1. Prove that

$$2222^{5555} + 5555^{2222}$$

is divisible by 7.

- 2. Find the last three digits of 3^{2019} .
- 3. Let *p* be a prime number greater than 3. Show that the numerator of

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{(p-1)^2}$$

(when expressed in lowest terms) is divisible by p

- 4. Show that a natural number is divisible by 9 if and only if the sum of its digits is divisible by 9.
- 5. If *p* is a prime number, show that \sqrt{p} is irrational.
- 6. For any natural number m, show that

$$\sum_{j=1 \atop (j,m)=1}^{m} j = \frac{1}{2}m\phi(m).$$

[Hint: first show that if *j* is coprime to *m*, then so is m - j.]

7. For $m \ge 4$, show that the numerator of

$$\sum_{\substack{j=1\\j,m)=1}}^{m} \frac{1}{j}$$

(when expressed in lowest terms) is divisible by m.

8. Show that the number of $j \leq n$ with (j, n) = d is precisely $\phi(n/d)$. Deduce that

$$\sum_{d|n} \phi(d) = n.$$

9. Let *p* be a prime number greater than 3. Show that the numerator of

$$S := \sum_{j=1}^{p-1} \frac{1}{j}$$

is divisible by p^2 . [Hint: Note that $2S = \sum_{j=1}^{p-1} \left(\frac{1}{j} + \frac{1}{p-j}\right)$. and apply question 2.]

10. Let *R* be the ring $\{a+b\sqrt{-2} : a, b \in \mathbb{Z}\}$ and define $N(a+b\sqrt{-2}) := a^2+2b^2$. Given $\alpha, \beta \in R$, show that there exist $\gamma, \delta \in R$ such that $\alpha = \beta\gamma + \delta$ with $N(\delta) < N(\beta)$.