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ABSTRACT. We present a simple and elegant proof of the Wiener-Ikehara Taube-
rian theorem, relying only upon the technique of contour integration. We also
discuss some of its applications in number theory.

1. INTRODUCTION

To motivate the notion of Tauberian theorems, let us begin with a brief discus-
sion of Abel’s theorem. Let

∑∞
n=0 anx

n, x ∈ R be a power series centered at 0

having radius of convergence 1. At the boundary of the region of convergence,
i.e. at |x| = 1, the series may converge or diverge. Abel’s theorem states that if
the series converges at a boundary point, then it is reasonably well behaved in
the sense that it is continuous at that point. More precisely, if

∞∑
n=0

an = A, (1)

then

lim
x→1−

∞∑
n=0

anx
n = A. (2)

Broadly speaking, Tauberian theorems are conditional converses of Abel’s the-
orem. They derive their name from a theorem of A. Tauber [8] published in 1897,
which states that if (2) is satisfied and we have the growth condition an = o(1/n)

on the coefficients of the power series, then (1) holds. These growth conditions
were subsequently relaxed, most notably by Hardy and Littlewood.

Some of the most interesting applications of Tauberian theorems pertain to
analytic number theory. In this context, Tauberian results can be thought of as
estimates for the partial sums of coefficients of certain Dirichlet series. An im-
portant result of this type is the Wiener-Ikehara theorem. Introduced by Ikehara
[1] in 1931, it generalizes a theorem of Landau [3], by applying a Tauberian result
obtained by Wiener. Proofs of this and other Tauberian theorems in the literature
are usually found to be quite involved.
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A well known application of the Wiener-Ikehara theorem is to the derivation
of the prime number theorem. In 1980, Newman [6] gave an ingenious short
proof of the prime number theorem. We modify Newman’s proof to derive the
Wiener-Ikehara Tauberian theorem. That this can be done was also recognized
by Korevaar [2]. However, our presentation is simplified and our theorem more
general. We derive as a consequence an assortment of prime number theorems
following the arrangement of Serre [7].

2. THE ANALYTIC THEOREM

The following analytic theorem of Newman [6], is the key result that will be
used to prove the Tauberian theorem. The proof is an application of Cauchy’s
residue theorem. Newman’s novel idea was the insertion of a new kernel into
the relevant integral, playing a role similar to that of the Fejér kernel in standard
proofs of the Tauberian theorem.

Theorem 1. For t ≥ 0, let f(t) be a bounded and locally integrable function and let
g(s) :=

∫∞
0
f(t)e−stdt for Re(s) > 0. If g(s) has an analytic continuation to Re(s) ≥ 0,

then
∫∞
0
f(t)dt exists and equals g(0).

Proof. For T > 0, let gT (s) =
∫ T
0
f(t)e−stdt. This integral converges for all values

of s and it is easy to see that gT (s) is an entire function. We need to show that

lim
T→∞

gT (0) = g(0).

We will denote Re(s) by σ. FixR > 0 and consider the positively oriented contour
C shown in Figure 1 below. Here δ > 0 (depending on R) is chosen small enough
so that g(s) is analytic on C . Indeed, as g(s) is analytic on the line σ = 0, one can
cover the vertical strip from (0, R) to (0,−R) with open balls, on each of which
g(s) is analytic. Compactness of this strip allows one to obtain a finite subcover,
which then gives the desired δ.

We use the following notation :

C+ = C ∩ {s : σ > 0}, C− = C ∩ {s : σ < 0}.

We also denote the semicircle of radius R to the left of the line σ = 0 by C−. We
will use the big O notation, treating everything other than the variables T,R and
σ as constants.

Cauchy’s theorem gives us

IC :=
1

2πi

∫
C

(g(s)− gT (s))esT
(

1 +
s2

R2

)
ds

s
= g(0)− gT (0), (3)

as the integrand is analytic inside C except for a simple pole at s = 0. We denote
the corresponding integrals over C+ and C− as IC+

and IC− respectively. Let
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FIGURE 1. The contour C

M = supt≥0 |f(t)|. On C+, as σ > 0, we have

|g(s)− gT (s)| =
∣∣∣∣∫ ∞
T

f(t)e−stdt

∣∣∣∣ ≤M ∫ ∞
T

e−σtdt� e−σT

σ
.

Using s = Reiθ and R cos θ = σ on C+, we obtain the following estimate for the
kernel ∣∣∣∣esT 1

s

(
1 +

s2

R2

)∣∣∣∣ = eσT
∣∣∣∣ 1

Reiθ
+
eiθ

R

∣∣∣∣ = eσT
∣∣∣∣2 cos θ

R

∣∣∣∣� eσT
|σ|
R2

. (4)

Thus, the contribution to (3) from the path C+ of length πR is

|IC+
| � 1

R2

∣∣∣∣∣
∫

C+

ds

∣∣∣∣∣� 1

R
.

