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has been obtained by Mazur and Rubin conditional to a 
conjecture on Shafarevich–Tate groups. In this work we 
consider the problem from the point of view of analytic aspects 
of L-functions instead. We show that Hilbert’s tenth problem 
for rings of integers of number fields is unsolvable, conditional 
to the following conjectures for L-functions of elliptic curves: 
the automorphy conjecture and the rank part of the Birch 
and Swinnerton–Dyer conjecture.
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1. Introduction

In 1900, Hilbert asked for an algorithm to decide the Diophantine problem of Z. 
Namely, he asked for an algorithm which takes as input a polynomial equation with 
integer coefficients (possibly in many variables) and after a finite amount of computation 
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can determine if the equation has an integer solution or not. This problem is known as 
Hilbert’s tenth problem.

Matijasevich proved in 1970 that the Diophantine problem of Z is undecidable [16], 
after the work of Davis, Putnam, and Robinson [4] thus showing that Hilbert’s tenth 
problem is unsolvable. It is natural to address the analogous question in other rings with 
interesting arithmetic, such as number fields, meromorphic functions, function fields, 
their rings of integers, etc. (See Section 2 for a precise statement.) In this paper we 
consider the case of rings of integers of number fields.

Let K be a number field and let OK be its ring of integers. The current approach to 
showing that the Diophantine problem for OK is undecidable consists of trying to show 
that Z has a Diophantine definition in OK , thus reducing the problem to Matijasevich’s 
theorem. This approach has been successful in the following cases:

• K is totally real, or a quadratic extension of a totally real number field [5,8,7],
• K has exactly one non-real archimedean place [23,28],
• subfields of the previous ones (e.g. all abelian extensions of Q) [26].

By work of Poonen [24], Cornelissen–Pheidas–Zahidi [3], and Shlapentokh [30] the 
sought Diophantine definition of Z in OK can be obtained from the existence of suitable 
elliptic curves over number fields retaining their rank in finite extensions. This important 
link with the theory of elliptic curves was used by Mazur and Rubin [18] to prove the 
following

Theorem 1.1 (Mazur–Rubin). Assume the squareness conjecture for the 2-torsion part 
of Shafarevich–Tate groups of elliptic curves over number fields. Then for every number 
field K, the Diophantine problem of OK is undecidable.

The conjecture assumed in this result says that, if K is a number field and E is an 
elliptic curve over K, then the finite 2-group XE [2] has square order. This would follow 
from the folklore conjecture that XE is finite, which in turn is implied by the special 
value formula in the Birch and Swinnerton–Dyer conjecture.

In this paper we address the existence of the necessary elliptic curves from the point 
of view of L-functions. Our goal is to show that if L-functions of elliptic curves have 
the “expected good analytic properties” and if they satisfy the rank part of the Birch 
and Swinnerton–Dyer conjecture, then Hilbert’s tenth problem for OK is unsolvable for 
every number field K.

Our main results are presented in sections 6 and 7 below, in particular see Theorem 6.2
and Theorem 7.1. An immediate consequence which requires less preparation (although 
it is somewhat weaker) is the following

Theorem 1.2. Suppose that elliptic curves over number fields are automorphic, that they 
satisfy the parity conjecture, and that they satisfy the analytic rank zero part of the twisted 
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Birch and Swinnerton–Dyer conjecture. Then for every number field K, Hilbert’s tenth 
problem for OK is unsolvable (i.e. the Diophantine problem for OK is undecidable).

Let us explain the conjectural hypotheses in this result. Let K be a number field. 
An elliptic curve E over K is automorphic if its L-function L(s, E) agrees (up to some 
normalization) with the L-function of a cuspidal automorphic representation of GL2, 
and it is conjectured that this is always the case [13]. This is a generalization to number 
fields of the Shimura–Taniyama conjecture (now the modularity theorem), see Section 3
for more details. By the Jacquet–Langlands converse theorem for GL2 (see [14]), this is 
the same as requiring that the suitably defined L-functions L(s, E, η) twisted by certain 
Hecke characters η, have “good analytic properties” including analytic continuation and 
functional equation.

The parity conjecture asserts that the global root number of E/K equals (−1)rk E(K). 
For automorphic elliptic curves the root number of E equals the sign of the functional 
equation of L(s, E), so the parity conjecture follows from the rank part of the Birch and 
Swinnerton–Dyer (BSD) conjecture, which asserts that

ords=1L(s,E) = rkE(K).

On the other hand, by the “twisted Birch and Swinnerton–Dyer conjecture” we mean 
the variation of the BSD conjecture involving twists by finite order Hecke characters, as 
proposed by Mazur [17]. Namely, if L/K is a finite abelian extension and η is a finite 
order Hecke character corresponding to it, then ords=1L(s, E, η) equals the dimension of 
the η-isotypical component of the Gal(L/K)-representation E(L) ⊗ C. Note that when 
η is the trivial character one recovers the rank part of the BSD conjecture. The analytic 
rank zero part mentioned in Theorem 1.2 refers to the conjectural implication

ords=1L(s,E, η) = 0 =⇒ dim(E(L) ⊗ C)η = 0.

