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I. Introduction 

In this paper we study the group of points modulo p of elliptic curves defined over 
Q. In particular, we are interested in the frequency with which this group is cyclic 
and with which it is generated by a fixed set of global rational points. Let E be an 
elliptic curve over Q and for each prime p where E has good reduction, let/~(0:p) be 
the group of rational points on the reduction of E modulo p. In [14], Serre raised 
the question of how often this group is cyclic, and following Hooley's work [6-1 on 
Artin's primitive root conjecture, showed that the number of such p < x is 
~ cx/log x for some constant c, assuming the Generalized Riemann Hypothesis 

(GRH). The second author removed this hypothesis for curves with complex 
multiplication (CM) in [9-1, and also demonstrated unconditionally the existence of 
infinitely many primes for which/~([]:p) is cyclic in [10], for certain non-CM elliptic 
curves. Though the method of [93 establishes an asymptotic formula, the method of 
[10] does not give a good lower bound for the number of such primes. We will 
prove unconditionally: 

Theorem 1. The group ff~(~:v) is cyclic for infinitely many p if  and only if E has a non- 
rational 2-division point, and moreover, in this case, the number of  primes p <= x for 
which ff~(~:v) is cyclic is >> x/log 2 x. 

The proof of this result is given in section 2; the key is a result from the theory of 
sieves. 

In [3-1 we discussed the following question, raised by Lang and Trotter [83: 
Given a rational point X of infinite order in the Mordell-Weil group E(Q), how 
often does the reduction of X modp  equal the full group s This question is 
analogous to the classical question of how often a given integer is a primitive root 
mod p, but the situation cannot be handled by Hooley's method, owing to the large 
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size of the conjugacy classes. However, if E has CM by the ring of integers of the 
imaginary quadratic field k, the authors were able to prove in [3] that the set of 
primes p such that/7(0zp) = ( ) ? )  and p splits in k has a density. This method does 
not apply to primes which are inert in k, and we must consider the following 
somewhat weaker question, also raised in [8]. 

Let F be a free subgroup of E(Q) of rank r(F) and define 

S(F) = {p primel E(0Zp) = Fp} , 

where Fp is the reduction of F mod p. Also, if E has CM by k, let 

S'(F) = {p prime[/~(lFp) = Fp and p is inert in k} . 

One expects the sets S(F) and S'(F) to have certain densities 6(F) and 6'(F) (see 
sections 4 and 5). Provided r(F) is sufficiently large, one can verify these expecta- 
tions under the assumption of the GRH (see [3]). The ranks for which our results 
apply can be lowered substantially by not insisting on producing the full densities 
above but rather positive multiples of them. Such results were previously known 
(see [3]) only for CM curves with r(F) > 10 and non-CM curves with r(F) > 18. 

Theorem 2. I f  E has CM and r(F) > 2, then, under the GRH, S'(F) contains a set of 
density > (1 - log 2 - e)f '(F)for any e > 0 

Theorem 3. I f  E has CM and r(F) > 6, then, under the GRH, S(F) has density 6(F). 

Theorem 4. I f  E does not have CM and r(F) > 7, then, under the GRH, for every 
e > O, S(F) contains a set of density 

(1 - log(20/9) -- e)f(F) ,  

and if we assume Artin's holomorphy conjecture, then S(F) contains a set of density 

(1 - Iog(4/3) - e)6(F). 

The holomorphy conjecture referred to above is the statement that all Artin L- 
series of the extensions L, /Q  are analytic at s 4: 1, where the fields L, are as defined 
in section 3. Theorems 2 and 3 rely on the improved error estimate in the 
Chebotarev density theorem of [12], and this improvement is conditional on 
Artin's holomorphy conjecture. Section 3 is devoted to showing that this holds for 
curves with CM. In section 4 we give the proofs of Theorems 2 and 3, and in section 
5 we prove theorem 4. 

2. Cyclicity of/~(~=p) 

We let E be a fixed elliptic curve over Q, and let K,  = Q(E[n])  for each positive 
integer n, where E [n] is the set of n-division points of E. If p is a prime of good 
reduction, it is easy to see that for any prime q, (Z/qZ) z c E(~zp) if and only if p 
splits completely in K~. This gives: 

Lemma 1. I f  p is a prime of good reduction, ff,(D:v) is cyclic if and only if p does not 
split completely in Kq for any prime q. 
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On the GRH, primes which do not split completely in any Kq can be suc- 
cessfully enumerated, and an inclusion-exclusion argument leads to the following 
result due to Serre [14] (see also [9]). 