On C−, we examine gT (s) and g(s) separately. Consider first the integral

I1 :=
1

2πi

∫
C−

gT (s)esT
(

1 +
s2

R2

)
ds

s

As gT (s) is entire and the rest of the integrand is analytic to the left of σ = 0, we
have by Cauchy’s theorem,

I1 =
1

2πi

∫
C−

gT (s)esT
(

1 +
s2

R2

)
ds

s
.

That is, we can integrate over the semicircle C− instead of C−, with C− oriented
in the same manner as C−. Then, noting that σ < 0 in this case, we have

|gT (s)| =

∣∣∣∣∣
∫ T

0

f(t)e−stdt

∣∣∣∣∣ ≤M
∫ T

0

e−σtdt� e−σT

|σ|
,
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and the estimate (4) holds on C− exactly as it did on C−. We obtain |I1| � 1/R in
the same way as done for |IC+

| above. This leaves us with the integral

I2 :=
1

2πi

∫
C−

g(s)esT
(

1 +
s2

R2

)
ds

s
.

As C− is contained in a compact set on which g(s) is analytic, |g(s)| can be bounded
in terms of R on C−. As the estimate (4) holds on the arcs of C−, the integrand in
this region is of the order of

|σ|eσT as T →∞,

with the implicit constant depending onR. Recalling that σ < 0 in this region, the
above quantity can be compared to the real valued function xe−x, which attains
a global maximum of e−1 (as can be checked by standard derivative tests). Thus,

|σ|eσT ≤ e−1/T,

giving a bound of OR(1/T ) for the integrand over the arcs of C−. As the length
of the arcs is again a function of R which gets absorbed into the implied constant,
we see that the contribution to |I2| from the arcs of C− is OR(1/T ) as T →∞. On
the vertical strip of C−, as σ = −δ, we have

|esT | = e−δT .

The rest of the integrand of I2 is analytic in this region and hence absolutely
bounded in terms of R. The contribution to |I2| from this strip is thus OR(e−δT ).
Putting everything together, we have obtained, as T →∞,

|g(0)− gT (0)| = |IC | ≤ |IC+
|+ |I1|+ |I2|

� O

(
1

R

)
+OR

(
1

T

)
+OR(e−δT ).

As R is arbitrary, the right hand side can be made as small as needed. This com-
pletes the proof. �

3. THE PROOF OF THE TAUBERIAN THEOREM

We establish the following version of the Tauberian theorem, applicable in
many settings.

Theorem 2. Let

G(s) =

∞∑
n=1

bn/n
s

be a Dirichlet series with non-negative coefficients, satisfying

(a) G(s) is absolutely convergent for Re(s) > 1.
(b) The function G(s) extends meromorphically to the region Re(s) ≥ 1, having no

poles except possibly a simple pole at s = 1 with residue R.
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(c) B(x) :=
∑
n≤x bn = O(x).

Then, as x→∞,

B(x) = Rx+ o(x).

We begin by making some elementary observations. For any ε > 0,∑
n≤x

bn ≤
∞∑
n=1

bn

(x
n

)1+ε
The right hand side is x1+εG(1+ε) which is of the order of x1+ε/ε sinceG(1+ε)�
1/ε. Choosing ε = (log x)−1 givesB(x)� x log x. Note that this estimate does not
use any information about the behaviour of G(s) on Re(s) = 1, except at s = 1.
Normally (c) is not needed in the general Wiener-Ikehara Tauberian theorem.
One can deduce it from the other assumptions, as indicated in the concluding
remarks. However, in practically all applications, this condition is found to be
readily available and we retain it for the sake of a shorter proof.

A natural starting point for this and indeed most proofs of the Tauberian the-
orem is what is known as Abel’s trick: for Re(s) > 1, we have

G(s) = s

∫ ∞
1

B(x)

xs+1
dx. (5)

This can be derived using partial summation, as is done in Exercise 2.1.5 of [4].
We proceed to prove the above theorem.

Proof of Theorem 2. Without loss of generality, we may suppose R > 0. Indeed, if
R ≤ 0, it is enough to prove the result for G(s) +mζ(s), where ζ is the Riemann-
zeta function and m is an integer greater than |R|. For R > 0, replacing bn by
bn/R if needed, we may assume R = 1. From our discussion above, we have for
Re(s) > 1,

G(s)

s
− 1

s− 1
=

∫ ∞
1

B(x)− x
xs+1

dx (6)

After the change of variable x to eu and then s to s+ 1, we have for Re(s) > 0,

G(s+ 1)

s+ 1
− 1

s
=

∫ ∞
0

B(eu)− eu

eu
e−sudu,

which is suitable for application of Theorem 1 because the function

f(u) := (B(eu)− eu)/eu

is bounded on account of (c) and the left hand side has an analytic continuation
to Re(s) ≥ 0 by (b). Hence, by Theorem 1, the integral∫ ∞

