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for h ̸= 0 where d(n) denotes the number of positive divisors 
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Browning conjectured that the above sum is asymptotic to 
chx(log x)3, for a suitable constant ch ̸= 0, as x → ∞. This 
conjecture is still unproved. Using sieve-theoretic results of 
Wolke and Nair (respectively), it is possible to derive the 
exact order of the sum. The lower bound of the correct 
order of magnitude can also be derived by very elementary 
arguments. In this article, using the Tauberian theory for 
multiple Dirichlet series, we prove an explicit lower bound and 
provide a new theoretical framework to predict Browning’s 
conjectured constant ch.
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1. Introduction

The study of convolution sums of arithmetic functions lies at the heart of analytic 
number theory. Ingham studied [9] the shifted and additive convolution sums of the 
divisor function. For any integer n, let d(n) denote the number of positive divisors of n. 
Ingham showed that for a positive integer h,

∑︂
n≤N

d(n)d(n + h) = 6 
π2σ−1(h)N(logN)2 + O(N logN) (1)

as N → ∞ and
∑︂
n<N

d(n)d(N − n) = 6 
π2σ1(N)(logN)2 + O(σ1(N) logN log logN) (2)

as N → ∞, where σs(n) :=
∑︁

d|n 
d>0

ds for a complex number s.

For a fixed positive integer h, the triple convolution sum of the divisor function is 
defined as

S(x;h) :=
∑︂
n≤x

d(n)d(n− h)d(n + h).

It is still an open problem to determine the asymptotic behaviour of this sum. In 
[3], Browning suggested using some algebraic and geometric methods that S(x;h) ∼
chx(log x)3 as x → ∞ for a precise constant ch > 0, defined as

ch := 11
8 
f(h)

∏︂
p 

(︃
1 − 1 

p

)︃2 (︃
1 + 2 

p

)︃
, (3)

with an explicit function f defined multiplicatively by f(1) = 1 and

f(pν) =

⎧⎨
⎩
(︂
1 + 4 

p + 1 
p2 − 3ν+4

pν+1 − 4 
pν+2 + 3ν+2

pν+3

)︂(︂
1 + 2 

p

)︂−1 (︂
1 − 1 

p

)︂−2
if p > 2,

52
11 − 41+15ν

11×2ν if p = 2,
(4)

for ν ≥ 1. While this conjecture is still open, Browning [3] proved that for ϵ > 0 and 
H ≥ x

3
4+ϵ, as x → ∞, one has

∑︂
h≤H

(︁
S(x;h) − chx(log x)3

)︁
= o(Hx(log x)3). (5)

There is a typo in formula (1.2) on page no. 580 in the published version of the article [3]. 
The factor (1− 1 

p )−1 should be (1− 1 
p )−2 for p > 2 as we have written here in (4). This 

correction is consistent with our new heuristic derivation below using multiple Dirichlet 
series. In fact, the definition in the arXiv version of [3] agrees with (4).

https://arxiv.org/pdf/1006.3476
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Formula (5) suggests that the conjectured asymptotic formula for S(x;h) is true ``on 
average.'' Since divisor functions appear as the Fourier coefficients of Eisenstein series, 
spectral methods have been extensively used by several authors in the study of the 
convolution sums of the divisor functions. For example, Blomer [1] derived a related 
average result with power-saving error terms in this context using spectral tools. A far 
reaching generalisation of these average results for the higher convolutions of a fixed 
generalised divisor function was recently obtained by Matomäki, Radziwiłł, Shao, Tao 
and Teräväinen [11].

1.1. Statement of the theorems

First and foremost, we provide a new framework using the theory of Dirichlet series 
attached to the multivariable arithmetic functions to predict the constant ch in Browing’s 
conjecture. It is worth noting that a lower bound of the correct order of magnitude can 
be obtained using elementary arguments (given in Section 3). However, our result go 
further to capture an explicit constant in the lower bound. Using the theory of the 
multiple Dirichlet series, we prove the following unconditional lower bound of S(x;h).

Theorem 1.1. As x → ∞, we have

S(x;h) ≥ chx(log x)3/27 + Oh(x(log x)2).