Theorem. Assumin 9 GRH, the primes p for which E(g:p) is cyclic have density 

6 = ~ ~(n)/EK,:Q],  
n->_l 

where #(n) denotes the Mbbius function. 

We recall that Serre [13] has shown that for E without CM, 

[K,:  Q] ~IGL2(Z /nZ)[ ,  

and if E has CM by C k, then 

[ /q: Q] • I((~k/n(~k)xl, 

so that the infinite sum above converges absolutely. 
If any of the fields Kq for q prime is trivial, then clearly 6 = 0, and by the 

following well-known fact, this can only happen for q = 2. 

Lemma 2. The cyclotomic field Q(~,) is contained in K,  for any n. 

Proof This follows from properties of the Weil pairing e,, a non-degenerate 
bilinear pairing e,: E [n] x E [n] ~ #,, where/~, is the group of n-th roots of unity. 
The non-degeneracy of e, gives its surjectivity, and its Galois invariance means that 
its image is contained in K,. See [16, Cor 8.1.1 p. 98] for details. 

One can show that 6 vanishes exactly when K 2 -- Q ,  and this gives in particular 
the infinitude of the set of primes p for which/~(gZp) is cyclic if K 2 =[= Q, on GRH. 
The key to eliminating GRH in Theorem 1 is the following lemma from sieve 
theory. 

Lemma 3. Let S~(x) be the set of primes p < x such that all odd prime divisors of 
p - 1 are distinct and >= x 1/4+~, p does not split completely in thefield K2,  and E has 
good reduction at p. Then i l K  2 ~ ~ there is an e > 0 such that [S~(x)l >> x/log 2 x. 

Proof. Since K z contains a non-trivial abelian extension of O if it is non-trivial (it is 
the splitting field of a cubic polynomial), the restriction that p not split completely 
in K 2 can be insured by imposing a congruence condition on p. This condition can 
be added to the lower bound sieve of, for example, Fouvry and Iwaniec El] (see 
[2], [5]) to give the desired lower bound. 

Proof of Theorem 1. Fix an e satisfying Lemma 3 and define 

S(a, x) = {peS,(x)la v = a} 

for each integer a with l al < 2xl/2, where av denotes the trace of the Frobenius of E 
at p. By Well's Theorem, S~(x) is the (disjoint) union of these S(a, x). Now for each 
S(a, x), we enumerate those p e S(a, x) for which/~(~:p) is not cyclic. Indeed, if E(g:p) 
is not cyclic, then (•/qZ) 2 c/~(g:p) for some prime q, and by Lemma 1 and the 
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definition of S,(x), q is odd and p splits completely in Kq. By Lemma 2, p also splits 
completely in Q((~), so we have p - 1 mod q, i.e. 

q l P -  1.  (1) 

Moreover, rE(0:,) I = p + 1 - a, so q21p + 1 - a and thus q(a - 2. Notice that a 
cannot equal 2 since then q2 would divide p - 1. Now by (1), q > x ~/4+~ and since 
l a -  21 ~ xl/2, q is determined by a, for x sufficiently large. Any p ~ S ( a , x )  for 
which E(~p) is not cyclic satisfies 

p - a -  l m o d q 2  

and the number of such p is 

< x /q  2 + 0(1) '~ X 1/2-2e . 

The total number of p ~ S~(x) for which E(Ozp) is not cyclic is therefore 

x l / 2 -  2 e X  1 /2  = o(x/ log 2 X) , 

and this completes the proof. 

3. Some group-theoretic preliminaries 

Throughout  this section we assume that E has CM by the ring of integers of k and 
let F be a free subgroup of E(Q) of rank r(F). For  each positive integer n > 3, let 
L, Q(EEn], 1 = ~-F), a Galois extension of Q with Galois group over Q equal to a 
semidirect product of a subgroup of GL2(7//nT/) and a subgroup of E[n] r(n. Also, 
set Lz = kQ(E[2],  �89 and G z = Gal(Lz/Q); note that by Lemma 6 of [9], k c L, 
for all n. In this section we will prove the following key fact for the proof of 
Theorems 2 and 3. 

