
November 7, 2016 10:0 WSPC/S1793-0421 203-IJNT 1750014

International Journal of Number Theory
Vol. 13, No. 1 (2017) 243–252
c© World Scientific Publishing Company
DOI: 10.1142/S1793042117500142

Fundamental units and consecutive squarefull numbers
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We connect several seemingly unrelated conjectures of Ankeny, Artin, Chowla and
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1. Introduction

If p is a prime ≡ 1 (mod 4), the fundamental unit of Q(
√

p) can be written as

ε =
t + u

√
p

2
> 1,

with t2 − pu2 = −4. In 1952, Ankeny, Artin and Chowla [1] showed that if h is the
class number of the ring of integers of Q(

√
p), then

uh

t
≡ B(p−1)/2 (mod p),

where Bk denotes the kth Bernoulli number (see [15, p. 56]) defined by the gener-
ating function

t

et − 1
= 1 − t

2
+

∞∑
k=2

Bktk

k!
.

243

http://dx.doi.org/10.1142/S1793042117500142


November 7, 2016 10:0 WSPC/S1793-0421 203-IJNT 1750014
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Now Bk = 0 for all odd k (see [16, Problem 2.1.8]). For k ≥ 2 even, we have Euler’s
celebrated formula

∞∑
k=1

1
nk

=
Bk(2πi)k

2k!
.

Ankeny, Artin and Chowla further conjectured that u �≡ 0 (mod p). From their
result, and the fact that h(p) = O(p1/2 log p), we see that for p sufficiently large,
u �≡ 0 (mod p) if and only if B(p−1)/2 �≡ 0 (mod p).

In a similar vein, if p ≡ 3 (mod 4) is prime, Mordell [15, pp. 56–57] conjectured
that the fundamental unit t + u

√
p of the ring of integers of Q(

√
p) satisfies u �≡ 0

(mod p). He also showed that this happens if and only if

E(p−3)/2 �≡ 0 (mod p),

where Ek denotes the Euler number given by the power series for the secant function:

sec x =
∞∑

k=0

Ekxk

k!
.

Both of these conjectures are still open (see also [14]). It is not even known if the
conjectures are true for infinitely many primes. They have been checked numerically
for all primes p < 107 and the reader can find further details and exposition in [5].

In this paper, we relate these conjectures to a conjecture of Erdös (see [19,
p. 234]) on consecutive squarefull numbers (or nearly consecutive squarefull num-
bers) and then apply the abc conjecture to move toward these conjectures. We also
formulate what we call a strong Erdös conjecture which then implies that both the
Ankeny–Artin–Chowla conjecture and the Mordell conjecture are true for almost
all primes p (in the sense of density). More precisely, we show that the set of primes
p ≤ x for which the conjecture is false is O(xθ) for some θ < 1.

Our methods are elementary and do not use anything deeper than the theory of
the Brahmagupta–Pell (BP) equation. We also obtain some unconditional results
in this context.

The study of consecutive squarefull numbers has also been undertaken (indepen-
dently) by Chan [6] as well as Blomer and Schöbel [3]. Our work has some overlap
with these works. In this context, we highlight our new contributions.

An integer r is called squarefull (or powerful) if, for all primes p dividing r,
we have p2 divides r. In 1970, Golomb [10] proved an estimate for the number of
squarefull numbers. More precisely, if k(x) denotes the number of squarefull numbers
≤ x, then k(x) ∼ c

√
x with the constant c = ζ(3/2)/ζ(3) as x → ∞ where ζ(s) is

the Riemann zeta function. Already in 1935, Erdös and Szekeres [8] gave the first
result about k(x):

k(x) =
ζ

(
3
2

)

ζ(3)
x1/2 + O(x1/3)
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as x → ∞; see also [2]. Golomb seemed to be unaware of this when he wrote his
paper. (Here and elsewhere, unless otherwise specified, all constants implied by the
big “O” symbol are absolute.)

It is easy to see that there are infinitely many consecutive squarefull numbers.
Indeed 8 and 9 are both squarefull, and if n, n + 1 are both squarefull, then so are
the consecutive numbers 4n(n+1) and 4n(n+1)+1 = (2n+1)2. But it is expected
that there are not too many of them. More precisely, Erdös [7] conjectured (see also
[19, p. 234]) that there is a constant A > 0 such that

S(N) = #{n � N |n and n + 1 are squarefull} < (log N)A.

More generally, for any fixed d, we expect the following Strong Erdös Conjecture:

Sd(N) = #{n � N |n and n + d are squarefull} < (log N)A.

There is a heuristic argument to support these conjectures. By the Erdös–Szekeres
theorem, the probability that a random number n is squarefull is approximately
1/

√
n, so the number of n ≤ N such that n and n + d are both squarefull is

approximately

∑
n≤N

(
1√
n

)2

=
∑
n≤N

1
n
≈ log N.