Our method of dealing with the triple convolution sum S(x;h) leads to the constant ch
as in (3) (see Proposition 4.1). This provides a theoretical framework to get to the arith
metic constants appearing in several convolution questions related to divisor functions, 
which is studied in the forthcoming paper [12].

The study of the asymptotic behaviour of the divisor function at polynomial argu
ments has a classical origin. Using the theory of smooth numbers, Erdős [6] established 
in 1952 that as x → ∞, 

∑︁
n≤x d(F (n)) ≍ x log x, where F (t) is an irreducible polynomial 

with integer coefficients. Wolke [20] generalised this result for a general multiplicative 
function evaluated at a sequence of natural numbers, under certain sieve-theoretic hy
potheses. Applying inequality (7), it can be shown from Wolke’s results that as x → ∞, 
S(x;h) ≍h x(log x)3. Further generalisations of Wolke’s work were obtained by Nair [14], 
and subsequently by Nair and Tenenbaum [15].

An upper bound of the correct order can also be derived from the main theorem 
of Nair [14]. For the sake of clarity of our exposition, we give a streamlined proof of 
the upper bound inequality by applying the theory of smooth numbers implicit in the 
method of Erdős. Such a streamlined proof will make the method available for more 
general problems in number theory.

Theorem 1.2. As x → ∞, we have

S(x;h) ≪h x(log x)3.
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2. Preliminaries

In this section, we collect the results that are required to prove our theorems. Firstly, 
we need a variant of the Chinese remainder theorem. The key tools for the first theorem 
come from the theory of the multiple Dirichlet series and Tauberian theorems due to de 
la Bretèche [2]. For the second theorem, we need some results on smooth numbers, which 
is a standard chapter in sieve theory.

2.1. Elementary number theory results

The following variant of the Chinese remainder theorem can be found in [10, Theorem 
3-12]. Apparently, this non-standard version of the Chinese remainder theorem for non
coprime moduli was first written down by the Buddhist monk Yih-hing in 717 CE (see 
pages 57-64 of [5]). The first formal proof seems to have been written down by Stieltjes 
(of Stieltjes integral fame) as late as 1890.

Lemma 2.1. For positive integers d1, . . . , dk and integers a1, . . . , ak, the system

⎧⎪⎪⎨
⎪⎪⎩
x ≡ a1 mod d1
...
x ≡ ak mod dk

(6)

has a solution if and only if gcd(di, dj) | (ai − aj) for all 1 ≤ i, j ≤ k. Moreover, when a 
solution exists, it is unique modulo the least common multiple [d1, . . . , dk].

Related to the above lemma, we will need various facts regarding the number of 
solutions of the congruence

f(n) ≡ 0 mod a,

for a given polynomial f(x) = a0x
m + a1x

m−1 + · · · + am ∈ Z[x]. Such a polynomial is 
called an integral polynomial. It is said to be primitive if the greatest common divisor 
of ai’s is equal to 1. We quote the following from Nagell [13, Theorems 52 and 54, page 
no. 90].

Lemma 2.2. Let f(x) be a primitive integral polynomial of degree m with non-zero dis
criminant D. If p is a prime divisor of D, then the congruence

f(x) ≡ 0 mod pa

has at most mD2 many solutions. If p is coprime to D, then the number of solutions is 
at most m.
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Combining this with the Chinese remainder theorem and specialising to the polyno
mial f(x) = x(x + h)(x− k), immediately we get the following:

Lemma 2.3. For hk(h + k) ̸= 0, the number of solutions of the congruence

n(n + h)(n− k) ≡ 0 mod a

is bounded by 3ω(a)(hk)4(h+ k)4, where ω(a) is the number of distinct prime divisors of 
a.

Lemma 2.2 has since been improved by Huxley [8], who gave a bound of m|D|1/2
instead of mD2 in the case p | D. Thus, the bound in the above Lemma 2.3 can be 
improved to

3ω(a)hk(h + k).

We will not need the sharper result, but we merely record it here for academic interest.
We will need to use the elementary results recorded in the next lemma. They follow 

from standard analytic number theory (see [17, Ex. 4, Chap. I.3]).

