Artin [1] states that if g is a perfect square, then f(p) = p — 1 for infinitely many
primes p. We are interested in obtaining a good lower bound for f(p) for almost
all prime numbers p (that is, for all but o(z/log z) prime numbers p < x).

It is easy to see that
f(®) > y/p/logp
for all but o(z/log z) primes p < . Indeed, if f(p) < 2, then p divides the product

V= H(at —1).
i<z
Since a natural number has at most O(logn/loglogn) prime factors, we find that
V has at most
t 22
< 2 Tog7 < fog
t<z
prime factors. Thus, the inequality f(p) < v/2/ log p can hold for at most O(z/log® )
primes p < z.
It seems difficult to improve this simple argument to show that f(®) > \/p for
almost all primes. By a different argument, we will prove:

THEOREM 1. Let €(p) be any function tending to zero as p — co. For all but
o(z/log ) primes p < z,
F(p) = p*/ e,
This theorem will be a consequence of a more general theorem concerning
divisors of p — 1. Indeed, we prove:
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THEOREM 2. Let § > 0 and fized. Let e(x) be any function tending to zero as
z — 00. The number of primes p< T such that p — 1 has o divisor in the interval
I = (b, 28+<@) is o(z/logx).

Since f(p) divides p — 1, Theorem 1 follows from Theorem 2 upon taking
§=1/2.

Theorem 2 is to be viewed as the p — 1 analogue of a theorem of Erdds [3],
who proved that the aumber of integers n < « having a divisor in the interval
(z5,x5+€(“)) is o(z). Our proof of Theorem 2 follows very closely to the method
and notation of Erdés [3]. The method, however, cannot give a better estimate for
the exceptional set than o(x/logz). By an alternate method, we deduce:

THEOREM 3. There exists an o > 0 and a § > 0 such that

f(p) > vpexp((logp)’)
for all but O(z/(log z)' ) primes p < T.

In [11], it was proved that
1
27 < VP
p<z p

and it was conjectured that the sum is in fact O(z¢). It was also noted that if the
sum is O(x'/*), then Artin’s conjecture follows. Theorem 3 allows us to obtain the
following improvement.

COROLLARY. For some 6 >0,

1 vz
2 7 < Gogar

If we assume the analogue of the Riemann hypothesis for zeta functions of
certain number fields, then it is possible to prove more than Theorem 1.

TuroREM 4. Let e(z) be any function tending to zero as x — oo. For each
squarefree d, let Ca(s) denote the Dedekind zeta function of the algebraic number
field

Q(exp(2my/—1/d), a*/%)
and ((s) the usual Riemann zeta function. If all the non-trivial zeroes of Ca(s) lie
on Re(s) = 1/2, then
f(p) 2 p/ep)

for all but o(z/log ) primes p < z.

It is not difficult to generalize these results to an arbitrary subgroup I' &
Q* of rank r (say). Suppose T is generated by the mutually coprime numbers
a1,0z, . - - . For all primes p not dividing the denominators of a,...,0ar, W€ cCan
define fr(p) to be the order of I (mod p). The previous theorems can be viewed as
the case r = 1. The methods are analogous. The key idea is to use an appropriate
analogue of Lemma 14 of [5] in conjunction with Theorem 2 to deduce the following:
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THEOREM 5. Let €(z) be any function tending to zero as z — co. |
(1) For all but o(z/ log z) primes p < z,

fr(p) > pr/(r+1)+e(p).
(2) There ezists ana >0 and a § > 0 such that
fr(®) 2 p" ) exp((log p)%)

Jor all but O(z/(log z)'*+2) primes p < z.
(3) For each squarefree number d, let Ca,i(8) denote the Dedekind zeta Sfunction
of
Qexp(2nv/=1/d), a}’?).
If for each 1 < i < r, Ca,i(8) has no zeroes in the region Re(s) > r/r +1,
then
fr(p) > p/e(p)

for all but o(x/log z) primes p < z.

