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Abstract As its name suggests, the central limit theorem occupies a central position
in all of mathematics and perhaps all of science. From its humble origins in combi-
natorics, it has evolved into a powerful tool through which we can understand the
mysteries of nature. In this paper, we survey how it has led to the development of
new insights in algebra and number theory.
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1 Introduction

The central limit theorem is one of the remarkable theorems of twentieth-century
mathematics, and there are even good reasons to say it is the most remarkable dis-
covery of our time. With its humble origins emanating from a simple combinatorial
problem, it has evolved over decades into a profound principle of probability theory.
It gave birth to statistical methods and now influences disciplines outside of mathe-
matics such as biology, medical science, economics and artificial intelligence. This
paper will not expound these connections and ramifications outside the mathematical
field, but rather, our goal is to elucidate its impact on number theory and algebra,
which surprisingly, is not so well-known even among pure mathematicians.
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Apart from its intrinsic beauty, the central limit theorem offers us a metaphor
for approaching and understanding a notorious unsolved problem in number theory,
namely the Riemann hypothesis. This celebrated problem and its manifold incarna-
tions as the Generalized Riemann hypothesis, both in the context of algebraic number
fields and the wider context of automorphic L-functions, occupies a pivotal place
in the landscape of pure mathematics. Like the Himalayan peaks, these hypotheses
brood ominously over all of mathematics and invite us to scale their celestial sum-
mits. The central limit theorem, and probability theory in general, offers us a method
to approach these summits.

To motivate our discussion, let us begin with a study of the Liouville function
A(n) defined as follows. If n = p{' p3* ... p{* is the unique factorization of a natural
number # into distinct prime powers, then

A(n) = (=D®™  where Q) =a, +ar+---a.

In other words, A(n) is 41 if n has an even number of prime factors and —1 if n has an
odd number of prime factors (counted with multiplicity). The Riemann hypothesis
is then equivalent to the assertion that for every € > 0,

Y am) = O(N1+9). (1

n<N

This was first noted by Pélya [28] in 1919.
This suggests the following “thought experiment” where we would treat the A(n)
as “random variables” taking the values +1. Indeed, consider the set

Sy i={o =(a1,az,...,ay): a; ==£1}.
Evidently, |§x| = 2V. For each o € §y, we define
s(c)=a;+a,+---+ay.

Since each of %1 is taken with probability 1/2, we would expect s(o') to be zero “on
average.” In fact,

1
ds@)=5 D @) +s(-=0) =0.

oEeSN oSN

Writing o = (a;(0), ..., ay(0)), we also see that
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Zs(a)zz Z Z a;j(0)a;(o)

o€y oe§y 1<, j<N

=Y N+ ai0)a;o0)

oe§y i#j
= N2V + ) ) ai0)a;(0).
oe§y i#j

For each o € §y and i # j, define & to be the same as o except ¢;(6) = —a;(0),
a;j(0) = aj(o). Itis then transparent that interchanging sums in the last summation
and pairing o with &, the sum vanishes and we obtain

> s(e)* = N2V,
oe§n
In other words, s(o) has mean zero and variance N. Inspired by the Chebycheff

inequality, we deduce

1
P(o:ls(@)] > N7 < =,

which goes to zero as N tends to infinity. In other words, we can expect that for any
random sequence ay, d, ... of £1’s that

a+ay+-+ay = 0N

with probability 1. This is essentially Chebycheff’s inequality (1867). In fact, more
can be shown:
Theorem 1.1 (de Moivre (1738), Laplace (1812))

P<a:ags(0)<ﬁ>—>
JN

—l‘2/2dt

1 B
V2w Ja
as N — oc.

This beautiful theorem originates from the combinatorial problem of counting the
number of heads or tails one can expect in N random flips of a fair coin. What is
intriguing about the theorem is its suggestive connection to the Riemann hypothesis
where we can view the values of A(n) as a random collection of +1’s. Viewed in
this way, Eq. (1) seems plausible. We will return later to the theme of the Riemann
hypothesis and its connection to probability theory.
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2 Review of Some Probabilistic Concepts

Some remarks pertaining to “probabilistic thought” are worth repeating here. Let X
be a discrete random variable assuming the values xj, xz, . ... The probability of the
event X = x; will be denoted as P(X = x;). The function

f(Xj) = P(X =Xj)

is called the probability distribution of the random variable X. Clearly,

fGxp)=0and Y fx)) =1. )
J

It is possible to go in the “reverse” direction. Suppose we are given a set of points
X1, X2, ... and a function f defined on these points satisfying (2), then it is custom-
ary to speak of a random variable X assuming values xj, x, . .. with probabilities
f(x1), f(x2),.... Thus, given f satisfying (2), we say “let X be a random variable
with distribution f.”

