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Abstract

Given a positive integer g > 2, we would like to study the number of real and imaginary
quadratic fields that have an element of order g in their ideal class group. Conjectures
of Cohen and Lenstra predict a positive probability for such an event. Our goal here
is to derive quantitative results in this direction. We establish for g > 3, the number of
imaginary quadratic fields whose absolute discriminant is < x and whose class group has an
element of order ¢ is > 22+, For g odd we show that the number of real quadratic fields
whose discriminant is < z and whose class group has an element of order g is > z!/29—¢

for any € > 0. (The implied constant may depend on e.)

Introduction. Given a positive integer g > 2, we would like to study the number of
real and imaginary quadratic fields that have an element of order g in their ideal class
group. Conjectures of Cohen and Lenstra [CL] predict a positive probability for such an
event. Indeed, if ¢ = p is an odd prime, then in the case of imaginary quadratic fields,
they forecast that
> 1
=11 (- 5)
as the probability that an imaginary quadratic field has an element of order p in the class

group. In the real quadratic case, their prediction is
oo
1
1-T1(1--)
i=2 P’
as the corresponding probability.
Qualitative results in this line of thought have a long history. The case ¢ = 2 is
classical work of Gauss. The case g = 3 was studied by Davenport and Heilbronn [DH].

Earlier, Nagell [N], Honda [H]|, Ankeny and Chowla [AC], Hartung [Ha|, Yamamoto [Y]
and Weinberger [W] derived the infinitude of such fields, for any given g.
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Our goal here is to derive quantitative results in this direction. In an earlier paper
[RM], we indicated how one can use the ABC conjecture to show that at least > 21/9-¢
imaginary quadratic fields with absolute discriminant < x have an element of order g in
their class group. In the real quadratic case, we obtained a lower bound of > z/29¢ for

the number of such fields.

In this paper, we will establish stronger results without the ABC conjecture. We will

prove:

Theorem 1. Let g > 3. The number of imaginary quadratic fields whose absolute

N . . 141
discriminant is < x and whose class group has an element of order g is > x2 %17,

Theorem 2. Let g be odd. The number of real quadratic fields whose discriminant is
< z and whose class group has an element of order g is > x'/29~¢ for any € > 0. (The

implied constant may depend on e.)

Theorem 2 is still valid if ¢ is even and not divisible by 4 and we briefly indicate how
to derive this at the end of the proof of Theorem 2. If g is divisible by 4, the argument of
Theorem 2 gives us > z'/497¢ real quadratic fields with discriminant < z and whose class

group contains an element of exponent g.

A lot of work has centered around the complementary question of finding class groups
not divisible by g. For example, the recent work of Kohnen and Ono [KO] and Ono [O]
shows that for all odd primes £, there are > /z/logz imaginary quadratic fields with
discriminants |D| < z with £J/h(D) where h(D) denotes the class number of the field.

Here is a brief outline of the method. In the imaginary quadratic case, our strategy
is to consider numbers of the form

m9 —n?
with 2X /9 < m < 3X'/9 and X'/2 < n < 2X/2. Then,
39X >mI —n?>29X —4X > 4X

since g > 3. Since the probablity that a random number is squarefree is 6/72, one expects
a positive proportion of such (m,n) with m and n in the stated range. This idea is made
precise using the sieve of Eratosthenes in section 2. Hence, it is therefore reasonable to

expect > X 1/2+1/9 numbers of the form

d=mJ —n?



which are squarefree. It is then not difficult to show that in Q(v/—d), the ideal (n + v/—d)
is the g-th power of an ideal which has order g in the ideal class group of that field. Finally,
we make a count of how many distinct numbers d arise in this fashion and show there are

not too many repetitions. This is how Theorem 1 is derived.

For the real quadratic case, the strategy is different. We modify an argument of
Weinberger to first establish that if D = n29 + 4 and n > g is prime, then with suitable
restrictions, the ideal (n2,2 + /D) has order g or g/2 in the ideal class group of Q(v/D).
One then counts the number of distinct real quadratic fields that arise in this way by
making use of a classical result of Sprindzuk on the number of integral points on certain

hyper-elliptic curves.

2. Squarefree values of quadratic polynomials.

Let f(n) = n? + ¢ with c an integer. We will need the following elementary lemma.