Proposition 1. Artin's holomorphy conjecture holds for the extensions L , /Q .  

Before proving this, we need some preliminary facts about characters of 
semidirect products. Let A and H be two subgroups of a finite group G and suppose 
that A is normal and G = A H  with A c~ H = 1. That is, G is a semidirect product of 
H by A. Suppose in addition that A is abelian. In such a situation, it is classical 
knowledge that all the irreducible representations of G can be constructed from 
those of H (see e.g. Serre 1-15]). 

Indeed, if X is a character of A and h ~ H, define X h by 

zh(a) = z ( h -  x ah) . 

Then ;~h is a character of A and this gives an action of H on the character group of A 
(which is isomorphic to A since A is abelian). Let H x be the stabilizer of ;~ and 
extend X to G x = A H  z by defining ~(ah) = z(a). Then ~ is still a one-dimensional 
character of G r Now let t9 be any irreducible representation of Hx; we can view t9 as 
a representation of G x by factoring through A. Set 

~kx. p = Ind~z(~ | p ) .  
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An easy compu ta t ion  shows that  (qJx, p, qJx, p) = 1 and therefore ~Ox, p is irreducible.  
Moreover ,  all i r reducible representa t ions  of G arise as one of these. 

Proof  o f  Proposition 1. We suppose  that  n > 3, but  the same a rgument  as below, 
with minor  modif icat ions,  works  for L 2 a s  well. Let K ,  = Q(E[-n]) and denote  by 

the Galo is  g roup  of K, /Q.  Let H be the Ga lo i s  g roup  of L , / K .  and write G for 
the Galo is  g roup  of L, /Q.  Every irreducible character  of G is ob ta ined  as follows. 
Take  Z~/4,  the character  g roup  of H, which we know is abelian.  Then if 
G r = HMr ,  every irreducible representa t ion  is of the form 

0r .o  = Ind~()~ | p ) .  

Suppose  that  M r is not  abel ian (for otherwise,  the L-series a t tached to Ox, o is 
entire). Let Mo = Gal(K/k)  where k is the C M  field of  E; we know that  M o is 
abelian.  Then we have an exact  sequence 

l ~ M o - ~ M - - * { +  1 } ~ 1  

and as M r c M and M x is not  abelian,  there is an element az e M r  such that  
~r x ~-~ - 1. We can view elements of M as ordered  pairs  (z, a) where z = + 1 and 
~r e M o . With  this nota t ion,  write a x = ( - 1, ~). Then 

2 
~r r = ( - 1, ~)(  - 1, ~) = 0 ,  - ~ + ~) = 0 ,  0 ) .  

I f g ~ M  r c M, then 9 = (z, mo). I f z  = 1, then 9 ~ M o .  I f z  = - 1, 

9a  z = ( - 1, too)( - 1, e) = (1, - e + m o ) ~ M z n M o .  

Hence every element  of M r can be writ ten as (M x c~ Mo)zJ, j = 0 or  1. We have an 
exact sequence 

l ~ M z c ~ M o  ~ m x  ~ { __+ 1 } ~ 1 .  

Thus, p can be writ ten as 
p = 

t for some abel ian  character  c0 of a subgroup  M x c M x. Since 

Ind  e; = InoHM ~ o ,  
we have 

HM~ " . .HM~ (09 | ZIHM'~) | IndHM ~ ~0 = mOHM; 

by F roben ius  reciprocity.  Therefore, every i rreducible representa t ion  of G is of the 
form 

I n d ~  (~ | p) = Index (Indaa~(~o | ~)) = I n d , ,  (co| ~) 

where G' z = H M '  z. Thus every charac ter  of G is monomia l  and Art in 's  conjecture 
holds. 

4. Generation of/~(Fp) in the CM case 

We keep the no ta t ion  and assumpt ions  of sect ion 3 and  set G, = G a l (L , /Q ) .  We 
were able to show in [-3] that  if F has rank 1, the reduct ion of F generates  the group  
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/~(B:p) for a density a of primes p which split in k, on the GRH. The argument 
follows Hooley's [6] once one notes that the condition "q divides the index of F in 
E(g:p)" can be expressed in terms of the splitting completely of a prime n in k above 
p in certain extensions of k. The number of these primes can be sufficiently well 
estimated using the result of Lagarias and Odlyzko [7-1 to prove that they have a 
density. This method falls through if p is inert in k since the divisibility condition 
can no longer be expressed in terms of a "splitting completely" criterion, and the 
enumeration of primes for which it holds becomes worse. We are no longer able to 
deal with the case where the subgroup F of s has rank one, but can handle the 
case r(F) > 2. 