Lemma 2.4. For an integer a ≥ 1, let ω(a) be the number of distinct prime divisors of a. 
Then as x → ∞, we have

∑︂
a≤x

3ω(a) ≪ x(log x)2 and
∑︂
a≤x

3ω(a)

a 
≪ (log x)3.

We will also need the following result from elementary number theory.

Lemma 2.5. For the divisor function d(n), we have for hk(h + k) ̸= 0,

d(n)d(n + h)d(n− k) ≤ d(h)d(k)d(h + k)d(n(n + h)(n− k)). (7)

Proof. As usual, we denote by (u, v) and [u, v], the gcd and lcm respectively of the 
integers u, v and by (u, v, w) and [u, v, w], the gcd and lcm respectively of the integers 
u, v, w. Given three non-negative integers a, b, c, it is evident that

max{a, b, c} = a + b + c− min{a, b} − min{a, c} − min{b, c} + min{a, b, c}. (8)

The easiest way to see this is by setting Sr = {1, . . . , r} so that the assertion is equivalent 
to

|Sa ∪ Sb ∪ Sc| = |Sa| + |Sb| + |Sc| − |Sa ∩ Sb| − |Sa ∩ Sc| − |Sb ∩ Sc| + |Sa ∩ Sb ∩ Sc|,
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which follows from the inclusion-exclusion principle. The equality (8) implies that for 
any multiplicative arithmetic function f , we have

f(u)f(v)f(w) = f([u, v, w])f((u, v))f((u,w))f((v, w))
f((u, v, w)) , (9)

generalising the familiar identity for two variables, f([u, v])f(u, v) = f(u)f(v), which 
can be derived using the fact that max{a, b} = a + b − min{a, b}. Applying (9) to the 
divisor function gives

d(n)d(n + h)d(n− k) = d([n, n + h, n− k])d((n, n + h))d((n, n− k))d((n + h, n− k))
d((n, n + h, n− k)) .

Thus,

d(n)d(n + h)d(n− k) ≤ d(h)d(k)d(h + k)d(n(n + h)(n− k)),

as claimed. □
2.2. Results from multiple Dirichlet series theory

We now recall the setup of arithmetic functions of several variables and the multiple 
Dirichlet series. It seems that the arithmetic functions of several variables were first 
discussed by Vaidyanathaswamy [19] in 1931. He defined a multiplicative function of 
several variables as a function f : Nk → C that satisfies the property

f(m1n1, . . . ,mknk) = f(m1, . . . ,mk)f(n1, . . . , nk)

when gcd(m1 · · ·mk, n1 · · ·nk) = 1. In the one variable case, we know that the Dirichlet 
convolution of two multiplicative functions is again a multiplicative function. The same 
can be found true if we define the Dirichlet convolution of two arithmetic functions of 
several variables f and g as

(f ⋆ g)(n1, . . . , nk) :=
∑︂
di|ni

1≤i≤k

f(d1, . . . , dk)g(n1/d1, . . . , nk/dk).

In the context of determining the average order of arithmetic functions of several vari
ables, de la Bretèche [2] derived a multi-variable version of the classical Tauberian 
theorems. To state this version, we need the following notations.
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Notations

Let R+ denote the set of all non-negative real numbers and R+
∗ denote the set of all 

positive real numbers. For a positive integer m, we denote an m-tuple (s1, . . . , sm) of 
complex numbers by sss. Let τj = ℑ(sj) and ℒm(C) be the space of all linear forms on 
Cm over C. We denote by {ej}mj=1, the canonical basis of Cm and 

{︁
e∗j
}︁m

j=1, the dual 
basis in ℒm(C). Let ℒRm(C) (respectively ℒR+

m(C)) denote the set of linear forms in 
ℒm(C) whose restriction to Rm (respectively to (R+)m) has values in R (respectively, 
in R+). Let βj > 0 for all j = 1, . . . ,m. Then we denote by ℬ the linear form 