The notion of “independent random variables” is undoubtedly familiar to the
reader. However, it may help to elucidate our understanding if we recall this notion
from the “probabilistic mind set.” Indeed, we say X, X», ... X, are independent if

PX=a,Xo=a,.. Xy =a,) = PX1 =a)P(X2 =) --- P(X, = ap).

Thus, if X; depends only on the outcome of the kth trial and not on the previous
outcomes, then the variables X, X, ... X, are mutually independent. We refer the
reader to p. 205 of [17] for further clarification of these concepts.

We have discussed these ideas in the discrete random variable case with a view
to our applications below. They undoubtedly apply in an analogous fashion to the
non-discrete case.

3 The Evolution of the Central Limit Theorem

The de Moivre—Laplace theorem evolved for almost a century into the modern central
limit theorem. Beginning with the work of Chebycheff (1887), and then his two pupils
Markov (1898) and Lyapunov (1901), Lindeberg (1922), and finally Levy (1935) and
Feller (1935), the central limit theorem morphed into its modern form. Feller [16]
writes that “For more than one hundred years a great many mathematicians have
been working on the problem discovering many special cases to which the theorem
applies and gradually establishing, and relaxing step for step, sufficient conditions
under which the theorem holds. To the less critical mind, the law appeared as a
universal law or, occasionally, as a law of nature.”
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Theorem 3.1 (The central limit theorem) Suppose for each n,
ana XnZa B an,,
are independent random variables on some probability space Y, with measure P,.
Put
Sn =Xn1+Xn2+"'+an,,-

Assume the expectation E(X,;) = 0 and set

I'n

2 _ § 2
0, = Ok
k=1

where anzk = E(Xﬁk). Then

and

as n — oo if and only if

N
lim § :—2 f X2.dP, =0 3)
n—oo k=1 Oy | Xk |>€0n,

for every e > 0.

Remark 1 The sufficiency was shown by Lindeberg (1922) and the necessity by
Feller (1935). The condition (3) is often referred to as the Lindeberg condition.
According to the historical article [31], Alan Turing also discovered this indepen-
dently in 1934 while still an undergraduate at the age of 22. The version of the central
limit theorem given in our theorem can be found on p. 408 of [4]).

Here is an elegant application of the central limit theorem (which was discovered
by Ramanujan independently and without considerations of probability). Ramanujan
([29], p. 323) showed

nook
. _ n 1
lim ™" — =
n—00 k! 2
k=0
We can deduce this via the central limit theorem as follows. If X, X,,... is a

sequence of independent random variables each having the Poisson distribution with
parameter 1, then each has mean 1 and variance 1. By the central limit theorem, the
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sum
Xi+Xo+- -+ Xy—n

N
approaches the normal distribution as n — co. However, the sum of two Poisson

random variables with parameter x and y is again Poisson with parameter x + y.
Thus,

X1+ Xo+ -+ X,

is again Poisson with parameter n with mean n and variance n. We immediately
deduce that

_ n k 0
P<X1+X2+ +Xu <O>=e_"zn——>—l / e_’2/2dt:l.
ﬁ k! \/27’[ —00 2

k=0

4 The Evolution of Probabilistic Number Theory

In 1917, Hardy and Ramanujan [20] proved the following theorem.

Theorem 4.1 Let w(n) denote the number of distinct prime factors of n. For any
fixed € > 0, the number of n < x such that

lw(n) —loglogn| > (loglogn)'/?*¢

is at most
X
(loglog x)2¢ "

Remark 2 In other words, almost all numbers have loglogn prime factors (in the
sense of natural density). Their proof was technically complicated.

Precisely, we say @ (n) has normal order loglog n. In general, an arithmetic func-
tion f(n) has normal order g(n) (where g(n) is a continuous monotone function) if
given any € > 0, the number of n < x such that

|f(n) —gn)| > eg(n)
is o(x) as x — oQ.