If q is a prime and p~/Aq, where d is the discriminant of E, then one can show 
that if Fp denotes the reduction of F mod p, q l [E(D:p): Fp-1 if and only if aq(p) ~ Cq, 
where aq(p) denotes the Frobenius symbol ofp in the extension Lq/Q (a conjugacy 
class of Gq), and Cq is a certain subset of Gq which is closed under conjugation 
(see [3], p. 35). If p is a prime of good reduction which is inert in k, so that 
[/~(~:p)l--p-t-1, then ql[ff~(g:p):Fp] if and only if aq(p) cC'q, where 
C'q = {a ~ Cqlalk = -- 1 }. For our purposes, the important fact about these objects 
is: 

Lemma 4. The size of G~ is ~ q2,tr)+2 and the sizes of C~ and C'q are ~ qar)+ l 

Proof. This is proved in I-3-1, p. 35 for Gq and Cq, and the same argument applies 
t 

to Cq. 

For any n, let Cn (respectively C'n) be the set of elements of G, whose restriction 
to Lq lies in Cq (respectively C'q) for aU qln; C, and C'~ are also closed under 
conjugation. Then an inclusion-exclusion makes it reasonable to expect that the 
primes for which E(~:p) = Fp have density 

~(r) = Z ~ ( n ) -  

and indeed, such a result was proved in [3] under the assumption of the GRH, 
provided r(F) > 10. Also, we expect S'(F) to have density 

~'(r) = Z ~(n)IC;__/I 
~_->1 I G . I  " 

In order to enumerate the sets S(F) and S'(F), we will need the following estimates 
for the error term in the Chebotarev density theorem. 

Proposition 2. Let L / K  be a Galois extension with Galois group G, and C c G be 
closed under conjugation, and assume the GRH. Define 

rCc(X) = I{P a prime of K unramified in L I N o r m r / o p  < x and Frobr/x(p) ~ C}I �9 

Let d r (resp. dL) be the absolute value of the discriminant of K (resp. L), n r = [K: Q], 
n L = [L :Q] ,  n = 1-L:K], and P(L /K)  be the set of rational primes lying under the 
primes of K which ramify in L. Then 

ICl ^{ICl ) 
nc(X) = ~ li x + o t - ~  x'/2(l~ dL + nL log X) , 
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and if Artin's holomorphy conjecture holds for L/ K, then 

ICI 
lZc(X)=~lix+O(]Cll /2xl /21~ P ) X ) ) .  

Proof. The first assertion is due to Lagarias and Odlyzko [7], and the second is due 
to Murty, Murty, and Saradha [12]. 

A key ingredient in the proof of Theorems 2 and 3 is the following lemma. 

Lemma 5. Let 
rc,(x) = I{P < xlap(p)~C" }[ . 

Then, under GRH, we have 

IC'I 
rc,(x) = ~ li x + O(IC'nll/2x ~/2 log nx) . 

Proof. Artin's holomorphy conjecture holds for the extension L, /Q by Proposition 
1. Therefore, by Proposition 2, 

( c ))) 7r,,(x) [-~] l ix  + O  IC'nI'/2x1/21og([L,,:~] 1-I p x , 
\ \ p e P(LJQ) 

and this gives the desired result since [Ln :Q] "~ n 2rw~ + 2 and only the primes of bad 
reduction and those dividing n can ramify in Ln. 

Proof of Theorem 2. Let 
N(x) = I{P < xlp~S'(F)}l; 

we want to show N(x)> (1 - l o g  2 -  e)6'(F). Following [3], we introduce the 
notation: N(x, y) = IS(x, Y)I, where 

S(x,y) = {p < x[p is inert in k and aq(p)r for any q < y }  , 

and M(x, y, z) = IT(x, y, z)[, where 

T(x, y, z) = {p < xlp is inert in k and aq(p) c Cq for some y < q < z} . 