2. Lemmas
Denote by 7(z) the number of primes < z. Let us factor p — 1 = uD where u
is a divisor of p — 1 in the stated interval J. Set v = —loge(z). Now write
u=AB

where A is a number composed of primes < z¢%) B is a number composed of
primes > g<(®),

LEMMA 1. Let A be as above. The number of primes p < z for which A is
greater than z<(®)v jg O(n(z)/v).

PROOF. If § is the number of primes in question, then by an analogue of
Legendre’s formula,

Se(@vlogz < Y~ {n(z,q) + m(z,%) + - - }logq
q<ze
where ¢ denotes a prime number and 7(z,q%) is the number of primes < z which
are = 1 (mod ¢*). We write the sum on the right hand side as 3", + T 1
where in the first sum ¢ = 1 and in the second sum @ > 2. An application of the
Bombieri-Vinogradov theorem shows that the first sum is < e(x)z. For the second
sum, we begin by observing

z {m(z,¢%) +---}ogg <« logz Z

g>logd z g>logd x

x
q(g—1)

obtained by using the trivial bound 7(z, ¢%) < z/q*. The contribution from these
terms to the sum is seen to be O(z/logz). If o < g/ %, we can apply the Brun-
Titchmarsh inequality [6] to see that

T
a ——
D {r(ze)ogg < 2

g<z (=)
q°<z?/2 0>2
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1t remains to consider the contribution to 3, of the primes g < log3 z for which
¢® > «'/2. But in this case,

logx
a>b=——
- 6 loglogx

and the contribution is for some constant ¢1 > 0,

x log =
E' ! log® ey — 2
K 2 qb—l(q—-l) ogq K zrlog sr:exp( clloglogw)’
gslog™ =
a>b

which is negligible. Hence,
S &« w(z)/v.
O

Lemma 1 implies that in trying to prove Theorem 2, we can suppose that
A < z€@¥_ Thus, B lies in the interval

J= (wé—e(m)u, x&—}-e(:c))
and all its prime factors lie in the interval K = (me(z),m‘s“‘e(z)). The next lemma
allows us to confine our attention to squarefree numbers in J.

LEMMA 2. If B is divisible by a square of a prime, the number of primesp < &
such that p — 1 is divisible by such a B is o(z/logz). '

Proo¥. This is immediate from the Brun-Titchmarsh inequality. Indeed, since
all the prime divisors of B are > z¢(*), the number in question is bounded by

3 ().

g>ze=)
Using the trivial bound m(z, ¢%) <'z/q® gives

Z m(z,q%) + Z Z = Z w(z,q¢%) + O (1052 a:) .

ze(@) <g<log? = g>log? = ze(®) <g<log? ©

Now using the Brun-Titchmarsh inequality, the result is immediate. O

LEMMA 3. For8>1,

Y
(i) > g see
E>8y
and for 8 <1,
y*
@) T L g,
k<fy

provided y > 1.
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Proor. We have

k k
¥y o_ Ov)* & —0y 8
ZE—ZT(J SO,
k>0y k>0y
for § > 1. This proves (i). To prove (ii), we first note that
e > kF /R,

For y > 1, observe that y*/k! is an increasing function of k£ when k& < 0y and § < 1.
Hence,

y

—' S (0)—93}691/.

k<by
0

A version of Lemma 3 appears in [10]. We insert it here because it makes our
subsequent argument easier to follow. Using the notation of [3], we will denote by
B a number lying in the interval J which has no more than 2v/3 prime factors
from K. A B} will denote a number lying in J whose number of prime factors

from K is at least 2/3 but less than 4v/3. A Bfr) will denote a number from J
with exactly r prime factors in K.