Actually, Theorem 1.2 needs milder hypotheses (see Theorem 6.2), some of which are 
known to hold in certain degree of generality thanks to the current spectacular progress 
on the Langlands program and on the Birch and Swinnerton–Dyer conjecture made by 
several authors. This will be discussed in Section 7.

Let us briefly explain the connection between Hilbert’s tenth problem and L-functions. 
By the work of Poonen and Shlapentokh, one only needs to show that for cyclic number 
field extensions L/K of prime degree, there is an elliptic curve E defined over K such that 
rkE(L) = rkE(K) = 1 (in fact, this is precisely what is obtained by Mazur and Rubin 
under the squareness conjecture for XE[2]). A priori, if one assumes automorphy and 
BSD in order to address the problem in the analytic side, one ends up trying to control 
simultaneously the vanishing order of two L-functions for automorphic representations 
of GL2, a problem which is currently out of reach (see [2] for a discussion on this problem 
in a general theoretical framework; the discussion in p. 169 is particularly relevant here). 
We can circumvent this difficulty thanks to a result of Shlapentokh which shows that 
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actually rkE(L) = rkE(K) > 0 suffices for the undecidability application. The analytic 
counterpart of this last condition can be translated into the problem of controlling just 
one L-function for an automorphic representation of GL2 varying over quadratic twists, 
under some additional congruence restrictions for the admissible quadratic twists. The 
necessary non-vanishing results are provided by theorems of Friedberg–Hoffstein [12], see 
also Murty–Murty [19] and [20] for the case K = Q. It is crucial that these non-vanishing 
results are also applicable to non-self-contragredient automorphic representations (in the 
case K = Q, this corresponds to modular forms with non-trivial nebentypus).

We remark that the elliptic curves retaining their positive rank in number field exten-
sions produced (conditionally) in our work as well as in [18], can also be used to obtain 
definability and decidability consequences in the context of Hilbert’s tenth problem for 
big sub-rings of number fields (i.e. rings of S-integers of number fields with S a set of 
primes with positive natural density). We refer the reader to Theorem 1.9 in [30] for 
details.

We conclude this introduction with an outline of the paper. The necessary background 
on Hilbert’s tenth problem, automorphic L-functions, and the BSD conjecture is given in 
sections 2, 3, and 4 respectively. Our results will only apply to elliptic curves satisfying 
certain conditions on their global root numbers, so in Section 5 we produce elliptic curves 
with the necessary properties. The main results in the context of Hilbert’s tenth problem 
are given in Section 6. Finally, in Section 7 we discuss some arithmetic applications and 
unconditional results for L-functions, mainly related to elliptic curves retaining their 
positive rank in cyclic extensions of totally real number fields.

2. Hilbert’s tenth problem

Let R be a (commutative, unitary) ring, and let R0 be a recursive sub-ring of R. Then 
the polynomial ring in countably many variables R0[x1, x2, ...] is also recursive, and one 
can formulate the following analogue of Hilbert’s tenth problem:

Problem 2.1 (H10(R; R0)). Find an algorithm (in the sense of a Turing machine) that 
takes as input polynomial equations (possibly with many variables) with coefficients in 
R0, and decides whether the equation has a solution over R or not.

In other words, H10(R; R0) asks for an algorithm1 to solve the Diophantine problem of 
R with coefficients in R0. When the requested algorithm exists, we say that H10(R; R0)
is decidable, otherwise we say that it is undecidable.

Let us stress the fact that H10(R; R0) is sensitive not only to R but also to R0. 
For instance, H10(C[z]; Z) is decidable (the problem can be reduced to H10(C; Z)) but 
H10(C[z]; Z[z]) is undecidable by [6].

1 One can argue that a better question is to ask whether the Diophantine problem is decidable or not. 
We preferred to keep Hilbert’s formulation for the sake of historical accuracy.
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We will be interested in the case when K is a number field and R = R0 = OK is the 
ring of integers of K. So, instead of continuing with a general discussion, let us focus 
on this particular case and write H10(OK) instead of H10(OK ; OK). Note that the case 
K = Q is precisely Hilbert’s original problem and it is known to be undecidable by work 
of Davis, Putnam, Robinson and finally Matijasevich.

It is widely conjectured that H10(OK) is undecidable for every number field K, and 
the general approach for showing results in this direction consists of showing that Z is 
Diophantine in OK , in the following sense: a set S ⊆ On

K is Diophantine if there is a 
polynomial F ∈ OK [x1, ...xn, y1, ..., ym] such that

S = {a ∈ On
K : ∃b ∈ Om

K , F (a,b) = 0}.

