RAMANUJAN GRAPHS AND ZETA FUNCTIONS

M. RAM MURTY

The theory of Ramanujan graphs is a fertile meeting ground for graph theory,
number theory, representation theory and arithmetic algebraic geometry. Ramanu-
jan graphs are also expander graphs and these have applications to the “real world”
in the optimal construction of telephone networks. (See [3] for a detailed exposi-
tion.) In this talk!, we will focus on the “pure” mathematical aspect of the theory
and refer the reader to [17] for an expanded survey as well as the excellent mono-
graph [5].

For the most part, we will be considering only simple graphs, that is, graphs with
no loops or multiple edges. Our graphs will also be undirected and finite. Any finite
graph X = (V, E) with vertex set V' and edge set E is completely determined by its
adjacency matrix A = Ax whose rows and columns are parametrized by vertices.
We put a 1 in the (7, j)-th position if (7,j) is an edge in X and 0 otherwise. As
our graphs are undirected, the matrix A is symmetric. Observe also that given a
connected graph, we may define a metric on it as follows. The distance between
any two vertices is the minimal number of edges needed to traverse from one vertex
to the other. The diameter of the graph X, denoted diam(X), is the maximal value
of the distance function. The figure below is the celebrated Petersen graph. Here
|V| =10 and |E| = 15 and the degree of every vertex is 3. It has diameter 3.

The Petersen Graph

1This is a summary of the Jeffery-Williams Prize Lecture delivered in Edmonton, Alberta on
June 15, 2003, at the summer meeting of the Canadian Mathematical Society
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A graph is called k-regular if every vertex has degree k. Thus, the Petersen graph
is a 3-regular graph. The complete graph K, is the graph on n vertices in which
any two distinct vertices are adjacent. It is an (n — 1)-regular graph.

The study of the eigenvalues of A and relating them back to properties of the
graph X is called spectral graph theory. The process is analogous to the study of
prime numbers via the study of the zeros of the Riemann zeta function or the study
of Riemannian manifolds by examining the nature of the eigenvalues of the Laplace
operator.

As A is a real symmetric matrix, all of its eigenvalues are real and the matrix
can be diagonalized by an orthogonal transformation. In particular, if |V| = n, we
can order the eigenvalues as:

AL > A2 > A3 2> Mg

For a k-regular graph, it is easy to see that A = k is an eigenvalue. Indeed,

1 1

1 1
Al .| =k

1 1

In fact Ay = k for a k-regular graph and all eigenvalues lie in the interval [—k, k].
Moreover, one can prove easily that for k-regular graphs X, —k is an eigenvalue
if and only if X is bipartite, which means that V can be partitioned into two
independent sets.

It is also not hard to show that the multiplicity of A; = k is equal to the number of
connected components of X. For a k-regular graph, we call any eigenvalue A # %k,
a non-trivial eigenvalue.

A Ramanujan graph is a connected k-regular graph such that all the non-trivial

eigenvalues A satisfy
Al <2vEk—1.
In other words,
A(X) := max |N| <2VEk - 1.
Xi#Lk

This definition seems rather dry without any motivation of why these graphs should
be interesting. It also raises the question of what Ramanujan had to do with them.
Both of these questions will be answered by the end of the talk.

The complete graph K,, is a Ramanujan graph. Its adjacency matrix has char-
acteristic polynomial

A=(m-1D)A+1)""1

This involves the computation of the determinant of a circulant matrix which we
leave as an exercise to the reader.

The Petersen graph is also Ramanujan. Its characteristic polynomial is

A=-3)A+2*(A-1)°
and to ensure that it is Ramanujan, we must check that

2< 22

which is true.
Why are Ramanujan graphs interesting? Of the many reasons, we give one.
If we think of a graph as modeling a communication network, then the diameter
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measures, in some sense, the efficiency of communication of the network. The
smaller the diameter, the better is the communication. The following theorem [4]
makes the relationship between the diameter and A(X) precise.