0

B(eu)− eu

eu
du =

∫ ∞
1

B(t)− t
t2

dt (7)
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converges. We will show that B(x) ∼ x as x → ∞. Suppose not. Then either
limx→∞B(x)/x does not exist or does not equal 1 if it exists. In either case, we
see that lim supx→∞B(x)/x > 1 or lim infx→∞B(x)/x < 1. Suppose the former
inequality holds (the latter case can be treated similarly). Then there exists some
λ > 1 such thatB(x) ≥ λx for infinitely many x. As there exists x arbitrarily large
with B(x) ≥ λx and B(x) is an increasing function, we have∫ λx

x

B(t)− t
t2

dt ≥
∫ λx

x

λx− t
t2

dt

=

∫ λ

1

λx− vx
(vx)2

xdv =

∫ λ

1

λ− v
v2

dv,

which is a positive quantity c(λ) (say) depending only on λ. This gives∣∣∣∣∫ ∞
x

B(t)− t
t2

dt−
∫ ∞
λx

B(t)− t
t2

dt

∣∣∣∣ = c(λ)

For fixed λ, as x → ∞, the above integrals are tails of the convergent integral (7)

and can be made arbitrarily small, thereby giving a contradiction. This completes
the proof. �

The result can be extended to Dirichlet series with complex coefficients as fol-
lows.

Corollary 3. Let

F (s) =

∞∑
n=1

an/n
s

be a Dirichlet series with complex coefficients. Let A(x) denote the partial sum of the
coefficients:

A(x) =
∑
n≤x

an.

Suppose there exists a Dirichlet series G(s) =
∑∞
n=1 bn/n

s with non-negative coeffi-
cients, such that

(a) |an| ≤ bn for all n.
(b) G(s) is absolutely convergent for Re(s) > 1.
(c) The function G(s) (resp. F (s)) extends meromorphically to the region Re(s) ≥

1, having no poles except for a simple pole at s = 1 with residue R (resp. r).
(d) B(x) :=

∑
n≤x bn = O(x).

Then, as x→∞,

A(x) = rx+ o(x).
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Proof. If an’s are real, we consider the series G(s)−F (s), which has non-negative
coefficients and satisfies the conditions of Theorem 2, giving∑

n≤x

(bn − an) = (R− r)x+ o(x),

as x → ∞. As B(x) = Rx + o(x), this proves the result in the case of real coeffi-
cients. If the coefficients an are not real, we define

F ∗(s) =

∞∑
n=1

ān/n
s

so that

F =
F + F ∗

2
+ i

(
F − F ∗

2i

)
.

and apply the result for real coefficients separately to the real and imaginary part
above after checking that the necessary conditions are satisfied. �

4. APPLICATIONS

In this section we demonstrate some applications of the Tauberian theorem,
following the treatment of Serre [7] who gives a general set-up for the same in the
context of equidistribution.

We make this more precise in an abstract setting as follows. LetG be a compact
group andX be the space of conjugacy classes ofG. Let xv be a family of elements
of X , indexed by a countably infinite set P . Let N : P → Z be a function taking
values ≥ 2, ρ an irreducible complex representation of G with character χ. We
define

ζP(s) =
∏
v∈P

(
1− 1

(Nv)s

)−1
, L(s, ρ) =

∏
v∈P

det

(
1− ρ(xv)

(Nv)s

)−1
.

Thus, for the trivial representation ρ = 1, L(s, 1) = ζP(s).

Theorem 4. Suppose L(s, ρ) is absolutely convergent for Re(s) > 1 and extends to a
meromorphic function on Re(s) ≥ 1 with no zeros or poles except for a pole of order cχ
at s = 1. Then, ∑

Nv≤n

χ(xv) = (1 + o(1))cχ
n

log n
.

The proof of the above theorem follows by applying the Tauberian theorem
to L′/L. We refer the reader to the appendix of Chapter 1 of [7] for the same. If
Theorem 4 holds for all irreducible representations ρ 6= 1 with cχ = 0, then the
Peter-Weyl theorem allows us to deduce that the xv’s are equidistributed with
respect to the normalized Haar measure of G. Special cases of this theorem lead
to important results, among them being the prime number theorem, Chebotarev
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density theorem and the Sato-Tate theorem. An excellent reference for the inter-
ested reader wishing to delve deeper into these topics is [5].

5. CONCLUDING REMARKS

As remarked earlier, the added condition (c) in Theorem 2 is not restrictive
for most practical purposes. However, it is possible to eliminate this condition
altogether. We give a brief sketch of the argument. The key idea is to notice that
the known bound B(x)� x log x implies that for any ε > 0, the function

fε(t) :=
f(t)

eεt
=

B(et)

et(1+ε)
− 1

eεt

is bounded and satisfies the conditions of Theorem 1. Applying this theorem
to fε(t) and following an elementary argument that exploits the increasing be-
haviour of the functionB(et)/et(1+ε), one obtains a uniform bound on supt≥0 |fε(t)|.
Letting ε → 0, we see that f(t) must be bounded. A more detailed proof can be
found in [2].
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