Now, w (n) and 2 (n) are examples of additive functions. In other words, Q2 (mn) =
Q(m) + Q(n) whenever m and n are coprime. Thus, one can write

o) =) o(p),

pln
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and it is suggestive to view w(n) as a sum of “independent random variables” when
looked at this way. However, this viewpoint was long in coming and had a roundabout
emergence taking several decades.

In 1934, Paul Turdn [30] gave an elementary proof of the Hardy—Ramanujan
theorem which was extremely simple. He did this by showing that

Y (@(n) — loglogn)* = O(x loglog x).

n<x

In retrospect, one can see that what Turdn did was a number theoretic analogue
of the celebrated Chebycheff inequality in probability theory. His two-page paper
gave rise to a spectacular cascade of events and ultimately led to the development
of probabilistic number theory. In a letter to Elliott (p. 18 of [15]) written in 1976,
Turén recalls “When writing Hardy firstin 1934 on my proof of Hardy—Ramanujan’s
theorem I did not know what Tchebycheff’s inequality was and a fortiori of the central
limit theorem. Erd@s, to my best knowledge, was at that time not aware too. It was
Mark Kac who wrote to me a few years later that he discovered when reading my
proof in JLMS that this is basically probability and so was his interest turned to this
subject.” Apparently, Kac asked if Turdn could prove similar estimates for the higher
moments:
Z(a)(n) — loglogn)*.

n<x

Apparently, Kac hinted in his letter that if one could derive similar estimates, then
there is a normal distribution law for w (n). Turdn continues that though he realized
he could estimate the higher moments, he “found absolutely no interest to do it
actually.” His reasons, he confesses, for not doing so were that he saw no applications
of such results! It was Mark Kac who picked up the sequence of ideas leading to
the possibility of applying the central limit theorem to additive number theoretic
functions. He recalls (see page 24 of [15]) that “If I remember it correctly I first
stated (as a conjecture) the theorem on the normal distribution of the number of
prime divisors during a lecture in Princeton in March 1939. Fortunately for me and
possibly for Mathematics, Erdds was in the audience, and he immediately perked up.
Before the lecture was over he had completed the proof, which I could not have done
not having been versed in the number theoretic methods, especially those related to
the sieve.” He continues, “With Erdds’s contribution it became clear that we have
had a beginning of a nice chapter of Number Theory, bringing upon it to bear the
concepts and methods of Probability Theory.”

So in 1940, Erd6s and Kac [14] proved that

w(n) —loglogn 1 /ﬁ _i2p
Pln<N:a < ————— < — dt.
<n * J/loglogn F)= @ ¢
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Although the metaphor of the central limit theorem suggests this result, it is not a
corollary of it. In the 1950s Kubilius [22] generalized this result to arbitrary additive
functions.

5 Goncharov’s Theorem

Around 1942, unaware of the developments in number theory along the lines of
the Erdés—Kac theorem, Goncharov considered the following problem related to the
symmetric group on n letters, denoted €2,,. For each o € Q,, it is elementary that it
can be written uniquely (unique up to ordering) as a product of disjoint cycles and
one can define w (o) to be the number of cycles in its unique factorization, viewing
it as a group-theoretic analogue of w(n) of Hardy and Ramanujan. For suggestive
reasons, we write w (o) and w(n), it being clear from the discussion the context we
are in. One can directly apply Theorem 3.1 to show that w (o), when appropriately
normalized, is normally distributed (no pun intended).

The reader will recall from basic algebra that every permutation o € €2, can be
written as a product of disjoint cycles in a canonical way as follows. We begin with
1 which is mapped to o (1) which in turn is mapped to o>(1) and so forth. In other
words, the canonical decomposition of o as a product of disjoint cycles is written as
an ordered sequence of orbits, beginning with the orbit of 1 under o, then the orbit
of the smallest number not in the orbit of 1 and so on.

To illustrate, let us consider the permutation o of Qg given by

(12345678
T=\35416872

This has the canonical disjoint cycle decomposition
o = (134)(2568)(7), (4)

so that w(o) = 3.

We define random variables X; (1 < k < n) on 2, by setting X; = 1 if a cycle
is completed at the kth step and otherwise we set X; = 0. For example, with o as in
(4), we have

X3(0) = X7(0) = Xg(0) =1,

X1(0) = Xz(0) = X4(0) = X5(0) = X¢(0) = 0.