Theorem 1. (Chung, 1989) Let X be a k-regular graph with n vertices. If X is
not bipartite,

diam(X) < 28 =D

~ log(k/A(X))
If X is bipartite,

) log(n —2)/2

diam(X) < ———~—

P = Tog(k/ACX)

Thus, to minimize the diameter of X, we must minimize A(X). So how small

can we make A(X)? There are several results one can obtain concerning the size

of A(X). We begin with the most elementary. For simplicity, we assume X is not

bipartite. Consider the matrix A2. It is not hard to see that tr(A2?) = kn. But

tr(A?) is equal to

+ 2.

i=1

This is
<K+ AMX)?(n-1)

Thus,

n— k\ /2

>
MX) > (n_ 1) vk

Hence,

lim A\(X) > Vk.
n— o0

The first non-trivial lower bound is given by the Alon-Boppana theorem [21] which
states that:
liminf, , A(X) > 2Vk — 1.
Serre [21] gave the following refinement of this theorem. Fix € > 0. Then, there
is a positive constant ¢ = c(k,€) depending only on k and € such that the every
adjacency matrix of a k-regular graph on n vertices has at least cn eigenvalues
larger than
(2-e)VEk—1.

From these results, we see that in trying to construct k-regular graphs with increas-
ing number of vertices, we cannot hope to do better than A(X) < 2v/k — 1. These
results now give partial motivation for our definition of a Ramanujan graph.

In this context, we mention two more related results. Nilli (also known as Alon)
proved the following inequality for A2. Let X be a k-regular graph with diameter
d. Then

A2
2vk -1
The Alon-Boppana theorem follows from this because as n grows, so does d (exer-
cise) so that Az is positive and we have

A(X) > X

A2 plays an important role in many problems of graph theory. A striking theorem
of Colin de Verdieére [20] appeared more than ten years ago. Given a graph X,

> 1+ 0(1/d).
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consider the family A of weighted adjacency matrices A = (a;;) where a;; > 0 if
(i,7) is an edge and zero otherwise. For each such matrix, let k2 be the multiplicity
of A2 and define

w(X) = mﬁmku.

In [20] it is proved that X is planar if and only if u(X) < 3. If x(X) denotes the
chromatic number of X (that is, the minimum number of colors needed to color
the vertices of X so that no two adjacent vertices receive the same color), then it
is conjectured that

u(X) + 1> x(X).
If true, the conjecture would give us a spectral proof of the four color theorem.

Returning to the study of A(X), the Alon-Boppana theorem tells us that to
minimize A(X), the best we can hope for is A\(X) < 2v/k — 1. The question now
arises if for each k, there exists a sequence of graphs X; with an increasing number
of vertices, satisfying this bound. That is, can we give an explicit construction
of Ramanujan graphs? The only case known for which such sequences have been
constructed is when k — 1 equals a prime power. In all these cases, the proof that
the eigenvalues satisfy the required bound is by means of the Ramanujan conjecture
in the theory of modular forms, proved by Deligne [6] in 1974 in the case when k—1
is prime, and by the work of Drinfeld [8] in the case when k — 1 is a prime power
[16]. This explains how Ramanujan’s name has entered into the definition of these
graphs.

When k—1 is prime, the first explicit construction seems to be due to Ihara [11] in
1965. He used the theory of modular curves. Later Margulis [15] and independently
Lubotzky, Phillips and Sarnak [14] gave explicit constructions using the theory of
automorphic forms.