In fact, it is easy to see that if Z is Diophantine in OK then an algorithm as the one 
requested in H10(OK) can be modified to get an algorithm for H10(Z), which is not 
possible by Matijasevich’s theorem. We remark, however, that for the purpose of showing 
that H10(OK) is undecidable, it would suffice to give a Diophantine interpretation of Z
rather that an actual Diophantine definition.

The previous approach has had remarkable success, and now one knows that Z is 
Diophantine in OK in the following cases (cf. the introduction):

• K is contained in a CM number field (imaginary quadratic extension of totally real);
• K is contained in a number field with exactly one non-real archimedean place.

More generally, we say that a number field extension L/K is integrally Diophantine if 
OK is Diophantine in OL. This property of number field extensions enjoys some very 
useful “functorial” properties.

Proposition 2.2. The following holds for number field extensions:

• If L/K is integrally Diophantine and H10(OK) is undecidable, then so is H10(OL);
• If L/K and K/k are integrally Diophantine, then so is L/k;
• If L/k is integrally Diophantine and K is an intermediate field, then K/k is integrally 

Diophantine;
• If L/K1 and L/K2 are integrally Diophantine, then so is L/K1 ∩K2.

See [8] and [26] for details, and see Chapter 2 of [29] for a general reference on this 
subject.

For instance, from the previous proposition it follows that H10(OK) is undecidable 
whenever K/Q is abelian: in that case K is contained in a cyclotomic field by the 
Kronecker–Weber theorem, and cyclotomic fields are CM.

The following result is due to Poonen and Shlapentokh. It reduces the problem of 
verifying if an arbitrary Galois extension of number fields is integrally Diophantine to 
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a much simpler class of Galois extensions. The proof is the same as in Corollary 8.4 of 
[18]; we include a proof here for the convenience of the reader.

Proposition 2.3. Let L/K be a Galois extension of number fields. Suppose that every 
cyclic extension of prime degree k′/k with K ⊆ k ⊆ k′ ⊆ L satisfies that k′/k is integrally 
Diophantine. Then L/K is integrally Diophantine.

In particular, if every cyclic extension of prime degree of number fields is integrally 
Diophantine, then for every number field K one has that Z is Diophantine in OK and 
H10(OK) is undecidable.

Proof. Let k be any intermediate field of K/L such that L/k is cyclic, and consider 
a tower of fields L = kn ⊇ ... ⊇ k1 ⊇ k0 = k where each ki/ki−1 is cyclic of prime 
degree. Then by hypothesis each ki/ki−1 is integrally Diophantine, thus L/k is integrally 
Diophantine.

Let G = Gal(L/K). For each g ∈ G we get that L/L〈g〉 is integrally Diophantine, 
therefore L/K is integrally Diophantine because K = LG = ∩g∈GL

〈g〉. �
Let us now discuss the relation between integrally Diophantine number field extensions 

and elliptic curves retaining their rank in extensions. The observation that elliptic curves 
preserving their ranks in number field extensions K/k play a prominent role in Hilbert’s 
tenth problem for rings of integers, can be traced back to the work of Denef [7]. At the 
end of that paper, and despite already having an unconditional result for totally real 
number fields, Denef notes that if L is a totally real number field and there is an elliptic 
curve E/Q with

rkE(L) = rkE(Q) > 0

then one can show Z is Diophantine in OL in a way simpler than in his unconditional 
proof.

In 2002, Poonen [24] gave related elliptic curve criterion (with a proof different to the 
argument of Denef) and applicable in more generality:

Theorem 2.4 (Poonen). Let L/K be a number field extension and suppose that there is 
an elliptic curve E/K such that

rkE(L) = rkE(K) = 1.

Then L/K is integrally Diophantine.

Specializing to the case K = Q and motivated by Hilbert’s tenth problem, Poo-
nen asked [24] whether it is true that for every L there is an elliptic curve E/Q with 
rkE(L) = rkE(Q) = 1. It was later observed by Mazur and Rubin that this would con-
tradict standard parity conjectures on elliptic curves. Nevertheless, in order to show that 
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K/Q is integrally Diophantine for every number field K it suffices to verify Poonen’s ellip-
tic curve criterion for cyclic extensions of prime degree, and this is precisely what Mazur 
and Rubin achieve in [18] assuming the squareness conjecture for the 2-torsion part of 
Shafarevich–Tate groups (which follows from the finiteness conjecture for Shafarevich–
Tate groups).

Poonen’s criterion was generalized by Cornelissen–Pheidas–Zahidi [3] and later by 
Shlapentokh (and independently by Poonen) [30] to relax the rank condition. Let us 
recall here Shlapentokh’s version:

Theorem 2.5 (Shlapentokh). Let L/K be a number field extension and suppose that there 
is an elliptic curve E/K such that

rkE(L) = rkE(K) > 0.

Then L/K is integrally Diophantine.