∑︁m
j=1 βje

∗
j

and βββ = (β1, . . . , βm) be the associated row matrix. We define Xβββ := (Xβ1 , . . . , Xβm). 
Let ℒ be a family of linear forms and for this we define conv(ℒ) :=

∑︁
ℓ∈ℒ R+ℓ and 

conv∗(ℒ) :=
∑︁

ℓ∈ℒ (R+
∗ )ℓ. With these notations in place, [2, Théorème 1] reads as follows:

Theorem 2.1. Let f be an arithmetic function on Nm taking positive values and F be the 
associated Dirichlet series

F (sss) =
∞ ∑︂

d1=1

. . .
∞ ∑︂

dm=1

f(d1, . . . , dm)
ds11 . . . dsmm

.

Suppose that there exists ααα = (α1, . . . , αm) ∈ (R+)m such that F satisfies the following 
three properties: 

(1) the series F (sss) is absolutely convergent for sss ∈ Cm such that ℜ(si) > αi;
(2) there exists a family ℒ of n many non-zero linear forms ℒ :=

{︁
ℓ(i)

}︁n

i=1 in ℒR+
m(C)

and a family of finitely many linear forms 
{︁
h(k)}︁

k∈𝒦 in ℒR+
m(C), such that the 

function H from Cm to C defined by

H(sss) := F (sss +ααα)
n ∏︂

i=1
ℓ(i)(sss)

can be extended to a holomorphic function in the domain

𝒟(δ1, δ3) :=
{︂
sss ∈ Cm : ℜ

(︂
ℓ(i)(sss)

)︂
> −δ1 for all i and ℜ

(︂
h(k)(sss)

)︂
> −δ3 for all k ∈ 𝒦

}︂

for some δ1, δ3 > 0;
(3) there exists δ2 > 0 such that for every ϵ, ϵ′ > 0, the upper bound

|H(sss)| ≪ (1 + ||ℑ(sss)||ϵ1)
n ∏︂

i=1

(︂
|ℑ

(︂
ℓ(i)(sss)

)︂
| + 1

)︂1−δ2 min
{︂
0,ℜ

(︂
ℓ(i)(sss)

)︂}︂

is uniformly valid in the domain 𝒟 (δ1 − ϵ′, δ3 − ϵ′).
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Let J(ααα) := {j ∈ {1, . . . ,m} : αj = 0}. Let r := |J(ααα)| and ℓ(n+1), . . . , ℓ(n+r) be the linear 
forms e∗j for j ∈ J(ααα). Then for βββ = (β1, . . . , βm) ∈ (R+)m, there exists a polynomial 
Qβββ ∈ R[X] of degree less than or equal to n + r − rank

(︂{︁
ℓ(i)

}︁n+r

i=1

)︂
and a real number 

θ = θ
(︂
ℒ,

{︁
h(k)}︁

k∈𝒦 , δ1, δ2, δ3,ααα,βββ
)︂
> 0 such that we have, for X ≥ 1,

S(Xβββ) :=
∑︂

1≤d1≤Xβ1

. . .
∑︂

1≤dm≤Xβm

f(d1, . . . , dm) = X⟨ααα,βββ⟩ (︁Qβββ(logX) + O(X−θ)
)︁
.

We also need [2, Théorème 2].

Theorem 2.2. Let the notations be as in Theorem 2.1. If we have that ℬ is not in the 
span of 

{︁
ℓ(i)

}︁n+r

i=1 , then Qβββ = 0. Next suppose, we have the following two conditions:

(1) there exists a function G such that H(sss) = G(ℓ(1)(sss), . . . , ℓ(n+r)(sss));
(2) ℬ is in the span of 

{︁
ℓ(i)

}︁n+r

i=1 and there exists no strict subfamily ℒ′ of 
{︁
ℓ(i)

}︁n+r

i=1
such that ℬ is in the span of ℒ′ with

card(ℒ′) − rank(ℒ′) = card

(︃{︂
ℓ(i)

}︂n+r

i=1

)︃
− rank

(︃{︂
ℓ(i)

}︂n+r

i=1

)︃
.