F. Chung [4] and Winnie Li [21], have constructed more examples of Ramanujan
graphs using an idea to be described below. However, their constructions do not
give infinite families of k-regular Ramanujan graphs. In a sense to be made precise
below, these examples are “abelian” and in some recent joint work with J. Friedman
and J.-P. Tillich [9], it is shown that such constructions always lead to only a finite
number of such examples. More precisely, we show that for abelian Cayley graphs
which are k-regular, the second largest eigenvalue is greater than k — O(kn_4/ kY.
Thus, as n goes to infinity, the second largest eigenvalue has a limit value of k. Such
a limit result was first proved by Alon and Roichman [1] in 1984. They however, did
not obtain any error term for it. The error term in [9] seems to be the best possible
at the moment. Contrary to popular misconception, the work in [12] does not
establish these results or even the limit result. Concerning the “non-abelian” case,
we note that the argument in the paper [9] can be refined to show that one must
consider “highly non-abelian” Cayley graphs (defined below) to produce infinitely
many examples of k-regular graphs which are Ramanujan.

We will indicate below a simple argument that shows that for abelian Cayley
graphs, the second eigenvalue is greater than k — o(1) which is of course weaker
than the result proved in [9] but still of interest in the present discussion. As the
proof of this result proceeds differently from the arguments of [9], we will give it
below after reviewing some basic definitions.

When k—1 is a prime power, Morgenstern (1994) constructed Ramanujan graphs
of degree k using Drinfeld’s theory of automorphic representations of function fields
over finite fields, where the Ramanujan conjecture is known.
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The first open case is k = 7. Are there infinitely many 7-regular graphs which
are Ramanujan? A partial answer to this question is provided by:

Theorem 2. (Friedman, 1991) A random k-regular graph has
A2 < 2Vk —1+42logk + O(1).

Cayley graphs give us a natural family of regular graphs. They are defined as
follows. Let G be a finite group and S a symmetric subset. That is s € S implies
s~1 € S. We can construct a k-regular graph with k¥ = |S| as follows. The vertex
set is the set of elements of G. We join z and y if and only if zy~! € S. We will
denote this graph by X(G, S).

If G is abelian and S symmetric, then, it is not hard to show that the eigenvalues
of X(G,S) can be given explicitly by

A= x(5),
s€S
as x ranges over all the irreducible characters of G.

This is the theorem used by Chung[4] and Winnie Li [21] in their construction
of Ramanujan graphs.

The proof that graphs constructed in this way are Ramanujan reduces to the
estimation of character sums in number theory. Here is a concrete example. Let p
be a prime congruent to 1 (mod 4) and G = Z /pZ. Join z to y if and only if z — y
is a square. This gives a (p + 1)/2-regular graph. The non-trivial eigenvalues turn

out to be (for a # 0),
1 1 T 27iax /p
3 2 (p) ‘

zmod p
The last sum is a classical Gauss sum with absolute value ,/p.
Here is the promised argument concerning the second largest eigenvalue. The
argument is a nice application of the pigeonhole principle and is based on a well-
known result of Dirichlet.

Lemma 1. (Dirichlet) If sy, ..., s are arbitrary positive real numbers, and N is a
given number > 1, then there is an 0 < m < N* and integers my, ...,my so that

|ms; —mj| <2/N for 1<j<k.

Theorem 3. If X(G,S) is an abelian Cayley graph with |S| = k, then the second
largest eigenvalue is k — o(1) as |G| tends to infinity. In particular, there are only
finitely many k-regular abelian Cayley graphs which are Ramanujan.

Proof. We begin with some preliminary observations. Suppose that G = Z/fZ
and S consists of ai,...,ar (say). We may apply the lemma with s; = a;/f and
N = [f'/*]. As

g = e2ﬂ\/jlmg/f

is a non-trivial character of G, we see that
Z 627r\/71maj/f
J

is a non-trivial eigenvalue of the adjacency matrix of X (G, S). But by the lemma,
we have |ma;/f —m;| < 2/N so that the (real) eigenvalue is easily seen to be