It is this last elliptic curve criterion what we will verify in cyclic extensions of prime 
degree, under suitable conjectures regarding the L-functions of elliptic curves. In fact, it 
is very important for our approach that positivity of the rank suffices, rather than the 
more restrictive requirement that the rank be equal to 1.

3. Automorphic forms and L-functions

We will be interested in the study of L-functions of automorphic elliptic curves, for 
which we need the language of automorphic representations. The standard reference for 
the GL2 theory (which is all we need) is [14]. The article of Gelbart [13] on automorphic 
elliptic curves is also relevant to our discussion. On the other hand, in this section 
we also recall the necessary non-vanishing results for quadratic twists of automorphic 
L-functions.

Let K be a number field and let π be an irreducible cuspidal automorphic representa-
tion of GL2(AK), where AK denotes the adele ring of K. Let L(s, π) be the (completed) 
L-function attached to π and the standard representation of GL2. Then L(s, π) is entire 
and satisfies a functional equation

L(s, π) = ε(s, π)L(1 − s, π̃)

where π̃ is the contragredient representation of π and ε(s, π) is the corresponding global 
epsilon factor.

Let η be an irreducible automorphic representation of GL1(AK); it is 1-dimensional 
by Tate’s theory. The representation η can be lifted to an automorphic representation 
of GL2(AK) by composition with the determinant map, so that one obtains an irre-
ducible automorphic representation π ⊗ η := π ⊗ (η ◦ det) of GL2(AK). Let us remark 
that the contragredient representation is then (π ⊗ η)∼ = π̃ ⊗ η−1, and that the local 
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factors of L(s, π ⊗ η) at all but finitely many places agree with the local factors of the 
Rankin–Selberg L-function L(s, π × η).

Let S be a finite set of places of K and let Ψsp(S) be the set of (isomorphism classes 
of) irreducible automorphic representations of GL1(AK) of order 2, unramified at ev-
ery v ∈ S, with the property that their kernels contain the uniformizer at v for each 
non-archimedean v ∈ S. The set Ψsp(S) is infinite and it corresponds, under class field 
theory, to the set of quadratic extensions of K that are unramified at every v ∈ S, and 
split at v if v ∈ S is non-archimedean.

The following non-vanishing results are due to Friedberg and Hoffstein [12]. The case 
K = Q is also proved by completely different means by Murty and Murty [20] in the lan-
guage of modular forms. (The results actually hold for more general choices of congruence 
conditions than our Ψsp(S).)

Theorem 3.1. Let S be a finite set of places of K and let π be a non-self-contragredient 
cuspidal automorphic representation of GL2(AK). There are infinitely many η ∈ Ψsp(S)
such that

L(1/2, π ⊗ η) 
= 0.

Theorem 3.2. Let S be a finite set of places of K and let π be a self-contragredient cuspidal 
automorphic representation of GL2(AK). Suppose that there is some η ∈ Ψsp(S) such 
that ε(1/2, π ⊗ χ) = 1. Then there are infinitely many ω ∈ Ψsp(S) such that

L(1/2, π ⊗ ω) 
= 0.

If E is an elliptic curve defined over K, we let L(E, s) be the completed L-function of 
E. The automorphy conjecture for elliptic curves is the following (see Gelbart’s article 
[13] for a detailed study of this conjecture):

Conjecture 3.3 (Automorphy conjecture). If E is an elliptic curve over K, then there is 
a cuspidal automorphic representation πE of GL2(AK) satisfying

L(s,E) = L(s− 1/2, πE).

Elliptic curves for which this conjecture holds are called automorphic. Remarkable 
progress on the above conjecture has been made for elliptic curves over totally real 
number fields. The literature on automorphy of elliptic curves in this last setting is 
constantly growing, but nevertheless, we refer the reader to [11] for some of the most 
recent developments and for further references.

Let L/K be an abelian extension with Galois group G and let χ vary over the ir-
reducible characters of G. Then one can form the twisted L-functions L(s, E, χ) by 
modifying the local factors by χ(Frobp) at unramified places (a more subtle definition 
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is used at the remaining finitely many places). By comparing local factors, it can be 
verified that the L-function of the base change of E to L satisfies

L(s,EL) =
∏

χ

L(s,E, χ)

where for the trivial character 1, one has L(s, E, 1) = L(s, E).
In the particular case when [L : K] = 2 (so that there is only one non-trivial character 

χ = χL) we have another factorization L(s, EL) = L(s, E)L(s, EL) where EL is the 
elliptic curve over K defined as the quadratic twist of E by L. Thus, in particular we 
find in this case that L(s, E, χL) = L(s, EL).

Now we return to the general case when L/K is abelian. If ηχ denotes the finite 
order irreducible representation of GL1(AK) obtained from χ by class-field theory by 
composition with the Artin map, and if E is automorphic, then it follows by a local 
computation that

L(s,E, χ) = L(s− 1/2, πE ⊗ ηχ)

which implies that each L(s, E, χ) (hence, L(s, EL)) extends to an entire function satis-
fying the appropriate functional equation relating s and 2 − s.