Then, as in [3], we have 

N(x, y) -- M(x, y, 2x) < N(x) < N(x, y) 

and by inclusion-exclusion, 

N(x, y) = ~ #(m)rcm(x) , 

where the summation is over all square-free integers all of whose prime factors are 
< y .  If 

IC' l  = y "  ' 

with the range of summation as above, then using Lemma 5, we get 

X 
N(x, y) = 6'(y) ~ + o(x/log x) , 
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where y is sufficiently small and y = y(x) ~ ~ as x ~ ~ (e.g. y = (1/6)log x), and 
6(y) ~ 6'(F) as y ~ oo. If  some prime in the range xX/21og x < q < 2x divides 
[/~0:v): Fp], then IFp[ < 2x 1/2 log x, so by L e m m a  14 of [3], we have 

M(x,  xl/210g x, 2x) = O(x/log 2 x ) .  

Le t /~  be a rank 1 subgroup  of F, so that  

M(x,  y, z) < hi(x,  y, z) , 

where ~t(x,  y, z) represents the same quant i ty  as above but  with F replaced by F. 
By Lemmas  4 and 5, 

ffl(x, y, xl/'*/log x) _~ ~ ((1/q 2) li x + O(qx 1/2 log qx)) = o(x/log x) 
y < q < x l /4 / logx  

since y ~ m as x ~ m,  so we need only deal with M(x,  xl/4/log x, x 1/z logx). In 
fact, it suffices to estimate 

M'(x,  xX/4/log x, xl/2 log x) = IS(x, y) c~ T(x, xl/4/log x, x l / 2  l o g  x)[  . 

It  is convenient  to introduce 

M'(x,  y; q) = I{p~S(x,  y)laq(p) c C'~}I . 

If  trq(p) c C~, then ql[ /~0:p) :Fp] ,  so p = - 1 rood q. We can utilize this to obtain 
an upper  bound  for M'(x,  y; q). In the enumera t ion  of S(x, y) above, one has to 
replace the fields Lm, where all pr ime divisors o f m  are < y, with the compos i tum of 
these fields with Q((q), and the size of the conjugacy set does not increase. 
Moreover ,  for q sufficiently large, the field Lq, and hence Q(~q), is disjoint from all 
these Lm. This leads to 

M'(x,  y; q) < 6'(y) li x + O(x 1/2 log qx) ,  
q - 1  

for q sufficiently large, and using the fact that  

1 
- -  ,-~ log log(xl/2/log 2 x) - log log(xl/4/log x) ~ log 2 ,  

x l l4 / logx  < q < x l l2 / log2x  q - 1 

we obtain the est imate 

M(x,  xl/4/log x, x l /2 / log  2 x) <- (1 - log 2 - e)f'(F)li x 

for x sufficiently large. T o  handle the remaining interval M(x,  xa/2/log2x, 
x 1/2 log x), we use the Brun-Ti tchmarsh  theorem (see [4]). Since if q[ [E(Dzv):Fp] 
then p - 1 m o d  q, we have 

M ( x ,  x l /2 / log  2 x, xa/2 log X) '~ ~ x 
x l /2 / logZx  < q < x l /21ogx  q log(x/q) ' 

which is easily seen to be o(x/log x). This completes  the p roof  of Theorem 2. 

Proof of  Theorem 3. The p roof  is very similar to that  given above,  so we give only a 
sketch. One  does an initial sieve as before and obtains  a bound  

M(x,  y, xl/4/log x) = o(x/log x) , 
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and since r(F) > 6, Lemma 14 of [3] yields 

M(x, xl/41og x) = o(x/log x).  

The remaining interval is handled as above using the Brun-Titchmarsh theorem for 
inert primes and a generalization of it to number fields for primes which split in k, 
as in [3]. 

5. Generat ion of  E ( F ~ )  in the n o n - C M  case 

We now suppose that E does not have CM, and ask how often E(Uzp)= Fp. If 
P X qA, then we have as before that q[ [/~(Dzp): Fp] if and only if aa(p) c Cq, where C a 
is a conjugacy subset of G a Gal(Lq/Q), and L a O(E[q],  x = = ~ F), but in this case, 
the sizes of G a and C a are bigger; we have: 

Lemma 6. We have ]Gal ~ q2,W)+4 and I Cal ~ q,tr)+ 3. 

Proof See [3], p. 35. The difference from Lemma 4 arises from the fact that the 
Galois group of Q(E[q])/Q is almost always GL2(~/qZ). 