LEMMA 4. There is a positive constant ¢ such that

o0

1 [
Zmif(z),

i=1
where ¢ denotes Euler’s function.
PROOF. First we estimate
o0
Y —
=t #(B")

If
Bi(r) =pipz- - Pr,

then p, > (Bi(r))l/r so that
) p1 - proy < zEFeEN(r-1)/r

and so the sum of the reciprocals of ¢(Bi(r) ) of which the first 7 — 1 prime factors
are p1,...,pr_1 is not greater than

1 ro1
¢(p1...pr__1)z p’l‘_l
where the dash on the summation means that Pr Tuns through the interval

(xﬁ—e(m)u gbte(z) )
pl"'pr—l,pl"'pr—l ‘

Since

; 1
E 1=10glogUV—loglogU-i-0(1—7),
U<p<UV 8
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1 logV 1
Z P < logU+O(logU)'

we find

ULpsUV
Therefore, taking
w&—e(m)u
= — , V = me(:c)(u-{-l)
P1-Pr-1

in the above estimate, we find on using (1),

1 r(v +1)e(z)
Z pr—1 < 6§—e(z)(vr+r—1)

Since, r < 4v/3, e(z)(rv +r — 1) K e(z)v* and s0

' 1 9
K elz)v”.
> €

Hence o
o5}
1 v? 1
Z oy & (E(ai)l)v Z _
=B pek P
which is ( )
e(z)v
1 r— 1
( _1)I(V+ )
Thus,

- Y Yow

1<r<2v/8 i=1
1 r—1
Le@p? Y v+ )1 :
1<r<2v/3 (r—1)!
< e(z)r?(2/3) 2D 3/
by Lemma 3. The latter quantity is easily seen to be

< e(z)?

for some positive constant ¢ > 0. This completes the proof.

LEMMA 5.

oo

_l e
25w <Y

i=1
PROOF. As in the previous lemma, we find

S ¥ Yo

i= i v /3<r<av/3 i=1 ¢( B(T)
< e(z)v? Z v+ 1)
2w<r<du/3 (r— 1)
< e(:z;)u2 vl
< v
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LEMMA 6. The number of primes p < z such that ? — 1 is divisible by more
than 4v/3 primes from the interval K is o(z/log x).

PROOF. This follows from Turdn’s normal order method. For completeness,
we give a sketch. Let vx(p — 1) denote the number of prime factors of p — 1 lying
in K. Then, letting p = min(1/6, §), we find

Y uklp-1) = Z( > +0(1))

p<z PLT \e(=) gg<ap
glp—-1

which is
= Z 7(z,q) + O(z/ log ).
24(=) <<

Using the Bombieri-Vinogradov theorem, we deduce that

ZVK(p —1) =7(z)v + O(z/log z).

p<z

Similarly, we deduce that

> vk(p—1) = m(z)v? + O(n(x)v)

p<z

so that

> k(e —1) =v)’ = O(n(z)v).

p<z
Therefore, the number of primes p < z satisfying vx (p—1) > (4/3)v is O(n(z)/v).
This completes the proof of the lemma. O

3. Proof of Theorem 2

By Lemma 1, we can suppose that A < 2= and so B € J. If B has less than
2v/3 prime factors from K, then by the Brun-Titchmarsh inequality the number
of primes divisible by such a B is

>, xT
<X 5B oge

This quantity is by Lemma 4,
z

logxe(x)c = o(z/log z).

<

If B has more than 4v/3 prime factors from K , then by Lemma 6, the number
of primes p such that p — 1 is divisible by such a B is o(z/logz). Thus, in our
notation, B is a B;f and p — 1 has the form

p—1=tB}
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where ¢ has no prime factors in the interval K. Fixing B;r , we count the number of
integers t < z/ B;" such that # is not divisible by any prime in the interval K and
tB;f + 1 is not divisible by any prime < z/2. Defining
1 ifp <z
wp) =1¢ 2 ifz5® <p<z/?
1 ifp|Bf
we see by Brun’s sieve that the number of such ¢ is

T w(p) z  €(x)
g 1l (1‘ P )<< o(BF) log

i pLal/?