4. The Birch and Swinnerton–Dyer conjecture

Let K be a number field and E an elliptic curve defined over K. The L-function 
L(s, E), defined as an Euler product, converges for �(s) > 3/2. One expects that L(s, E)
can be extended to an entire function, in which case it makes sense to consider the 
vanishing order of it at s = 1.

Suppose that E is automorphic, so that analytic continuation holds. The rank part2
of the Birch and Swinnerton–Dyer conjecture (BSD) asserts that

rkE(K) = ords=1L(s,E).

Moreover, the automorphic representation πE is self-contragredient so that the functional 
equation takes the form

L(s,E) = ε(s,E)L(2 − s,E)

with ε(1, E) = ε(1/2, πE) ∈ {−1, 1}, which is often referred to as the sign of the functional 
equation. It is known that the sign of the functional equation is equal to w(E), the global 
root number of E over K (which can be defined even when E is not automorphic). 

2 There is also a conjectural formula for the first non-zero term in the Taylor expansion – we will not need 
that part of the BSD conjecture.



10 M.R. Murty, H. Pasten / Journal of Number Theory 182 (2018) 1–18
Then, in the case of automorphic elliptic curves, the rank part of BSD implies the parity 
conjecture, which we now recall.

Conjecture 4.1 (Parity conjecture). Let K be a number field and let E be an elliptic curve 
over K. Then the global root number satisfies w(E) = (−1)rk E(K).

(Note that the parity conjecture makes sense even for elliptic curves that are not 
known to be automorphic.)

Let L/K be a Galois extension of number fields with Galois group G, and let E be an 
elliptic curve over K. A generalization of the rank part of the BSD, called the equivariant 
BSD conjecture, predicts a relation between the dimensions of the isotypical components 
of the G-representation V (E, L) := E(L) ⊗ C and the vanishing order at 1 of certain 
L-functions twisted by irreducible representations. Let us restrict our attention to the 
case when L/K is abelian, in which case the conjecture was proposed by Mazur [17] and 
we will refer to it as the twisted BSD conjecture.

In the abelian case we have a factorization (cf. previous section)

L(s,EL) =
∏

χ

L(s,E, χ)

where χ varies over the irreducible characters of G (a similar factorization holds without 
the abelian hypothesis). If E is automorphic, then each L(s, E, χ) is automorphic as 
explained in the previous section, and one can consider their vanishing orders at s = 1. 
On the other hand, we have an isotypical decomposition

V (E,L) =
⊕

χ

V (E,L)χ.

Conjecture 4.2 (Twisted BSD conjecture). With the previous notation and assumptions, 
for each χ we have

dimV (E,L)χ = ords=1L(s,E, χ).

Note that for the trivial character χ = 1 one has V (E, L)1 = E(K) ⊗ C and 
L(s, E, 1) = L(s, E), so that one recovers the original rank part of BSD. In general, 
however, it is not known if the rank part of BSD implies the general abelian case of the 
equivariant BSD.

Conjecture 4.3 (Twisted analytic rank zero conjecture). Let K be a number field, let L/K
be finite abelian with Galois group G, and let E be an automorphic elliptic curve over K. 
Let χ be an irreducible character of G. Then one has the following implication:

L(1, E, χ) 
= 0 =⇒ dimV (E,L)χ = 0.
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The twisted analytic rank zero conjecture is certainly more accessible than the full 
equivariant BSD, and in fact, some important cases are known unconditionally. See for 
instance [25], [15], [21] and the references therein.

5. Root numbers

The results in the next section will apply to elliptic curves satisfying certain conditions 
on global root numbers. In this section we will give a supply of such elliptic curves.

First, let us recall the following from [9]:

Lemma 5.1. Let K be a number field and let E be an elliptic curve defined over K. If K
has some real place, or if E does not have potentially good reduction everywhere, then E
has some quadratic twist with global root number −1.

We will also need elliptic curves that acquire negative root number in a fixed quadratic 
extension.

Lemma 5.2. Let L/K be a quadratic extension of number fields. There are infinitely 
many elliptic curves E defined over K such that w(E ⊗ L) = −1 and having pairwise 
distinct j-invariants. Moreover, these curves can be taken semi-stable or quadratic twist 
of semi-stable.