Lemma 1. Let p be an odd prime. If pfc, then the congruence n? + ¢ = 0( mod p?)
has at most 2 solutions. If p|c, and p?|c, there are no solutions. If p?|c, then p|n, so there
are p solutions mod p?. If p = 2, there are either 2 solutions or no solutions according as

c¢=0,—1( mod 4) or not.

Proof. The congruence n? + ¢ = 0( mod p) has at most two solutions mod p. If ng
mod p is a solution, then we begin by counting how many lifts it has to mod p?. Indeed,
suppose

(no +tp)? = —¢( mod p?)

then,
ng+c

+ 2npt = 0( mod p).

This has a unique solution ¢( mod p) provided pf2c. Therefore, if pJ2c, then there are at
most 2 solutions to the congruence n2 + ¢ = 0( mod p?). The last three assertions are

obvious.

Lemma 2. Let d be an odd squarefree number and denote by p.(d?) the number of

solutions of the congruence n* + ¢ = 0( mod d?). Then

pe(d?) < 2Dy (c)
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where v(d) denotes the number of distinct prime divisors of d and v(c) is the product of

the distinct primes dividing c.

Proof. By the Chinese remainder theorem, p.(m) is a multiplicative function of m. By

Lemma 1, p.(p?) < 2 if pf2c. If p|c, then p.(p?) < p again by Lemma 1. Therefore,
pe(d®) < 2"@(e),
as desired.

Lemma 3. Let v(m) denote the number of distinct prime divisors of m. Then,

Z v(m) = TloglogT + O(T).
m<T

Proof. The sum is clearly bounded by
>
p<T p

and by the elementary formula

1
Z — =loglogT + O(1)
p<T p
the result is now immediate.
Let S(z, y; ¢) enumerate the number of z < n < y such that f(n) = n?+c is squarefree.
For each squarefree d, let p.(d) be the number of solutions of the congruence

n? + ¢ = 0( mod d).

We will also introduce

P(z)=]]»

p<z
where the product is over primes less than or equal to z. Observe that by elementary

number theory, namely Chebychev’s theorem, we have

P(z) < e,

4



for some constant .
Theorem 3. If|c| <y, then
(c) 2 yv(c)
. > _ e\ _ =
S(z,y;c) > (y — ) . |p| (1 p2)+0( ),

where ¢ denotes FEuler’s function.

Proof. It is clear that
S(@,y;0) < > Y ud).
z<n<yY d?|(n?+c,P(2)?)

On the other hand, let N, (z, y; ¢) to be the number of n satisfying z < n < y and p*|n?+c.

Then,
S(z,y;0) > > Yoo uwd - DY, Ny(wyso).

z<n<y d?|(n2+c,P(z)2?) z2<p<y+|c|

By Lemma 1, we know that
Ny(z,y;¢) < 2(£2 + 1)
p

if p/2¢c. Again by Lemma 1, we have

N

Np(z,y;¢) < =

=3

if p|c. Therefore (for z > 2),

Z Ny(z,y5¢) < Z (%_}_1)_{_ Z Y

z<p<y+]c| 2<p<y+icl,pfc z<p<y+|c|,plc

Observe that

z<p<y+|c|,plc

< ()

SRR

and that

Z (% + 1) <5 + 10
2<p<y+lc|,pfc gy

Therefore, for |c| < y, we have

S(z,yic) > Y Yoo owd - D> Np(z,yic)

z<n<y d2|(n2+c,P(z)?) z2<p<y+lc|
> 3" ) > 1+ O(yv(c)/z) + O(y/ logy)
d|P(z) pen<y

n24¢=0( mod d2)

= 7 w@{ TS 0@ + O(pe(@®) | + Olyr(c) /2 + y/ ogy).
d|P(z)



We will choose z = klogy for some appropriate constant £ > 0. Then the error term
above is O(yv(c)/logy). Since p.(d?) < v(c)2*) by Lemma 2, we find

> peld®) < y(e) D 2@,

d|P(z) d<P(z)

The elementary estimate

Z 2Y(@) « log w
d<w

yields the result

Sa,yi0) > (y—a) Y, = M) | (@) + 0@ 9) + O(yu(c)/ logy).
d|P(z)

We will choose « sufficiently small, so that this quantity is

d
>@y—z) Y, %pc(d% + O(yv(c)/ logy).
d|P(z)
The sum can be written as a product:

S e =1 (- 27) = 2211 (- )

d|P(z) p<lz

by an application of Lemma 2. This completes the proof of Theorem 3.

