1. Calculate the eigenvalues of the adjacency matrix of the graph on four vertices
\(\circ \rightarrow \circ \circ \rightarrow \circ \). Is this a bipartite graph? Justify your answer.

2. What is a tree? Show that a tree on \(n \) vertices has \(n - 1 \) edges.

3. If \(T \) is a tree on \(n \) vertices with a vertex of degree \(k \), show that \(T \) has at least \(k \) leaves (that is, vertices of degree one).

4. Let \(X \) be a simple graph with \(n \) vertices \(v_1, v_2, ..., v_n \) where \(n \geq 2 \). Let \(A \) be its adjacency matrix with eigenvalues \(\lambda_1, \lambda_2, ..., \lambda_n \). Show that there are real numbers \(c_1, c_2, ..., c_n \) such that the number of paths of length \(r \) from \(v_1 \) to \(v_2 \) is given by

\[
c_1 \lambda_1^r + c_2 \lambda_2^r + \cdots + c_n \lambda_n^r,
\]

for any \(r \geq 1 \).