Proof. Let p � 2 be a prime of K inert in L/K and let PL be the prime of L above it. 
Let E be a semi-stable elliptic curve defined over K with multiplicative reduction at p
and with vp(jE) < 0 (so that E does not have potentially good reduction at p). Such 
an E exists and can be taken of the form y2 + y = x3 − x2 + t for suitable t ∈ OK , see 
the proof of Lemma 5.4 in [18]; the requirement on j invariants can be achieved in this 
way. Let M/K be a quadratic extension which is ramified at p (call PM the prime of M
above p) and split at each of the following places: primes 
= p where E has bad reduction, 
primes that ramify in L/K, and all places at infinity. (This initial setup for the proof 
is inspired by the initial choices in the proof of Proposition 6.1 [18].) Let F = ML and 
note that it is a quadratic extension of M and of L due to the ramification conditions 
at p. Moreover, F/L ramifies at PL and we let PF be the only prime above PL, so that 
PF is the only prime above p in F/K.

We will show that either w(E ⊗ L) = −1 or w(EM ⊗ L) = −1. This will prove the 
lemma after replacing E by EM if necessary.

We have

w(E ⊗ F ) = w(E ⊗M)w((E ⊗M)F ) = w(E ⊗M)w(EL ⊗M)

and by our splitting hypotheses on M/K, we see that local root numbers at primes not 
dividing p cancel-out. Thus we get w(E ⊗ F ) = wPF

(E ⊗ F ), the local root number at 
PF . Since E has multiplicative (non-potentially good) reduction at p and since p is inert 
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in L/K we see that E⊗L has split multiplicative reduction at PL, hence E⊗F has split 
multiplicative reduction at PF and we deduce wPF

(E ⊗ F ) = −1. Finally, we obtain

−1 = w(E ⊗ F ) = w(E ⊗ L)w((E ⊗ L)F ) = w(E ⊗ L)w(EM ⊗ L). �
We remark that the previous lemma does not hold for arbitrary number field exten-

sions. In fact, there are number field extensions L/K of degree 4 for which each elliptic 
curve E/K satisfies w(E ⊗ L) = 1. For instance, Q(

√
−1, 

√
17)/Q is such an extension. 

See Remark 7.7 in [18] and see also [9].

6. Elliptic curves retaining their rank

The next lemma is a simple remark, which nevertheless is central to our approach. In 
fact, it is the technical reason for considering cyclic extensions of prime degree instead 
of more general abelian extensions.

Lemma 6.1. Let V be a Q-vector space of finite dimension and let G → AutQ(V ) be a 
representation of a finite group G of prime order p. All non-trivial irreducible represen-
tations of G appear with the same multiplicity in VC := V ⊗ C.

Our main result is the following:

Theorem 6.2. Let L/K be a cyclic extensions of number fields with prime degree p, and 
let G be the Galois group of L/K. Let E be an elliptic curve over K and suppose that it 
satisfies the following:

(i) If p = 2 then w(E ⊗ L) = −1, and if p > 2 then E has some quadratic twist with 
global root number −1;

(ii) E is automorphic over K;
(iii) The quadratic twists of E satisfy the parity conjecture over K;
(iv) The quadratic twists of E satisfy the twisted analytic rank zero conjecture (over K) 

for the non-trivial characters of G.

Then there are infinitely many quadratic extensions M/K for which the quadratic twist 
EM/K satisfies that

rkEM (L) = rkEM (K) > 0.

Proof. Let E/K satisfy (i)–(iv). By (i), possibly after replacing E by a suitable quadratic 
twist we can assume that w(E) = −1 (for p = 2 either E or EL works) while (i)–(iv) still 
hold for this new E. Let S be a finite set of places of K containing all archimedean places 
and all places of bad reduction of E. Let χ be a fixed non-trivial irreducible character 
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of G. We claim that there are infinitely many quadratic extensions M/K such that the 
quadratic twist EM satisfies

(a) ords=1L(s, EM ) is odd, and
(b) L(1, EM , χ) 
= 0.

We need to consider separately the cases when p = 2 and p ≥ 3.
Case p = 2. By (i) we have w(EL) = 1. The representation πE ⊗ ηχ = πEL is 

self-contragredient and the sign of the functional equation is ε(1/2, πEL) = w(EL) = 1. 
Let S be the set consisting of all archimedean places of K and all places of bad reduction 
of E and EL. For any ω ∈ Ψsp(S) the corresponding quadratic extension Kω/K is 
unramified at all places in S and split at the non-archimedean places of S, so that

ε(1/2, πE ⊗ ω) = w(EKω ) = w(E) = −1

and similarly ε(1/2, πEL ⊗ω) = w(EL) = 1. The former implies that the choice M = Kω

satisfies (a), while the latter along with Theorem 3.2 gives that for infinitely many such 
ω we have that M = Kω also satisfies (b), because

L(1, EKω , χ) = L(1/2, πE ⊗ ηχ ⊗ ω) = L(1/2, πEL ⊗ ω).

Case p ≥ 3. The representation πE ⊗ ηχ is not self-contragredient. In fact, the set 
of ordinary primes of E has density 1/2 (CM case, by Deuring) or 1 (non-CM case, by 
Serre), while the set of primes p of K with χ(Frobp) 
= 1 has density (p − 1)/p ≥ 2/3 by 
Chebotarev’s theorem. Hence there is some prime p of K at which the local factors of 
L(s, E, χ) and L(s, E, χ−1) are distinct.