We now apply Theorem 3 to ¢ = —m9, m odd and consider those m,n satisfying
XV2 <n<2xV? 2XV9 < m < 3X/9
so that the number of squarefree values in the sequence
2

mI —n

is

1 1
X772 loglog X
x1/2 M
> Z +0( log X )

ax1/9<m<sxl/g
m odd

by an application of Lemma 3 in estimating the error term. Since

£ . 5 MO 5 O ow)- Sromn

m
m<T,m odd d<T,d odd d<T,d odd
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we deduce that there are > X1/2+1/9 squarefree values < X that are of the form m9 — n?
with m,n in the specified ranges and m odd. Let us signal for future use the important
fact that for these m,n, we have 4X < (29 —4)X <m9 —n? < (39 - 1)X.

3. Proof of Theorem 1.

For each of the > X1/2t1/9 gquarefree values of m9 — n? produced in the previous

section, we consider the factorization
m? = (n+vV—d)(n—v—d)

in Q(v/—d). Recall that in the construction of the previous section, m is odd. Since d is
squarefree, m and n are coprime for otherwise the square of a prime will divide m9 —n? and
hence d. Also, if the ideals (n +1/—d) and (n — v/—d) are not coprime, then any common
factor must divide 2 which implies m is even, which is not the case, by construction.
Therefore, each of the ideals (n + v/—d) and (n — v/—d) must be a perfect g-th power.
Thus,

o =(n+Vv—d)
for some ideal a of norm m. If a has order » < g — 1 (say), then

U+ vv—d

a" = (u+vv—-d) or ( 5

).

Observe that v # 0 for otherwise a and a', the conjugate ideal would have a common

factor, which is not the case. Hence, taking norms of both sides of the above equation,
3971X@V/9 > il > d=m9 —n? > 4X

a contradiction for sufficiently large X. This produces an element of order g in the ideal

class group.

We now count the number of distinct squarefree numbers in the enumeration above.
Indeed, let S be the set of squarefree d’s counted above which appear twice in the list.

Then we have for each d € S,

for (m1,n1) # (ma, n2). This means

m{ —m§ =n? —n3 = (n; — na)(ny + na).
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For fixed m1, ma, the choices for n; and ns are derived from the divisors of m{ —mJ. It is
an elementary fact of number theory that the number of divisors of a number n is O(n®).
Thus, the number of divisors of m{ — m3 cannot exceed O(X¢). The number of possible
values of m; and mg are O(X?/9) and therefore the total number of elements in S cannot

exceed O(X?/9t€). The final enumeration gives
s> X1/2+1/g _ O(XZ/g-I-e)

distinct squarefree values of d < X such that the class group of Q(v/—d) has an element
of order g. Since g > 3, this completes the proof of Theorem 1.

4. An effective version of Weinberger’s theorem.

We will begin by making a result of Weinberger effective. In [W], it is proved that:

Proposition. Let D = n?9 + 4.
(i) If n > g is prime and Q(v'D) # Q(v/5), then the fundamental unit of Q(v/D) is
(n? +vD)/2.
(ii) Suppose that the polynomial T* — 4 is irreducible mod n for every divisor k of g.
Then, the ideal a = (n?,2 4+ v/D) has order g if g is odd, or g/2 if g is even, in the ideal
class of group of Q(v/D).

For the sake of completeness, we will indicate the proof of the Proposition. Let r and

s be integers and p;, p2 the roots of
T? —rT — s =0.

Define ¢;(r,s) = p) + pj. Let
nd ++vD
5

Then, N(a) = —1 and a > 1. If € > 1 denotes the fundamental unit of Q(v/D), then

a = € for some odd j. Since ¢ > 1, we have r = Tr(e) = € + € ' > 0 and the minimal

o=

polynomial of € is
T? —rT -1, 7>0.

Then
n9 = Tr(a) = Tr(c) = p} + g = ¢;(r, 1)
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where p; and p, are zeros of T? — rT — 1 = 0. Thus,
cj(r,1) —n9 =0.
It is not difficult to see that

i/2

cj(rys) =Y furl s
v=0

for integers f,. Moreover, when j is odd, f(j_1)/2 = j and fo = 1. In addition, let us
observe that if r,s > 1, then c;(r,s) > 77 as an easy computation shows. Thus, r|c;(r,1)
and so r|n9. If r = 1, then € = (1++/5)/2 contrary to hypothesis. Since n is prime, r = n*
for some k < g. By the observation above, n9 = ¢;(r,1) > rJ = nI* and so jk < g. Since
n > g is prime, it follows that (j,n) = 1 since j < g. As j is odd, ¢;(r,1)/r = j( mod n)
by what we have said above. We conclude that c;(r,1)/r is coprime to n so that n9=% = 1.