Motivated by this reasoning, we formulate a strong Erdös conjecture: for some
A < 2,

Sd(N) := #{n � N |n and n + d are squarefull} < (log N)A.

It is not difficult to see that

S1(N) 
 log N.

Indeed, from our above example, we may consider the real quadratic field Q(
√

2) in
which N(3 + 2

√
2) = 1. If we write

Un + Vn

√
2 := (3 + 2

√
2)n, n = 1, . . .

with Un, Vn integers, then it is clear that U2
n − 2V 2

n = 1. Moreover, it is also clear
that 2|Vn for otherwise, both Un and Vn would be odd and hence ≡ 1 (mod 4) which
means 1 ≡ U2

n − 2V 2
n ≡ −1 (mod 4), a contradiction. Therefore both U2

n and 2V 2
n

are powerful and consecutive. The number of such numbers ≤ N is clearly 
 log N .
Our first theorem is the following.

Theorem 1.1. The strong Erdös conjecture implies that the Ankeny–Artin–Chowla
conjecture and the Mordell conjecture are true for all but O(xθ) primes p ≤ x, for
some θ < 1.

It therefore seems reasonable to ask if one can prove the Erdös conjecture. In
this direction, there is an assortment of results. First, we show the following.
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Theorem 1.2. The abc conjecture implies Sd(N) = O(N ε) for any ε > 0.

This theorem was also proved by Chan [6] who relied on a non-trivial result
of Estermann [9]. Our proof of the above theorem is slightly simpler and will be
of independent interest. Unconditionally, we also prove the following independent
from d.

Theorem 1.3.

S(N) = O(N2/5).

Chan [6] obtained a slightly weaker version, namely an estimate of

O(τ3(d)N2/5 log2 N),

where τ3(d) is the number of ways of writing d as a product of three positive integers.
If the explicit dependence on d is dropped, he obtains an improved estimate of

O(N7/19 log N).

All of Chan’s results rely on non-trivial results of Bombieri and Schmidt [4] as well
as Evertse on estimates for the number of solutions of the Thue equation. These
results comprise a deep chapter in transcendental number theory. By contrast, our
approach is elementary. We will prove the above theorems using only rudimentary
facts of the BP equation. Recently, Reuss [18] established a better error term in the
case d = 1. He showed S1(N) = O(N29/100+ε), for any ε > 0. This result uses more
sophisticated methods and relies on earlier deep work of Heath-Brown [11]. Earlier,
Blomer and Schöbel [3] obtained the exponent of 61/180.

It has also been asked by Erdös whether consecutive squarefull numbers may
be obtained other than as solutions of appropriate equations of the form mX2 −
nY 2 = 1. We will show this is not the case (see Lemma 2.4).

Generalizations of these problems to consecutive k-full numbers have been stud-
ied by Blomer and Schöbel [3].

2. Preliminaries

Golomb [10] discussed consecutive integer pairs of squarefull numbers which fall
into one or the other of two types. Type I consists of pairs of consecutive squarefull
numbers one of which is a perfect square; and Type II consists of pairs of consecutive
squarefull numbers neither of which is a perfect square. He showed that there are
infinite families of examples where two consecutive integers are squarefull which
correspond to the solutions through the theory of Pell’s equation which give the
solutions for Type I.

It may be enlightening to make some historical remarks here. The equation
x2 − dy2 = 1 whose solutions give the pairs of squarefull numbers of Type I was
labeled as Pell’s equation by Euler. However, this is one instance (among many
in mathematics) where a name has been attached in error and the same was so
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commonly accepted in the literature that it stuck. Actually, Pell had little to do
with Pell’s equation. The first mention of the equation seems to date back to ancient
India, starting with Brahmagupta, who developed the chakravala method to solve
the equation in his Brahma Sphuta Siddhanta in 628 C.E., about a thousand years
before Pell’s time. The word “chakra” in Sanskrit means “wheel” and it is quite clear
that Brahmagupta and his successors like Jayadeva and Bhaskaracharya (see [22])
were aware of the “cyclic” nature of all solutions. In modern language, we know
these solutions really correspond to the cyclic group of units of a real quadratic
field. The reader can find further information and the fascinating history about the
method in Weil’s book [22]. That is the reason why due to the long journey of this
type of equation, we will call the equation

mX2 − nY 2 = ±1 (1)

as the generalized BP equation.
This Eq. (1) was studied by Walker [20] in 1967. He showed how the elementary

theory of the BP equation can be used to derive the following. We record below his
main result. To this end, we say x

√
m + y

√
n is solution of (1), if X = x, Y = y

is a solution of (1). It is called a positive solution if both x and y are positive.
Walker [20] has shown that among all solutions (x, y) with x, y > 0, there is (x0, y0)
(say) in which both x and y have their least values. For such a solution, we call
x0

√
m + y0

√
n the smallest solution of (1).