Clearly, X;(0) = 1 if and only if o(1) = 1 and the number of such permutations is
1

(n—1)!sothat P(X; =1) = —.
n

More generally, we see that P(X; = 1) is given by m since there are n —

(k — 1) choices at the kth step to complete a cycle. Indeed, the permutations o € €2,
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for which Xy (o) = 1 have a disjoint cycle decomposition where at the kth position,
we also have a “close bracket.”

Since the outcome at the kth step does not depend on the earlier outcomes, the
Xy ’s are independent. We will now write X,,; to denote X for obvious reasons. This
example and formulation are discussed on p. 242 of [17] and p. 78 of [4].

Clearly S,(0) = X,1(0) + Xn2(0) + - - - + X, (0) is the number of cycles in the
cycle representation of . The mean m,,; of X, is the probability that X,; equals 1,

which is TTEk and variance is 02, = mu(1 —mu). If L, =Y }_, o then S,
has mean
n n 1
mg=y —— =1,
2=

and variance

D o mu(l = mu) = Ly + O(1),
k=1

Applying Chebychev’s inequality and the fact that
L, =logn+ O(1),

one can prove an analogue of Theorem 4.1 (as outlined in the next section) concluding
that most permutations on n letters have about log n cycles in their unique disjoint
cycle decomposition.

We can now apply the central limit theorem to deduce Goncharov’s theorem
because the Lindeberg condition is vacuously satisfied. Indeed, the X,,;’s are bounded
random variables and o,, — 00 so that for n large, the sequence in Lindeberg’s limit
condition eventually becomes the zero sequence.

Thus, unlike the Erd6s—Kac theorem, Goncharov’s theorem can be deduced via
the central limit theorem. Goncharov’s paper is long and complicated. The underlying
conceptual fabric is missing. Harper [21] is less sympathetic. He writes, “Goncharov
...by brute force tortuously manipulates the characteristic functions of the distribu-
tions until they approach exp(—x2/c), ¢ a positive constant.”

6 The Connection to Stirling Numbers of the First Kind

One can also approach the problem in the previous section from a different combi-
natorial perspective. Following Turdn, we can consider

Z w(o), and Z a)z(a),

oe, 0eR,
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although this is not the way Goncharov thought about the problem. However, inter-
preted this way, the question becomes an elementary problem in basic combinatorics.

Denoting s(n, k) to be the signed Stirling number of the first kind, and recalling
that |s(n, k)| is the number of permutations in €2, with exactly k disjoint cycles in
its factorization (see pg. 26 of [10]), we immediately see that

Z w(o) = Zk|s(n,k)|, and Z W o) = Zkzs(n,k)l.
0eQ, k=1 0eQ, k=1
Now it is elementary that
x(x+1)---(x+n—1)=Z|s(n,k)|xk. 5)
k=1

That is, the unsigned Stirling numbers |s (n, k)| are defined algebraically as the coef-
ficients of the rising factorial. Differentiating both sides of this polynomial identity
and setting x = 1, we deduce

n

Y@y =n) !
0e2, j=1 J
=n'H,,

a1
where H, denotes the nth harmonic number. Since || , —dx =logn, we get (by an
ox

application of the method of proof for the integral test)
1
logn+—- < H, <logn + 1.
n

More precisely,

Hy = logn +y + — + — €
n — 0} = I
BT Y T o T o T T20m®

where y denotes Euler’s constant and 0 < e€(n) < 1 for all n. So, we get
1

Z w(o) = n! (logn +y+0 <—)) .

0EQ, n

In other words, the average number of disjoint cycles of a random permutation of €2,
is log n. Similarly, in order to calculate the second moment of w (o), we differentiate
(5) twice and set x = 1 to get,
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n

ZIS(n k)lk(k — 1) = n! Zz__ llz

1
1111‘] i=1

n n n

1 1

i2

= Y st bk’ = Zk|s(n k)| + n! l

k=0 k=0 i=1 j=1 ‘] i=1

Now,

_ (logn+y+o<%))z

1
= (logn)* + 2y logn + O ( ogn) .