Thus, g = k and j7 = 1 as desired. This proves (i).

To prove (ii), we consider the ideal
a=(n?2+VD).

Now,

ad = (n?9,n?972(2 + \/5), (24 \/1_))9)

which is easily seen to be
(VD +2)(VD —2,n%72,... (VD +2)97Y).

This means that a9 C (2++/D) while N(a9) = n29 = N((2++/D). Hence, a? = (2+ /D).
It is then not difficult to show that in fact, the order of a in the ideal class group is g
when g is odd and g/2 when g is even whenever n is prime and the polynomial T* — 4 is

irreducible mod n for every divisor k of g.

5. Proof of Theorem 2.

We will now prove Theorem 2. We will need the following lemma.

Lemma. The number of primes p < x such that the polynomial T* — 4 is irreducible

mod p is > z/log x.



Proof. Let K be the splitting field of the polynomial T* —4. Let L = Q(¢x) and consider
the Galois extension K /L. By the Chebotarev density theorem, there are > z/logx prime
ideals p of first degree with absolute norm < z in L such that T* — 4 is irreducible mod .

This completes the proof.

Now suppose g is odd. To apply the effective Weinberger theorem, we must ensure
that n is a prime such that T* — 4 is irreducible mod n for every k|g. Using the Chebotarev
density theorem, one can show that the number of n < X1/29 such that 729 —4 is irreducible
mod n is > X1/29/1log X. This immediately implies that T* — 4 is irreducible mod n for
every k|2g. Thus, for each of these values of n, the class group of Q(v/n29 4+ 4) has an
element of order g provided Q(v/n29 + 4) # Q(v/5). First, let us observe that the number
of integral solutions of

5y> = 279 + 4

is absolutely bounded (by a classical theorem of Siegel). This eliminates only a finite set of
values of n from our consideration. We now need to count the number of distinct quadratic
fields obtained in this way. This means, for a fixed d, we need to count the number of
integral solutions of dy? = n?9 + 4 which is a hyper-elliptic curve. By a result of Sprindzuk
[S] or Evertse - Silverman [ES], we find that the number of such n cannot exceed C*(® for
some absolute constant C, where v(d) denotes the number of prime factors of d. Since the

number of prime factors of d cannot exceed

logd
loglogd
by a classical estimate of Ramanujan, we immediately deduce that the number of distinct
quadratic fields among Q(v/n29 + 4) is > X /29—¢. This completes the proof of Theorem
2.

We remark that the above theorem is also valid if g = 2r with 7 odd. Indeed, if g/2 is
odd then, the argument of Weinberger used above gives us an element of order g or g/2.
If a positive proportion of the fields we have above have an element of order g then we are
done. Otherwise, let us suppose that we have > X1/29/log X fields with an element of
order g/2. If the discriminant of a quadratic field is not prime, we have (by genus theory)
an element of order 2 in the class group which we can multiply to an element of order g/2
which is odd, to get an element of order g. By an elementary sieve estimate, we know that

the number of n < X'/29 with n prime and n29 + 4 a prime power is < X/29/1og® X.
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Since this is negligible compared to the number of fields we have, namely > X1/29/log X ,

we can now proceed as above and derive our estimate.

If g is divisible by 4, then it is clear that our argument produces at least > X1/49—¢

real quadratic fields with an element of exponent g in the class group.

6. Concluding remarks.

All of the above results can be generalized to the function field case with better results
in the analogue of the real quadratic case and this work will appear in the joint paper
[CM]. Even sharper results can be obtained if one only considers quadratic extensions of
[, generated by the square root of either cubic or quartic polynomials. This is because of
the obvious connection to elliptic curves. In fact, the connection beautifully intertwines
the Lang-Trotter conjectures for primitive points of elliptic curves over function fields over
finite fields with the Cohen-Lenstra conjectures. This work will appear jointly with Rajiv
Gupta in [GM]. Finally we mention related work of Jiang Yu [Yu] which establishes the
Cohen-Lenstra conjecture as p—oo and fixed discriminantal degree. We are of course
interested in the orthogonal direction, namely with p fixed and the discriminantal degree

tending to oo.
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