<

Summing over Bj using Lemma 5 yields that the sum is

N e(z)v? = o(z/ log ).

logz

This completes the proof of Theorem 2.

4. Proof of Theorem 3

In view of the remarks made at the outset of the paper, it suffices to consider
the size of the set

S=1{p<z:vz/logz < f(p) < Vaexp(log’ z)}

for a suitable § > 0 to be chosen later. If p is an element of this set, then p—1 can
be written as a product of two numbers u and v, each factor approximately +/t,
since we can assume, without loss, p > x/ log2 z. More precisely,

p—1l=uv, Vz/lgz<u< vz exp(log’® ), Vzexp(—log’ z) < v < Vzlogz.

We now estimate the number of such primes. Let Q(n) denote the number of prime
factors of n, counted with multiplicity. Then, if both conditions

Qfu) > % loglogz

2
Qv) > 3 loglog z
hold, then (p —1) > 1.3loglogz. By a classical theorem of Erdés [4], the number

of such primes p < z is
x
o ——
(log" w)

for some 7 > 0. Therefore, we can suppose that one of the above inequalities fails.
Without loss of generality, suppose that

2
Qv) < 3 loglog x.

Let P(v) denotes the greatest prime factor of v. If
(2) P(v) < exp(log' ~“ z)
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then by a classical theorem of de Bruijn 2], the number of such v < z/u is
< g exp(— log* z).
Thus, if (2) holds, the number of elements of S cannot exceed
Z, T ex (—logtx)
" D g T
u
where the dash on the sum indicates that « is in the specified range of S. But

71 5
Z " X log’x
u
and so the number of primes p € S satisfying (2) cannot exceed
z exp(—cy log* z)
for some positive constant cs. We may therefore suppose that
(3) p—1=uvgq
where ¢ is a prime greater than exp(log' ¢ x). For fixed u and v;, the number of
solutions of (3) is by Brun’s sieve
z
wvy log? (z/uv;)
As
uvy < zexp(—c; log! ¢ z)
the number of solutions of (3) is
z

uvy log®> ¢z’

Since 9
Qv) < 3 loglog

and the number of natural numbers satsifying this inequality is [4]

z
o )
(log[j :z:)

for some B > 0, and therefore by partial summation,

1
Z — & (logz)! 4.
(51

Q(v1)<2loglogz/3

Hence, the total number of elements of S cannot exceed

o le 2
(logz)1+h=c £ o4, ™ (logz)l+h—c—5

so that if we choose § < 3, we obtain the desired result. This completes the proof

of Theorem 3.
To prove the corollary, we break the sum into three parts:

2t >

@<y y<f(p)<z  2<f(p)<a
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By the remarks made at the outset of the paper, the number of primes p such that
f(p) Luis O(u?/ log u). Hence, by partial summation, the first sum is O(y/ logy).
The third sum is trivially O(z/zlogz). If we choose

y=vz/log?z, z=+/zexp(log’)
then Theorem 3 implies that the middle sum is

ﬁ -

< (log w)1+a—ﬁ

Choosing 3 < a gives the result.

5. Proof of Theorem 4

For the sake of simplicity, let us suppose a is squarefree. The proof needs slight
modification otherwise. The condition

o 1/4 =1 (mod p)

implies that p splits completely in the field Q(exp(2ry/—1/d), a'/?), The number of
such primes p < z is easily calculated by the standard methods of analytic number
theory (see for example [7] or [9]). Denoting 74(z) to be the number of such primes,
we find assuming the generalised Riemann hypothesis:
i z
T\L) =
)= 350
Hence, if d = (p — 1)/ f(p) > €(z), then the number of primes p < z for which this
can happen cannot exceed

+ O(z'/? log dz).

lix
z {m + O(z'/?logdz)} + O(z/ log® z)
e(z)<d<zl/?/logh

the latter term coming from the number of primes for which f(p) < p*/%/ log® p.

Since the series
i :
2 4g(d)

converges, the result is now immediate.
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