Theorem 2.1. If (1) is solvable for both of m, n > 1 and has x0
√

m + y0
√

n as its
smallest solution; and if i is a nonnegative integer, then the formula

xi

√
m + yi

√
n = (x0

√
m + y0

√
n)2i+1

gives all positive solutions of (1).

Let us note that

(x0

√
m + y0

√
n)2i+1 =

2i+1∑
i=j

(
2i + 1

j

)
(x0

√
m)j(y0

√
n)2i+1−j .

Thus, in each summand, either j is even or 2i + 1 − j is even so that (x0
√

m +
y0
√

n)2i+1 has the form xi
√

m + yi
√

n.

Conjecture 2.2. Let us recall the abc conjecture of Oesterlé and Masser (1985).
Fix ε > 0. Then, there exists a constant κ(ε) such that whenever a + b = c, where
a, b and c are positive integers and (a, b) = (b, c) = (a, c) = 1, then

c � κ(ε)


 ∏

p|abc

p




1+ε

.
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We apply the abc conjecture to study certain special solutions of the generalized
BP equation (1) where m and n are positive integers and neither is a perfect square.
We refer the reader to [20] for a general exposition of this equation.

Lemma 2.3. Any squarefull number can be written as a2b3 with b squarefree.

Proof. Every squarefull number n can be written in the form p1
α1p2

α2 · · · pk
αk

where p1 < p2 < · · · < pk are distinct primes and each exponent αi ≥ 2 where
i = {1, 2, . . . , k}. So let pα be one of these prime powers dividing n, where α ≥ 2.
Writing α = 2k + δ with δ = 0 or 1, we see that in the latter case, we may write
α = 2(k − 1) + 3 as k ≥ 1. In either case, this shows that each prime power can be
written in the desired form. Hence the result.

Lemma 2.4. If n and n + 1 are consecutive squarefull numbers, then there are b

and d both squarefree such that we have a solution of the generalized BP equation

dx2 − by2 = 1, (2)

where b | y and d |x.

Proof. If n and n + 1 are consecutive squarefull numbers, by Lemma 2.3, we can
write n = a2b3 and n + 1 = c2d3 where b and d are squarefree. So, we have

c2d3 − a2b3 = 1.

Thus we get a solution of the generalized BP equation

dx2 − by2 = 1,

with x = cd, y = ab. Clearly, d |x and b | y.

This lemma answers the question of Erds regarding consecutive squarefull num-
bers. They all arise from solutions of equations of Type II (see [19, p. 234]).

Proposition 2.5. Suppose n, n + 1 are consecutive squarefull numbers with n =
a2b3, n + 1 = c2d3 with b, d squarefree and n ≤ N . The abc conjecture implies
|d|, |b| � κ(ε)N ε, for any ε > 0.

Proof. From Lemma 2.4, we have

dx2 − by2 = 1

with x = cd, y = ab. Noting that |x|, |y| ≤ N , we apply the abc conjecture to the
above equation. We also see that d |x and b | y and b, d are both squarefree. Thus,
we have

dx2 ≤ κ(ε)
(

d · x

d
· b · y

b

)1+ε

.

Thus

dx2 ≤ κ(ε)(xy)1+ε.
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Hence

d ≤ κ(ε)
(

y

x

)
N2ε.

Since Eq. (2) implies
(

y

x

)
�

√
d

b

we get
√

bd ≤ κ(ε)N2ε ⇒ bd ≤ κ1(ε)N4ε,

bd 
 N4ε

from which our results follows.

3. Proof of Theorem 1.1

The strong Erdös conjecture predicts that Sd(N) = O(logA N) with A < 2. We now
show that the Ankeny–Artin–Chowla conjecture holds for almost all primes p. The
latter conjecture [1] is the assertion that the fundamental unit ε = T+U

√
p

2 of Q(
√

p)
satisfies p � U . If p |U , then from T 2 − pU2 = ±4, we have two squarefull numbers
n and n± 4 with n = pU2, n± 4 = T 2. By the analytic class number formula (see,
for example, [17, Exercise 10.5.12]), we have

h(p) log ε√
p

= O(log p),

where h(p) is the class number of Q(
√

p). Using h(p) ≥ 1, we have

ε ≤ exp(B
√

p log p)

for some constant B. Then we see that T+U
√

p

2 ≤ exp(B
√

p log p) and so in partic-
ular, T, U ≤ 2 exp(B

√
p log p). To count the primes p ≤ N for which the Ankeny–

Artin–Chowla conjecture is false, we are led to count

#{n ≤ 2 exp(c
√

N log N) : n, n ± 4 are squarefull}.
By the strong Erdös conjecture with A < 2, we see the number 
 (

√
N log N)A 


Nθ, for some θ < 1. This means that if there are counterexamples to the Ankeny–
Artin–Chowla conjecture, they are extremely rare. A similar estimate and proof
holds for the Mordell conjecture also.