n

1
Also, Y7 13 = = O (1). Putting these together, we get that the second moment is

Z w(0)? = n! <(2)/ + D logn +y + (logn)® + O <105”>> '

oeQ,

Then the variance

1 lo
;Z(a)(a)—logn)zzlogn—}—y%—O( 5n) (6)
ToeQ,

From here, one can now derive an analogue of Turdn’s theorem for symmetric groups.
To show w (o) has normal order log n, one needs to show that given any € > 0, the
number of o € €2,, such that

|lw(o) —logn| > elogn

is o(n!). Using Chebychev’s inequality, this is

0 n!
(ezlogn>

which is o(n!) as n — oo for any € > 0.
More precisely, it is worth noting here that given a fixed A > 0, the approach of

Turén applied to this problem gives a nice estimate of O ( ) for the excep-

logn
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tional set, that is, the number of permutations for which w (o) deviates from its mean
value log n by more than A logn.

In order to understand the distribution of w (o), one can now consider the higher
moments

Y (@(0) — logn)*

0eQ,
for k > 2. Using the binomial theorem, one can show that this is

k

> (’;) (logn)* 7 Y~ w(o)

j=0 o€,
—Z( )(1ogn)" mef|s(n ml.

Denoted by M; the inner sum

n

M; = ijls(n, m)|. (7

m=0

Estimation of this sum for a general j seems quite complicated and hence we do not
pursue this method in this paper any further.
One can, however, apply

w(o) —logn ) 1 /ﬂ 2
Plo:a< ————"<B| > — | e "'t
< Vlogn ﬁ \/2ﬂ o

as n tends to infinity, to deduce the behaviour of (7). Goncharov in [18] takes
another approach to prove the above result. Though the Erdés—Kac theorem can-
not be deduced from the central limit theorem, it is possible to derive a modified
version of the central limit theorem to do so. We refer the reader to the papers of
Billingsley [5, 6] for further amplification of this discussion.

The polynomial identity (5) can be given a probabilistic interpretation. Indeed, if

we write
le(n k)ltk_ﬁ<t+n— ) ®
P n—k+1

we can interpret each factor on the right as the probability generating function of Xj.
Since the X;’s are independent and

0(©0) =) Xi(0),
k
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we have

E(?) = nE(tX").
k

In other words, we can deduce (8) as a consequence of the independence of the X;’s
from purely probabilistic considerations.

There is a well-known duality principle in combinatorics that relates certain theo-
rems about the symmetric group €2, to theorems about partitions of sets of n elements.
This is not arigid principle but only a metaphor. As such, the analogue of Goncharov’s
theorem has been worked out by Harper, and we refer the reader to [21] for further
details.

7 Normal Number of Prime Factors of Fourier Coefficients
of Modular Forms

The generalization of the Erdés—Kac theorem to study the normal number of prime
factors of Fourier coefficients of modular forms was initiated in 1984 by the second
author and Kumar Murty in [25, 26]. We now describe their work and very briefly
indicate future directions.

To expedite our exposition, we only discuss the case of the Ramanujan t-function
and refer the reader to [25, 26] for the general case of modular forms. Recall that the
Ramanujan t-function is defined via the infinite product:

o0 oo

q l_[(l — qn)24 — Zr(n)qn’ qg= ezmz

n=1 n=1

with J(z) > 0. Ramanujan conjectured that 7(n) is a multiplicative function of n
and that |t(p)| < 2p'/2. As is well-known, the Ramanujan conjecture was proved
by Deligne [12] as a culmination of his work on the Weil conjectures.

In [25], the second author and K. Murty show subject to a generalized quasi-
Riemann hypothesis (more precisely, there exists a 1/2 < § < 1 such that all Artin
L-functions have no zeros in R(s) > §) that

Y (@(@(p) —loglog p)* = O(x(x) loglogx),
rfpg):ﬁo

where the summation is over primes p. In other words, the normal order of w(t(p))
is loglog p. In [26], they extend this work and establish the analogue of the Erd6s—
Kac theorem, again subject to the same generalized quasi-Riemann hypothesis. More
generally, they studied w(t(n)) and showed that
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pln:a<®@® —%(IOgIOgn)Z< —>L/ﬁe—’2/2dt
(loglogn)3/2//3 V2 Ja

In current work in progress, the authors hope to extend these studies to shifts of
primes. We expect that, for example, w(t(p + a)) with a # 0 has normal order
(loglog p)?/2. We also expect an analogue of the Erd6s—Kac theorem to hold for
these shifts.