We expect S(F) to have density 6(F), where 6(F) is as in section 4. Because of the 
large size of the conjugacy sets involved and the resulting worsening of the error 
terms in the Chebotarev density theorem, one can only prove this in case r(F) >= 18, 
under the GRH (see [3]). Using the improved error term of [12], one can improve 
this to r(F) = 11, under the assumption of Artin's holomorphy conjecture. 

We are able to bring the rank down even further by not insisting on producing a 
set of density 6(F) but rather a positive multiple of it, as we did in section 3. 

Proof of Theorem 4. We will use the same notation as in the proof of Theorem 2. 
For r(F) > 7, we are able to handle M(x, x 2/9+~, 2x) using Lemma 14 of [3], and 
after doing an initial sieve as before, are left with having to estimate M(x, y, x2/9+~), 
where y ~ ~ as x --* ~ .  We instead estimate M(x, y, xl/4+~), corresponding to a 
rank-one subgroup/~ of F. Using Proposition 2, one can show under the GRH that 

ffI(x, y, X 1] lO-e ' )  = o(x/log x) , 

since the size of the conjugacy class involved is ~ q4 by Lemma 6, and hence the 
error terms are essentially O(q4x1/2). One must use the fact, which is proved as in 
[3, Lemma 7], that dF..~ [/~.: Q] log n. Under the additional assumption of Artin's 
holomorphy conjecture, one can show using Proposition 2 that 

llTI (x, y, x 1/6-~) = o(x/log x) . 

To estimate the remaining portion of the tail, we impose the condition 
q[ [E0zp):fp] into the initial sieve. Letting m be a square-free integer all of whose 
prime factors are < y, we proceed to estimate the number of primes p for which 
am(p) c C,, and q[[/~(Uzp): fp].  Let F a be the (non-Galois) extension of r of degree 
q2 obtained by adjoining to Q some value of~X, where X is a generator of ft. From 
[3], p has q first degree primes above it in F a or splits completely in Q(E[q]).  The 
latter condition has the effect of introducing essentially q4 (the degree of Q(E[q])  
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over Q) into the denominator of the main term and only a factor of log q into the 
error term. Also, applying Proposition 2 to the Galois extension FqL,,/Fq, with the 
conjugacy set C* which is the extension of Cm, we get the following estimate for the 
number of first-degree primes of Fq with norm __< x and whose Frobenius symbol 
lies in C*: 

[ Cm[ li X + O([CmlqZxl/Zlog mqx) . 
IG,.I 

Here we have used the estimates 

dLm '~ [Lm:Q]log m, dF, .~ [Fq:Q]log q ,  

which can be easily proved as in [3] because of the limited ramification in these 
fields. Using the same notation as before, we conclude that 

M(x, xa, x2/9+~)<6(I') Z ( ~ + ~ ) l i x  +O(lCmlqXx/21ogmqx). 
X a < q < X 219+e 

Choosing y sufficiently small but still tending to oo (e.g. y = c log log x), and using 

1 log 2/9 + e 

with ~ = 1/10 - ~ or 1/6 - e, we obtain the desired result. 

6. Concluding remarks 

I fE  is an elliptic curve over a number field K, then one can still ask the question of 
how often E(Fv) is cyclic where v is a prime ideal of K. The method of proof  of 
Theorem 1 requires a corresponding sieve result. More precisely, we need to know 
that primes that split completely in K are well-distributed in arithmetic progres- 
sions. If K is an abelian extension of Q, this amounts to putting additional 
congruence conditions on the primes so that the theorem of Fouvry and Iwaniec of 
sieve theory can be employed without alteration. Hence, if K is abelian over Q, then 
there are at least >> x/log 2 x prime ideals v of K such that Norm(v) < x and E(Fv) 
is .cyclic, provided E[q] r E(K) for any prime q. However, if K is not abelian over 
Q, one would have to introduce non-abelian conditions into the sieve theorem of 
Fouvry and Iwaniec. This has been done for the classical theorem of Bombieri and 
Vinogradov (see [11]). But this would only produce primes p of the desired type 
such that all the odd prime factors o fp  - 1 are >> pl/4-e. This is not sufficient for 
our needs since the fact that the exponent is > 1/4 was crucial to our argument. 
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