Then, for X ≥ 3, the polynomial Qβββ satisfies the relation

Qβββ(logX) = C0X
−⟨ααα,βββ⟩I(Xβββ) + O((logX)ρ−1),

where C0 := H(0, . . . , 0), ρ := n + r − rank
(︂{︁

ℓ(i)
}︁n+r

i=1

)︂
, and

I(Xβββ) :=
∫︂∫︂

. . .

∫︂
A(Xβββ)

dy1 . . . dyn∏︁n
i=1 y

1−ℓ(i)(ααα)
i

with

A(Xβββ) :=
{︄
yyy ∈ [1,∞)n :

n ∏︂
i=1

y
ℓ(i)(ej)
i ≤ Xβj for all j

}︄
.

2.3. Results from the theory of smooth numbers

We now recall some key results on smooth numbers. Let 𝒮(x, y) be the set of natural 
numbers less than x that have all their prime factors less than y. Such numbers are called 
y-smooth. The size of 𝒮(x, y) is traditionally denoted by Ψ(x, y). The results we record 
here can all be found in Chapter III.5 of Tenenbaum’s book [17]. The first assertion was 
first proved by Canfield, Erdős and Pomerance in [4] (see Corollary on page 15). The 
second assertion originates in a 1938 paper of Rankin [16] and his method of proof is 
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often dubbed as ``Rankin’s trick.'' The elementary nature of this trick is explained well 
in Granville’s survey article [7].

Proposition 2.1. Letting

u = log x
log y ,

we have

Ψ(x, y) ≪ x exp
(︃
−1

2u log u
)︃
,

as x → ∞, provided that for any fixed ϵ > 0, we have

1 ≤ u ≤ (1 − ϵ) log x 
log log x.

Also, for any A > 0,

Ψ(x, (log x)A) ≪ x1− 1 
A exp

(︃
c log x 

log log x

)︃
,

as x → ∞, for a positive constant c.

These results are very useful. In particular, we can apply them to derive the following 
variants of Lemma 2.4.

Lemma 2.6. For a fixed δ ∈ (0, 1), x large enough, we have

∑︂
xδ<d≤x

d∈𝒮(x;(log x)2)

3ω(d)

d 
≪ x− δ

2 +ϵ,

for any ϵ > 0. Moreover, for a positive integer t such that x1/t ≥ (log x)2, we have

∑︂
xδ<d≤x

d∈𝒮(x;x1/t)

3ω(d)

d 
≪ (log x)3 exp(−ct log t),

for some positive constant c.

Proof. This can be seen as an application of Proposition 2.1 along with partial summa
tion. □
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3. Setting up the proof of Theorem 1.1

Before embarking on the proof proper, we exhibit an elementary proof of the fact that 
S(x;h) ≫h x(log x)3.

3.1. Elementary proof of the lower bound

We first assume that h is even. Note that if n is coprime to h, then the numbers 
n, n± h are mutually coprime. Therefore, in this case

S(x;h) ≥
∑︂
n≤x

(n,h)=1

d(n)d(n− h)d(n + h) =
∑︂
n≤x

(n,h)=1

d(n(n2 − h2)).

Any divisor of n(n2 − h2) factors uniquely as d1d2d3 with d1 | n, d2 | (n + h) and 
d3 | (n−h). In counting the divisors of n(n2−h2), we can restrict to counting only divisors 
d1, d2, d3 less than x1/3 to obtain a lower bound for our sum under consideration. By the 
coprimality of the terms, we must have n belonging to a unique progression mod d1d2d3. 
Thus,

S(x;h) ≥
∑︂′

d1,d2,d3≤x1/3

(︃
x 

d1d2d3
+ O(1)

)︃
,

where the prime on the sum indicates that d1, d2, d3 are coprime to h. This shows that 
S(x;h) ≫h x(log x)3.

Now if h is odd, we consider only even integers n which are coprime to h. Then the 
numbers n, n± h are mutually coprime. Therefore, in this case

S(x;h) ≥
∑︂

even n≤x
(n,h)=1

d(n)d(n− h)d(n + h) =
∑︂

even n≤x
(n,h)=1

d(n(n2 − h2)).