8 Probabilistic Connections to the Riemann Hypothesis

The Riemann zeta function ¢ (s), originally defined as a Dirichlet series

1
t(s)=;;,

for N(s) > 1 can be analytically continued to the entire complex plane except for
s = 1 where it has a simple pole. The celebrated Riemann hypothesis is the statement
that the real part of all the non-trivial zeroes of ¢ (s) is %

This fugitive Riemann hypothesis has been both a source of inspiration and frus-
tration for many generations of mathematicians. It is said that Hilbert and P6lya were
the first to suggest that if we could interpret the non-trivial zeroes of ¢ (s) as related to
eigenvalues of some Hermitian operator, the Riemann hypothesis would follow. But
the hypothesized Hermitian operator has not been found yet. Probability theory may
offer us a window into interpreting the zeroes of ¢ (s) and give them new meaning.
Indeed, in a paper of Biane, Pitman and Yor [3], we find the following exposition.

Let
o0
2
6([) — Z e—n e
n=-—00

be the classical Jacobi theta function. It is well known that it satisfies the modular
transformation

Vo) =61/t), t>0. 9)
By means of this transformation, one can show that if we define
1 —2
§(s):=3s(s— D YT (s/2)¢(s),

then

G [T e dt
SG 1) —/0 @@ — e nt (10)
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which is valid for R(s) > 1, can be extended analytically to the entire complex plane
and deduce that

£(s) =&(1 — ),

which is the celebrated functional equation of the Riemann zeta function. Now, if
we define

GO =00 =Y "™,
then (9) becomes
G(/y) =yG(y). (11)

Set
_d (.4
H(y)—dy (y dyG(y)>
=2yG'(y) + y*G"(y),

which by definition of G(y) becomes
o]
2,2
H(y) = 4y* (Z(2n2n4y2 — 3an*)e ™Y )
n=I1

and H (y) satisfies the same functional equation as G, namely
YH) =HG™), y>0.

Then Riemann’s formula (10) for £(s) becomes

00 \ dy
256 = [ HOW .
0 y
Since
21%n*y? > 3an?

fory > 1, we see H(y) > 0 in this region. But then, by the functional equation, we
have H(y) > 0 for y > 0 also. A routine computation shows that

26(0) =2&(1) =1
and so o b
(y)d

o0
y=f H(y)dy = 1.
0 y 0
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Thus, the function H(y) can be viewed as the density function of a probability
distribution on (0, oo) with mean 1. If Y is a random variable with this distribution,
the functional equation for H translates as

E(f(1/Y)) = EYf(Y)).

Also, one can view 2&(s) as E(Y*).
In 1997, Xian-Jin Li [23] derived a remarkable criterion for the truth of the Rie-
mann hypothesis. To state Li’s criterion, we define for each natural number #,

- (-1)

where the sum is over the non-trivial zeros of the Riemann zeta function. Then, Li’s
criterion is that the Riemann hypothesis is true if and only if

)"n>0a

for all natural numbers . It is not difficult to see that

1 da
An =
(n—1D!ds"

(s" " log £(s)) ‘

s§=

Using Leibniz’s rule,

! n—1 kn—j
Ap=n < . >(— 12)

where
n

ds"

k= = (logg(s) | .

If all the k,,’s were positive, then by (12), the Riemann hypothesis follows. However,
this is not always the case. For example,

ks = —0.000222316, k4 = —0.0000441763

according to the table on pg. 441 of [3]. In fact, one can interpret the k,,’s as cumulants
of the random variable log(1/Y) with Y as before.

Recall that given a random variable X, the moment generating function is E (e’X)
and the cumulant generating function is log E (¢'*). If we let

L :=log(1/Y),

then as
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26(s) = E(Y") = E(Y'™) = E(" "),

we see that

(s =D"

n!

log(e“™"F) =log2&(s) = Yk,

n=1

The cumulants k,,’s are thus related to the moments of L as follows

n * 2 H(O)
o= E@ = [ - togyr T2 dy (13)
0 y
through the formula
n—1
n—1
o = Z( . )u,-kn_,,-. (14)
=~/

To see this, observe that taking the derivative with respect to ¢ of the equation
o tn
tXN\ -
log E(e'X) = ann!,
n=1

we see (upon setting X = log(1/Y)) that (14) follows.
The positivity of the first cumulant & is assured by Jensen’s inequality since

ki=p =—E(ogY) > —log E(Y) = 0. (15)

Recall that for any convex function ¢ defined on the range of a random variable X,
Jensen’s inequality states that

E(¢(X)) = ¢(E(X)) (16)

so that (15) follows on applying (16) to ¢ (x) = — logx which is convex (as it has a
positive second derivative).