k— O(k/N?) = k — O(k/f*'%),
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by using a simple approximation for the cosine function. This allows us to deduce
the result stated in the theorem if we had a sequence “cyclic” Cayley graphs.
We modify this idea for the general case. Let X(G;,S;) be a family of k-regular
connected abelian Cayley graphs with |G;| tending to infinity. Then, the exponent
of G; (which is the smallest f; so that 2i = 1 for all z in G;) must also go to
infinity, for otherwise, each element of S; has bounded order and as G; is generated
by the S; (via connectedness) we have that G; has bounded order, a contradiction.
By the structure theory of finite abelian groups, we may view G; as a direct sum
of cyclic groups and one of these cyclic components must be isomorphic to Z/ f;Z.
Let ¢ : G; — Z/] fiZ be the projection map. Let us fix ¢ and write ay, ..., aj for the
images under ¢ of the elements of S; in the cyclic component Z/f;Z. Let f; be the
exponent of G; and choose N so that N = [ fz.l/ k
Then there is a non-zero m < f; so that

|ms; —m;| <2/N for 1<j<k.

] in the lemma with s; = a;/ f;.

Since
g 2™V —=1mg(g)/fi

is a non-trivial character of G;, we deduce that for the non-trivial eigenvalue
Z eZw\/—lmaj/f,-
)
J

we have that this is kK — O(k/N?) by an easy application of Taylor’s theorem to the

cosine function. This gives a final estimate for Ay as greater than k — O(k/f’ ’®y,
which completes the proof, since we already noted that f; tends to infinity as ¢

tends to infinity. O

If G is non-abelian, the description of the eigenvalues of X (G, S) is more difficult.
However, if S is assumed to be invariant under conjugation, one can show the
eigenvalues are parametrized by

1
)‘X X(]-) ;X(s)
This was discovered independently by L. Babai[2] and Diaconis-Shahshahani[7].
In 1988, Lubotzky, Phillips, and Sarnak [14] gave the following construction.
Let p and ¢ be unequal primes p = ¢ = 1(mod4). Let u be an integer with
u? = —1(mod q).. By a classical theorem of Jacobi, there are exactly 8(p+ 1) ways
of writing p as a sum of four squares:

p=a’+b +c+d%.

If we specify a > 0, b, ¢, d even, there are exactly p + 1 solutions v = (a, b, ¢,d). To
each such v, we associate

. (a+ub c+ud
v= —c+ud a—ub

amatrix in PGLy(Z/qZ). One can verify the set S of such matrices ¢ is a symmetric
subset and the group generated by them is PSLy(Z /qZ) (see page 97 of [13]). To
prove that X (G, S) is Ramanujan, one needs the Jacquet-Langlands correspondence
and the full strength of the Ramanujan conjecture for weight 2 forms (proved by
Eichler).
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There is an alternate formulation of the whole problem due to Thara [11] which is
highly suggestive. Let us first observe that the (i, j)-entry of A” counts the number
of walks of length r from i to j. Let A, be the matrix whose (7, j)-th entry is the
number of “proper” walks of length r from 4 to j without backtracking. Then, it is
easy to show that for r > 2,

AAy = Apyr + (k= 1)Ar_1.

For r = 1, we have
A? = Ay + KI.
Indeed, using the notation M;; to denote the (i, j)-th entry of the matrix M, we

have
n

(Ar1)ij = D _(An)iAy; — (k= 1)(Ar_1)i5.
t=1

To see this, note that the left hand side represents the number of walks of length r+1
from 4 to j without backtracking. This number can also be obtained by counting
first the number of ways of extending a proper walk (without backtracking) of length
r from i to ¢t to the vertex j and this can be done in Ay; ways. We must remove
from this count those which now have backtracking. This backtracking could have
been introduced only in the last step, which means that we retraced our step at
the last stage. Thus, the number to remove is (A,—1);;(k — 1) since there is only
one vertex excluded from the possible choices. This represents the right hand side
of the above equation.

