
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 131, Number 1, Pages 41–44
S 0002-9939(02)06603-0
Article electronically published on May 15, 2002

ON THE NUMBER OF REAL QUADRATIC FIELDS
WITH CLASS NUMBER DIVISIBLE BY 3
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(Communicated by Dennis A. Hejhal)

Abstract. We find a lower bound for the number of real quadratic fields
whose class groups have an element of order 3. More precisely, we establish
that the number of real quadratic fields whose absolute discriminant is ≤ x and

whose class group has an element of order 3 is � x
5
6 improving the existing

best known bound � x
1
6 of R. Murty.

1. Introduction

R. Murty [7] showed that if g ≥ 3 is an integer, then the number of imaginary
quadratic fields whose absolute discriminant is ≤ x and whose class group has an
element of order g is� x

1
2 + 1

g . Recently, K. Soundararajan [8] has improved this to
� x

1
2 + 2

g . R. Murty also showed in [7] that the number of real quadratic fields whose
discriminant is ≤ x and whose class group has an element of order g is � x

1
2g .

The problem of divisibility of class numbers of quadratic fields has a long history.
Gauss studied the case g = 2. The case g = 3 was studied by Davenport and
Heilbronn [4]. If r3(D) is the 3 rank of the class group of a real quadratic field,
then one can get the following upper bound from their work [4]:

#{D ≤ x : r3(D) ≥ 1} ≤ 4
9
x.

We do not get any lower bound on the number of real quadratic fields whose class
number is divisible by 3.

For any given g the infinitude of such fields was established by Nagell [9], Honda
[6], Ankeny and Chowla [1], Hartung [5], Yamamoto [11] and Weinberger [10].
Recently R. Murty and Cardon [2] have extended the quantitative result stated in
the beginning, to the case of quadratic function fields.

Conjectures of Cohen and Lenstra [3] predict a positive probability for such an
event.

We now state the result of this paper.

Theorem 1. The number of real quadratic fields whose absolute discriminant is
≤ x and whose class group has an element of order 3 is � x

5
6 .
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2. Proof of Theorem 1

We will consider polynomials of the type

f(x) = x3 + ax+ b

and denote its discriminant as D(f) which is equal to [−(4a3 + 27b2)]. We also
denote by K the splitting field of f(x). We need a couple of lemmas before we go
to the actual proof of Theorem 1. The following is a basic result and we include a
proof to make the paper self contained.

Lemma 2.1. Let f(x) = x3 + ax+ b ∈ Z[x] be irreducible and suppose its discrim-
inant is not a perfect square. Then the Galois group of K over Q is S3.

Proof. Let us denote the Galois group in question by G. As f(x) is irreducible over
Q, we must have that 3 divides |G|. Now Q(

√
D(f)) ⊆ K. As D(f) is not a perfect

square we must have that 2 also divides |G|. This implies that G = S3.

The following lemma counts the number of a ≤ A and b ≤ B such that f(x) has
the above mentioned (Lemma 2.1) two properties.

Lemma 2.2.

# {|a| ≤ A, |b| ≤ B : f(x) is irreducible and D(f) 6= 2}
� AB.

Proof. We denote the set in the lemma by S. Clearly,

# S ≥ AB −
# {|a| ≤ A, |b| ≤ B : f(x) is reducible} −#{|a| ≤ A, |b| ≤ B : D(f) = 2}.

At first we estimate #{|a| ≤ A, |b| ≤ B : f(x) is reducible}. Let us fix b. Now if
f(x) is reducible, by the rational root theorem it must have a linear factor x + c,
where c |b. We write b = cd, then f(x) = (x + c)(x2 − cx + d). This implies
a = d− c2. Thus a is uniquely determined by the number of divisors of b. It is well
known that

∑
|b|≤B d(b) ≤ 2B logB. Here d(b) represents the number of positive

divisors of b. Thus the cardinality of this set is ≤ 2B logB.
The next step is to get an upper bound of #{|a| ≤ A, |b| ≤ B : D(f) = 2}. We

have

− 4a3 − 27b2 = c2.(2.1)

Hence,

− 4a3 = (c+ 3
√
−3 b)((c− 3

√
−3 b).

Thus (4a3) = α1α2, where α1, α2 are two ideals in Q(
√
−3). We fix a. Now the

number of solutions of (2.1) is O(Aε), as the number of ideals dividing (4a3) is at
most O(Aε) for any ε > 0. Moreover, the ring of integers of Q(

√
−3) is a PID and so

for each pair of ideal divisors α1, α2 such that (4a3) = α1α2, the number of choices
of c, b in (2.1) is bounded by 6. Thus #{D(f) = 2} � A1+ε. This completes the
proof of the lemma.
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Now we prove Theorem 1.

Proof. A proposition of Yamamoto ([11], Proposition 1) states that if 2a and 3b are
relatively prime and the Galois group of K over Q is equal to S3, then the extension
K over Q(

√
D(f)) is unramified. Throughout the proof we always choose a and b

such that 2a and 3b are coprime to each other. Now we assume the Galois group
of K over Q to be equal to S3, thus by the above proposition K over Q(

√
D(f)) is

unramified in our situation. The Galois group of K over Q(
√
D(f)) is equal to C3,

the cyclic group of order 3. Thus by class field theory, K is contained in Hilbert
class field of Q(

√
D(f)). Thus 3 divides the class number of Q(

√
D(f)).

We consider a large and negative and b positive such that D(f) becomes positive.
Precisely speaking, we consider −c1x

1
3 < a ≤ −c2x

1
3 and c3x

1
2 < b ≤ c4x

1
2 , where

ci, i = 1, 2, 3, 4, are suitable constants. Thus we are considering all real quadratic
fields as above whose absolute discriminant is ≤ x. Our aim is to get a lower bound
on the number of such fields.

We have x
1
3 choices of a and x

1
2 choices of b, thus we have at least x

1
3 .x

1
2 = x

5
6

many choices of such real quadratic fields by using the previous two lemmas.
Now the only thing we have to check is that there are a negligible number of

duplications among these fields. Let S be the set of D(f)’s counted above which
give rise to same fields more than once. For such a D(f) in S,

4a3
1 + 27b21 = c2(4a3

2 + 27b22),

4(a3
1 − c2a3

2) = 27(b2c+ b1)(b2c− b1).
Because |4a3

1 + 27b21| � x and |4a3
2 + 27b22| � x, we have that c is bounded.

We fix a1 and a2. Then we have a fixed number on the left-hand side of the above
identity. The choices of b1 and b2 are derived from the divisors of this number. It
is an elementary fact of number theory that the number of divisors of a number n
is O(nε). The number of possible values of a1 and a2 is O(x

2
3 ) and therefore the

total number of elements in S cannot exceed O(x
2
3 +ε). The final enumeration gives

� x
5
6 −O(x

2
3 +ε)

distinct real quadratic fields Q(
√
D(f)) whose class group has an element of order

3. This completes the proof of the theorem.
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