Let S be the set consisting of the archimedean places of K and the places of bad 
reduction for E. Then for each ω ∈ Ψsp(S) we have ε(1/2, πE ⊗ω) = w(EKω ) = w(E) =
−1 as before, so that (a) is satisfied for any such M = Kω. By Theorem 3.1 there are 
infinitely many ω ∈ Ψsp(S) such that

L(1, EKω , χ) = L(1/2, πE ⊗ ηχ ⊗ ω) 
= 0.

Hence (b) is also satisfied if we let M = Kω for any of these infinitely many ω. This 
proves the claim regarding the existence of infinitely many quadratic extensions M/K

satisfying (a) and (b).
Take any of these extensions M/K. By (iii) and (a) we get that dimV (EM , L)1 is 

odd, and by (iv) and (b) we get that dimV (EM , L)χ = 0. By Lemma 6.1 we see that 
for each non-trivial character ψ of G one has dimV (EM , L)ψ = 0, and therefore

rkEM (L) = dimV (EM , L) = dimV (EM , L)1 = rkEM (K),

which is an odd number. This proves the result. �
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Now we deduce the theorem stated in the introduction.

Proof of Theorem 1.2. Let L/k be a cyclic extension of number fields of prime degree. By 
Lemmas 5.1 and 5.2, there is an elliptic curve E/k satisfying condition (i) in Theorem 6.2. 
Condition (ii) holds under the automorphy conjecture, and conditions (ii) and (iii) are 
part of our assumptions. Hence, under the assumptions of Theorem 1.2, from Theorem 6.2
we get a suitable quadratic twist EM of E such that

rkEM (L) = rkEM (k) > 0.

By Theorem 2.5 this implies that L/k is integrally Diophantine. As this holds for every 
such an extension L/k, Proposition 2.3 gives that every Galois extension F/Q is integrally 
Diophantine. Given an arbitrary number field K, we apply this to F the normal closure 
of K, hence K/Q is integrally Diophantine by Proposition 2.2. In particular, H10(OK)
is undecidable. �

Actually, the previous argument gives a slightly stronger result which we record here 
for the convenience of the reader:

Theorem 6.3. Let L/K be a Galois extension of number fields. Suppose that for every 
intermediate field L ⊇ F ⊇ K properly contained in L, the following conjectures hold for 
all elliptic curves E defined over F :

• the automorphy conjecture,
• the parity conjecture, and
• the analytic rank zero twisted BSD conjecture, for prime order characters.

Then L/K is integrally Diophantine. In particular, if H10(K) is undecidable, then so is 
H10(L).

7. Cyclic extensions of totally real number fields

In this section we consider cyclic extensions of prime degree of totally real fields. In 
this case, some conditions in our results can be relaxed and the resulting statements can 
be of arithmetic interest. However, no new consequence for Hilbert’s tenth problem is 
deduced in this setting, because if K is totally real and L/K is cyclic of prime degree 
p, then either L is CM (this can only happen if p = 2) or totally real, and H10(OL) is 
known to be undecidable in those cases (cf. Section 2).

Note that the part regarding vanishing order of L-functions (i.e. analytic ranks) in 
the following result is unconditional.

Theorem 7.1. Let K be a totally real number field or Q, and let L/K be a cyclic extension 
of prime degree p. There are infinitely many elliptic curves E/K, each having infinitely 
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many quadratic twists EM , such that L(s, EM ) and L(s, EM ⊗ L) are entire and such 
that

ords=1L(s,EM ⊗ L) = ords=1L(s,EM )

is odd (hence, positive).
Furthermore, if p > 2 and [K : Q] ≤ 2 then every elliptic curve E/K has infinitely 

quadratic twists as before. Moreover, if K = Q and if we assume the parity conjecture 
for elliptic curves over Q, then in the same cases we obtain rkEM (L) = rkEM (Q) > 0.

Proof. Let E/K be an elliptic curve satisfying condition (i) in Theorem 6.2; when p > 2
any E/K works, and in general we know that there are infinitely many such E with 
distinct j-invariants. Then (ii) holds for K = Q by the modularity theorem of Wiles 
[32], Taylor–Wiles [31], and Breuil–Conrad–Diamond–Taylor [1]; in the case of K real 
quadratic (ii) holds by work of Freitas, Le Hung and Siksek [11]. In the general case of 
K totally real, (ii) can only fail for finitely many j-invariants, see [11].