We can use this recurrence to give, following Pizer [18], a simple proof of the
Alon-Bopanna theorem. To this end, it is convenient to define the matrices B, as
follows:

By=1I, Bi=A, and B:B,= B, + (k — 1)BT,1, forr > 1.
An easy induction argument shows that
B’r =AT+AT—2+"'+A1
if r is odd and
Br:Ar+Ar72+"'+A2 +1
if r is even. In either case, we see that the trace of B, is non-negative, a fact we
will utilise below. At this point, we make the following variation of the argument
in [18]. We may re-normalize and set C, = B,(k —1)~"/2 so that the the above
recursion becomes
CICT = CT‘+1 + CT'—17
for r > 1. This is reminiscent of the recursion for the cosine function:

(2cos0)(2cosrf) = 2cos(r + 1)0 + 2 cos(r — 1)6.

Accordingly, we define C_, = C,. for r > 0 and verify that the recursion holds for
the C;’s with negative subscripts also. Consequently, we are led to conjecture that

forr >0,
a5 ;)

>0
which is easily established by induction. Indeed, for » = 0, this is clear. Then,

oyt = Z (;) C1Cr—2j

Jj=20



8 M. RAM MURTY

which by the recursion formula for the C;’s is

Z (;) (Cr—2j+1 + Cr_2j-1)

Jj=0

{05

as desired. We can immediately deduce the Alon-Bopanna theorem from this as
follows. By taking traces of both sides of the identity, and using the fact that the
traces are non-negative, we get for r = 2s

2s
s

s+ (%) z s (%)

1/2s
lim <2s> =2
s—oo \ S

Thus, letting n tend to infinity, we get

lim A(X)2 > (23) (k—1)°

| X | =00 S

2k 4 (n —2)N(X)* > ( ) (k —1)*n.

so that

and then taking 2s-th roots and letting s tend to infinity gives us the result.

These recursions allow us to associate a “zeta function” to a regular graph and
establish the rationality of this zeta function, somewhat analogous to the situation
of zeta functions attached to algebraic varieties over a finite field. Indeed, Using
the recurrence for the A;’s, one can show the formal identity

iArtr =(1—1)(1-At+ (k—1)21)"".

Following Thara, a proper walk whose endpoints are equal is called a closed geodesic.
If v is a closed geodesic, then ~" is just the closed geodesic obtained by repeating
r times. A closed geodesic which is not the power of another one is called a prime
geodesic. Two closed geodesics (zg, ..., 2,) and (yo,...,ys) are called equivalent if
a = b and there is a d such that y; = x;44 for all i. An equivalence class of a prime
geodesic is called a prime geodesic cycle.

Inspired by the theory of the Selberg zeta function, Ihara defined the zeta func-
tion of X as follows: put ¢ =k — 1.

Zx(s) = H (1 - q_se(p))il

P
where the product is over prime geodesic cycles and £(p) is the length of any element
in the cycle p.
Theorem 4. (Thara, 1966) Let X be a k-regular graph. Put g = (¢ — 1)|X|/2 and
u=¢q %. Then

Zx(s) = (1 —u?)"9det(1 — Au + qu®I)~'.
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Moreover, Zx(s) satisfies the “Riemann hypothesis” (that is, all the singular points
of Zx(s) in the region 0 < R(s) < 1 lie on R(s) = 1/2) if and only if X is a
Ramanugan graph.

Hashimoto [10] as well as Stark and Terras [19] have extended the notion of a
zeta function for an arbitrary graph. Let N, be the number of closed walks ~ of
length r such that neither v or 42 have backtracking. Let

o
N,t"
Zx(t) = exp Z ;
r=1

By a theorem of Hyman Bass, this is a rational function of t. What is the meaning
of a “Riemann hypothesis” for this zeta function? This zeta function is not well-
understood. However, some theory is slowly emerging. For example, Hashimoto
has proved that the residue at ¢ = 1 is related to the number of spanning trees of
the graph X. This is analogous to the class number formula for the Dedekind zeta
function of an algebraic number field. It is hoped that this analogy would lead to
new insights in graph theory.

Acknowledgments. I would like to thank the referee for comments that improved
the readability of this paper.
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