We can then get a similar estimate as above by choosing the divisor d1 of n to be even. 
To derive the finer result stated in Theorem 1.1, we proceed as follows.

3.2. Estimating S(x;h)

Without loss of generality, we can assume that h ≤ x/2. We write the triple convolu
tion sum of the divisor function as follows

S(x;h) =
∑︂
n≤x

d(n)d(n− h)d(n + h) =
∑︂
n≤x

⎛
⎝ ∑︂

u|n+h

1

⎞
⎠

⎛
⎝∑︂

v|n 
1

⎞
⎠

⎛
⎝ ∑︂

w|n−h

1

⎞
⎠
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=
∑︂

u≤x+h
v≤x

w≤x−h

∑︂′

n≤x 
1,

where the primed sum denotes the sum for n ≤ x where n + h ≡ 0 mod u, n ≡ 0 mod v

and n− h ≡ 0 mod w. Note that the outer sum is over all the integer triples (u, v, w) in 
the set [1, x + h] × [1, x] × [1, x− h]. We split the sum to write

S(x;h) = S1(x;h) + S2(x;h) − S3(x;h),

where

S1(x;h) :=
∑︂

u,v,w≤x

∑︂′

n≤x 
1, S2(x;h) :=

∑︂
x<u≤x+h
v,w≤x

∑︂′

n≤x 
1 and 

S3(x;h) :=
∑︂

u≤x+h,v≤x
x−h<w≤x

∑︂′

n≤x 
1.

It can be seen that S2(x;h) = O(σ1(h) log2 x). However, for a lower bound of S(x;h), we 
can just write S(x;h) ≥ S1(x;h)−S3(x;h). For S3(x;h), we prove the following lemma.

Lemma 3.1. For a fixed positive integer h, S3(x;h) ≤ hd(h)d(2h).

Proof. Note that 1 − h ≤ n − h ≤ x − h and w | (n − h). If n − h = mw for some 
m ≥ 1, then x − h < w ≤ mw = n − h ≤ x − h, a contradiction. Hence, n − h = mw

for m ≤ 0. Now suppose n − h = −tw for some t ≥ 1. Since x − h < w ≤ x, we 
have −tx ≤ −tw < −tx + th and 1 − h ≤ n − h ≤ x − h. Therefore, we must have 
−tx+ th > 1− h, which implies that h > (1 + tx)/(1 + t) > x/2, a contradiction. Hence 
n = h is the only possibility and thus

S3(x;h) =
∑︂

u≤x+h
v≤x

x−h<w≤x

∑︂
2h≡0 mod u
h≡0 mod v

1 ≤ hd(h)d(2h). □

This means that to determine the asymptotic behaviour of S(x;h), it suffices to study 
S1(x;h).

4. Proof of Theorem 1.1

As mentioned, we begin by estimating S1(x;h).
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4.1. Estimating S1(x;h)

Applying Lemma 2.1, we can write the inner sum in the definition of S1(x;h) as

∑︂′

n≤x 
1 = xg(u, v, w)

[u, v, w] + E(x;u, v, w),

where the error term E := E(x;u, v, w) is bounded by 1, the term [u, v, w] denotes 
the least common multiple of u, v, w and g(u, v, w) is a multiplicative function taking 
the value 1 if and only if the system n ≡ −h mod u, n ≡ 0 mod v, n ≡ h mod w has a 
solution, else it is 0. Therefore,

S1(x;h) =
∑︂

u,v,w≤x

g(u, v, w)
{︃

x 
[u, v, w] + E

}︃
.

In order to understand the sum 
∑︁

u,v,w≤x g(u, v, w)/[u, v, w], we analyse the multiple 
Dirichlet series

F (s1, s2, s3) :=
∑︂

u,v,w≥1

g(u, v, w)
[u, v, w] 

1 
us1

1 
vs2

1 
ws3

,

defined for ℜ(s1),ℜ(s2),ℜ(s3) > 1. As g is a multiplicative function (which can be 
seen using Lemma 2.1), the function F has a convergent Euler product over the prime 
numbers, for ℜ(s1),ℜ(s2),ℜ(s3) > 1, namely,

F (s1, s2, s3) =
∏︂
p 

⎛
⎝ ∑︂

ν1,ν2,ν3≥0

g(pν1 , pν2 , pν3)
[pν1 , pν2 , pν3 ] 

1 
pν1s1+ν2s2+ν3s3

⎞
⎠ .