The positivity of the second cumulant can also be deduced through considerations
of probability. Indeed,

k= po — ui

is the variance of L, and therefore positive. However, as stated earlier, k3, k4 are
negative.

Let us record here the following curious related fact. In [19], it was shown that
the Riemann hypothesis is true if and only if

1
Z—2=2+y—10g4r{,
— |l
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where y is Euler’s constant and the sum is over non-trivial zeroes of ¢ (s).

The cumulants k,, are related to the Stieltjes constants y,, which are defined as the
coefficients of the Laurent expansion of ¢ (s) about s = 1,

1 °° .
z(s>=:+;yn<s—1>,

where yp = y is Euler’s constant and one views the y,,’s as generalizations of this.
In fact, it is not difficult to show that y, are given by the limits

) “log"k log"'m
= 1 - .
i ml—gl)o (; k n—+1

We are more interested in the generalized Stieltjes constants 7, given by the Laurent
/

expansion of ?(s) about s = 1. Thus,

¢ = .
—?(s)—:+;nn<s—1> :

By basic algebra, it is easy to express the 1,’s as polynomials in the constants y,
with rational coefficients. For example,

1

No=—Y0, M =—Y1+ 5)/02

The significance of these constants lies in an important arithmetic formula for the
An’s derived by Bombieri and Lagarias [7]:

ay=1— g(y +logdm) + S1(n) + S$2(n), (17)
where )
Sim =Y (’f)(—l)/‘ (1 - i.) ()
= N 2
and

Samy =Y <;f)n,-_1 SR EDD <’;>m_1- (18)
j=2

j=1

They also showed that the condition of positivity can be considerably weakened to
deduce the Riemann hypothesis. In fact, they show that if for any € > 0, there is a
constant ¢(e¢) > 0 such that for alln > 1,
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An = —c(e)e”

then the Riemann hypothesis follows. Clearly, this is a substantial weakening of Li’s
criterion.
Coftey [11] has shown that for n > 2,

—(n(logn+)/—1)+1) Si(n) < (nogn+y +1) —1).

In particular, S;(n) is non-negative for all n > 2 so that apart from S,(#n), the con-
tributions of the other terms to A, in (17) is O(n logn). Thus the truth of Riemann
hypothesis hinges on S>(n) and the growth of the generalized Stieltjes constants.
Omar and Bouanani [8] extend Li’s criterion to the function field setting.

Clearly, we should, therefore, focus our attention on 7;’s. As noted in [7], one can
show that

_ 1)/ lim Z A(m)log/ m B (10gx)~i+1
J! X—00 m ]+ 1

m<x

where
1 9 — a’ 2 11
A(m) = ogp m. p,a
0, otherwise.

This expression is unwieldly. We offer an alternate expression via Laguerre polyno-
mials.
For ¥ (x) = anx A(n), we know

~ v

x5+l

= +s w(x)_xdx

s—1 1 x5+

1 _
Sl YW ox,

s — 1 x5+1

—%,(s) =y

Here, we can write the integral as

(s—1+1 /00 —(lﬁ(x)z— x)e_(s_l)k’gxdx

(s —1+ I)Z (— I)J(s — 1)1 /00 Ax) logjxdx’

1 x?

where A(x) = ¥ (x) — x. If we let
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© A(x)log’
aj:/ A loglx (19)
1

x2

then

e T S T

J! (j—=D! <0

It is possible to derive estimates for 17, §; and y; but all of these estimates have
exponential growth. So we need to explore cancellations.
In this context, we have the Laguerre polynomials:

Lio=Y (3’) 2

j=0 J

The generalized Laguerre polynomials which can be defined by the following gen-
erating function (see [1, 9, 24]):

ZL(“)(x)t e (=), i<
- )a+1 p 1—1¢)"°
can also be defined by the closed formula for n > 0,
Lo =Y (M) 1)
= — k) Kk

where () denote the binomial coefficients given by

r r rr—D@r—2)---(r—k+1)
=1 and =
0 k k(k—1)---1
for positive integer k and any complex number 7.