4. Proof of Theorem 1.2

By Proposition 2.5 and assuming abc conjecture, any squarefull numbers n, n + 1
can be written as n = a2b3, n + 1 = c2d3, n, n + 1 ≤ N with b, d squarefree
and |b|, |d| ≤ N ε. We fix b, d. We count the number of solutions of Eq. (2) using
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Lemma 2.4. By the theory of the generalized BP equation, all solutions of Eq. (2)
are generated by fundamental solutions [20]: We have

(
√

dx0 +
√

by0)2i+1 =
√

dxi +
√

byi.

In our case, |xi| ≤ N , |yi| ≤ N imply

(2i + 1) log(
√

bx0 +
√

dy0) ≤ 2 logN ⇒ (2i + 1) 
 (log N),

S(N) = #{n ≤ N : n, n + 1 squarefull numbers} ≤
∑

b,d≤Nε

(log N) 
 N ε.

Finally, we vary over |b|, |d| ≤ N ε to get a total contribution of N4ε. �

5. Proof of Theorem 1.3

Theorem 5.1. Let S(N) be the number of integers n ≤ N such that both n and
n + 1 are squarefull. Then we have for all ε > 0 and sufficiently large N that
S(N) = O(N2/5).

Proof. We have

d(cd)2 − b(ab)2 = 1

such that n = a2b3 and n + 1 = c2d3 from Lemma 2.4 where both b and d are
squarefree. We already know from Golomb’s paper that the number of squarefull
integers 
 N is k(N) ∼ c

√
N . Let Z be a parameter to be chosen later. First we

count our squarefull numbers n with n + 1 squarefull and n = a2b3 with b > Z.
Thus we have

#{n ≤ N : ∃ a, ∃ b > Z, n = a2b3} ≤
∑
b>Z

√
N

b3/2
.

Finally we get the number of squarefull integers 

√

N√
Z

. Similarly, we count our
n + 1 = c2d3 squarefull with d > Z:

#{n ≤ N : ∃ c, ∃ d > Z, n + 1 = c2d3} ≤
∑
d>Z

√
N

d3/2



√
N√
Z

.

We may now suppose that both b, d ≤ Z. Let us fix b, d. Thus, we have

dx2 − by2 = 1,

which is a BP equation by Theorem 2.1. This gives that the number of consecutive
squarefull integer pairs is



∑

b,d≤Z

(log N) 
 Z2(log N).



November 7, 2016 10:0 WSPC/S1793-0421 203-IJNT 1750014

Fundamental units and consecutive squarefull numbers 251

Thus we have a total estimate of Z2(log N) + O
(√

N√
Z

)
for any Z. We choose Z =

N1/5

(log N)2/5 to get a final estimate for S(N) = N2/5(log N)1/5. This can be refined to
deduce the result stated as follows. We note that

(2i + 1) log(x0

√
d + y0

√
b) ≤ 2 log N

so that, in fact,

(2i + 1)
1
2
(log b) ≤ 2 logN.

Our sum above becomes ∑
b,d≤Z

log N

log b
= O

(
Z2 log N

log Z

)

which gives

S(N) = O(N2/5).

This theorem gives a non-trivial result using more elementary results than Reuss
[18] used in his paper to estimate the error term.

As a result of the question of finding consecutive squarefull pairs, one example
has been found where neither is a perfect square as d = 233 = 12,167 and b =
2332132 = 12,168 for the first time by Golomb [10]. This was the first example of
Type II pairs. Another example was given by Walker [21].

6. Concluding Remarks

Our heuristic also predicts that the number of three consecutive squarefull numbers
is bounded. It is well known that the abc conjecture implies this (see, for example,
[17, Exercise 1.3.6]). It would be interesting to explore if this fact can be deduced
without the abc conjecture. On the other hand, with recent announcements from
Mochizuki [12] that he has a proof of the abc conjecture, there is hope that we are
moving toward the conjectures of Ankeny, Artin, Chowla and Mordell.

Mollin, Walsh and Erdös [13] have conjectured that for a positive squarefree
composite integer d ≡ 7 (mod 8), the fundamental unit t + u

√
d of the ring of

integers of Q(
√

d) satisfies u ≡ 0 (mod d) with t powerful. As an example of the
fundamental unit, ε = 24,335 + 3,588

√
46 of the ring of integers of Q

√
46 satisfies

3,588 ≡ 0 (mod 46) for a composite d = 46. Our arguments above on primes extend
mutatis mutandis to this conjecture too. We leave the details to the reader.
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