Moreover, when K = Q we also have that (iv) holds by a result of Kato [15].
Fix χ an irreducible non-trivial character of G = Gal(L/Q). The arguments of the 

previous section give infinitely many quadratic twists EM for which ords=1L(s, EM ) is 
odd and L(s, EM , χ) 
= 0. The L-functions of automorphic elliptic curves over totally 
real fields correspond to L-functions of Hilbert modular forms, so by general results of 
Shimura [27] one sees that actually L(s, EM , ψ) 
= 0 for each ψ irreducible non-trivial 
character of G (because they are Galois conjugate to χ). Hence

ords=1L(s,EM ⊗ L) = ords=1L(s,EM ),

which is an odd positive integer. Furthermore, since (iv) holds for K = Q, one obtains 
that in this case dimV (EM , L)ψ = 0 for each irreducible non-trivial ψ, hence rkEM (L) =
rkEM (Q), and the claim regarding the parity conjecture follows. �

Note that it follows that for K real quadratic or Q and for cyclic extensions L/K
of odd prime degree, every elliptic curve over K is expected to have infinitely many 
quadratic twists with positive rank preserved under base change to L. We believe this 
to be the case whenever K is replaced by a number field having some real place; observe 
that this is supported (conditionally) by Theorem 6.2 and Lemma 5.1.

For the sake of completeness of our discussion on cyclic extensions of totally real 
number fields, let us record here a result of Mazur and Rubin which is implicit in their 
work [18]. First, one can see that in [18], the assumption of squareness of XE [2] can be 
replaced by the assumption of both the 2-parity conjecture and the parity conjecture; this 
was explained to us by Karl Rubin. Using the available results on the 2-parity conjecture, 
this gives:
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Theorem 7.2 (Mazur–Rubin). Let K be a totally real number field, and let L/K be a 
cyclic extension of prime degree p. Assume that the parity conjecture holds. Then there 
exist elliptic curves E/K such that rkE(L) = rkE(K) = 1.

Proof. In [18] it is proved (unconditionally) that there are elliptic curves E/K with 
the property that dimF2 Sel2(E) = 1 and rkE(L) = rkE(K) (cf. Theorem 6.2 and 
Corollary 7.6 in [18]). The elliptic curves produced in the proof have trivial K-rational 
2-torsion and non-integral j-invariant, hence one has (cf. (2) in [18])

r2(E) := corankZ2Sel2∞(E) ≡ dimF2 Sel2(E) mod 2.

Since the p-parity conjecture is proved for elliptic curves over totally real fields with 
non-integral j-invariant [22], we deduce w(E) = (−1)r2(E) = −1. Under the assumption 
of the parity conjecture, we obtain that rkE(K) is odd. From the injectivity of the map 
E(K)/2E(K) → Sel2(E) and the fact that the 2-torsion of E(K) is trivial, we get the 
result. �
8. Final comments

Assuming the relevant conjectures required in our work and in [18], let us briefly give 
a more detailed discussion on the conditional arithmetic consequences for elliptic curves. 
For this, let K be a number field, L/K a cyclic extension of prime degree p and let E
be an elliptic curve defined over K.

First, we are concerned with the existence of a suitable quadratic extension F/K such 
that the twist EF of E satisfies

rkEF (K) = rkEF (L) > 0 (1)

while in [18] the more precise condition

rkEF (K) = rkEF (L) = 1 (2)

is considered. Our results apply to a larger class of elliptic curves than those in [18], 
since our approach does not require E(K)[2] = 0 (unlike [18]); in fact, when K has 
some real place our approach predicts that every E defined over K has infinitely many 
quadratic twists satisfying (1), as explained in the previous section. On the other hand, 
our approach only shows the existence of infinitely many twists satisfying (1), while in 
[18] they give a lower bound for the number of twists satisfying (2) (with conductor up 
to a given bound) for the elliptic curves E/K to which their results apply.

Finally, we would like to make some remarks in the direction of unconditional arith-
metic results. From the discussion in the previous section, one can see that the main 
obstruction to obtaining unconditional results where (1) or (2) are satisfied (using our 
approach or the results of [18]), is the parity conjecture. The current state-of-the-art on 
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the parity conjecture is the work of Dokchitser–Dokchitser [10], which is conditional to 
the finiteness of the 2-primary and 3-primary parts of the Shafarevich–Tate group of 
elliptic curves. Following a different path, we would like to suggest a possible analytic 
approach to relax the assumption of the parity conjecture in our work. The question 
seems to be closely related to the problem of estimating averages of central values of 
L-functions for automorphic representations of GL4 (which is admittedly hard). In fact, 
a better understanding of the latter subject should lead to non-vanishing theorems for 
simultaneous twists of two L-functions for automorphic representations of GL2, cf. p. 169 
in [2]. This technical tool would give a version of our results where the analytic coun-
terpart of (1) is replaced by the analytic counterpart of (2). Thus, it would suffice to 
assume the rank part of the BSD conjecture for analytic rank 1 instead of the parity 
conjecture. This is relevant because the rank part of BSD for analytic rank ≤ 1 has been 
proved unconditionally in several important cases, see for instance [33].
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