In order to understand S,(n), we can try to get the expression of n;_; in (18) in
terms of integrals of generalized Laguerre polynomials. Using (18) and (20), we get

1)i-1s 1),
20 = _"y”Z( )(( J)—l)]! ! (j)—2>]! 2)

= —nyy + T1(n) + Tr(n)

where using (19)
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" n\ (=1)/718;
T, — A bl
o ;() G- D!

[P AX) [ () (—logx)T!
- SR (20T )-

Jj=2

and

"\ (—=1)I728,_,
Tr(n) = <>—j
; i) G =2)!
[P AX) [ (n) (—logx) 2
_/1 X2 Z(j) TEET

j=2

Writing j* = j — 1 and using (}) = (,",) for 0 < k < n, we can rewrite the sum in
expression for T;(n) as

n—1 i
> (e S
J+1 !

ji=1

n—1 i
=Z <(n -+ ?)(—1)"’ (logx)J
= n—1-—7 (UN!

=—n+ Lfll_)l(logx).

A similar calculation for the sum in the expression for 7,(n) gives

Xn: <n) (—logx)/—2

=) G-

_f ((n ~2) +2) (—logx)/
=\n=-2-j) G

ZLLZ_)z(IOgX)

Thus, we get the following expression for S, (n) in terms of the generalized Laguerre
polynomials

© A(x © Ax
Sy(n) = —nyy — n/ x(2 )dx + / % [Lill_)l(logx) + L,(lz_)z(logx)] dx.
1 1
(22)
The integral in the last term of (22) can be simplified as follows:
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Ly (logx) + L, (log x)

! n LQog )k 3 n . (log x)*
:Z;(n—l—k)(_l) k! +Z<n—2—k>(_1) k!

k=0

_ (logx)"! 2 n n , (log x)*
T (=1 +k§<<n—1—k> + <n—2—k>>(_1) k!
C(ogn)"' A n+1 \(=logn)t

T (=1 +k2=;<n—l—k> k!

_ (logx)*! B ( n—1+2 )(logx)"‘1 N =l (n -1 +2> (—log x)*

T -1 \u—l—-@m-0) =1 n—1-k) &
_Z <n -1 +2> (—log x)*
n—1-— k!
=L£LZ_)1(10gx).
Thus, we get
S2(n) = —nyp +/1 Al )L(z)l(logx)dx —n /loo Ax(:)dx. (23)

The last term in the above equation is actually O(n) by a simple application of the
unconditional error term in the prime number theorem. So, to prove the Riemann
hypothesis, we need to focus on the integral in the second term in view of the results
of Bombieri and Lagarias.

9 Concluding Remarks

The discussion of the preceding section can also be applied to study the generalized
Riemann hypothesis from a probabilistic perspective. In fact, this perspective is the
origin of the large sieve method.

The probabilistic model can give us some idea of what we can expect. Indeed,
treating for example, the Legendre symbols x,(n) := (n/p) with p prime, as a
random variable, we can prove the following: let 77 (x) denote the number of primes
between x and 2x. Let z = z(x) be such that

1
ogz_)OQ

log x

as x — oo. Then, for any continuous real-valued function 4, we have
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. 1 Zx<p<2x Xp(n) 1 /OO —1?
lim =) & SPS = h r24t.
Xm0 z Z < VT (x) ) V2 J oo (e t

n<z

In particular, if A(x) = |x|, this says that GRH holds “on average.” We refer the
reader to the forthcoming paper [27].

To keep our survey succinct, we have refrained from giving an encyclopedic
treatment of this topic. However, there is one result from probability theory that
requires highlighting.

In 1918, Hardy and Ramanujan developed their celebrated circle method to study
the partition function. The reader will recall that the number of partitions of # is
denoted p(n) and has the generating function

Yo pmit=Ja—-m™"
n=0 n=1

Thus, p(4)=5since 1 +1+1+1, 1+1+1+2, 1+3,2+2, 4 are the five
partitions of 4. Hardy and Ramanujan proved that

1
p(n) ~ G ﬁe”ﬂ"/? (24)
n

The second author, in joint work with Dewar [13] showed how one can derive this
using arithmetic. Bdez-Duarte [2] showed that a local central limit theorem can be
used to establish (24). These remarkable symbiotic developments will be studied in
a later paper.
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