If at least two of ν1, ν2, ν3 are ≥ 1 and g(pν1 , pν2 , pν3) = 1, then p | 2h. So we split the 
Euler product into two sub-products, one for p | 2h and the other for p ∤ 2h. We first 
consider the infinite product

∏︂
p ∤ 2h

⎛
⎝ ∑︂

ν1,ν2,ν3≥0

g(pν1 , pν2 , pν3)
[pν1 , pν2 , pν3 ] 

1 
pν1s1+ν2s2+ν3s3

⎞
⎠ .

Hence in this product if at least two of ν1, ν2, ν3 are ≥ 1, then g(pν1 , pν2 , pν3) = 0. 
Therefore, we need to consider the cases when at most one of them is positive and 
we will get non-zero contributions from the triples (0, 0, 0), (ν1, 0, 0), (0, ν2, 0), (0, 0, ν3), 
where νi ≥ 1 in the respective cases. For (ν1, 0, 0), the contribution is

∑︂
ν1≥1

1 
[pν1 , 1, 1]

1 
pν1s1

=
∑︂
ν1≥1

1 
p(1+s1)ν1

= 1 
p1+s1 − 1 .
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Similarly, for (0, ν2, 0) and (0, 0, ν3), the contributions are

∑︂
ν2≥1

1 
p(1+s2)ν2

= 1 
p1+s2 − 1 and 

∑︂
ν3≥1

1 
p(1+s3)ν3

= 1 
p1+s3 − 1 ,

respectively. Therefore, for p ∤ 2h the corresponding Euler product is

∏︂
p ∤ 2h

(︃
1 + 1 

p1+s1 − 1 + 1 
p1+s2 − 1 + 1 

p1+s3 − 1

)︃
.

We claim that this is same as ζ(1+ s1)ζ(1+ s2)ζ(1+ s3) up to an infinite product which 
is convergent on the domain

{︃
(s1, s2, s3) ∈ C3 : ℜ(si) > −1

2 for all i = 1, 2, 3
}︃
.

To see this, we study the product

∏︂
p ∤ 2h

(︃
1 +

1 
p1+s1 − 1

+
1 

p1+s2 − 1
+

1 
p1+s3 − 1

)︃(︃
1 − 1 

p1+s1

)︃(︃
1 − 1 

p1+s2

)︃(︃
1 − 1 

p1+s3

)︃
.

For X,Y, Z ̸= 0, 1, note that

(︃
1 + 1 

X − 1 + 1 
Y − 1 + 1 

Z − 1

)︃(︃
1 − 1 

X

)︃(︃
1 − 1 

Y

)︃(︃
1 − 1 

Z

)︃

=
(︃

1 − 1 
XY

− 1 
Y Z

− 1 
ZX

+ 2 
XY Z

)︃
.

Clearly, the infinite product

Ah(s1, s2, s3) :=
∏︂

p ∤ 2h

(︃
1 − 1 

ps1+s2+2 − 1 
ps2+s3+2 − 1 

ps3+s1+2 + 2 
ps1+s2+s3+3

)︃

converges absolutely if ℜ(1 + si) > 1/2 for all i = 1, 2, 3. In this context, the Tauberian 
theorems of de la Bretèche, Theorem 2.1 and Theorem 2.2, allow us to derive the following 
proposition.

Proposition 4.1. As x → ∞, we have

∑︂
u,v,w≤x

g(u, v, w)
[u, v, w] = Δ(h)

∏︂
p 

(︃
1 − 1 

p

)︃2 (︃
1 + 2 

p

)︃
(log x)3 + Oh((log x)2),

where Δ(h) is a non-zero constant given by
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Δ(h) =
∏︂
p|2h

(︃
1 − 1 

p

)︃(︃
1 + 2 

p

)︃−1
⎛
⎝ ∑︂

ν1,ν2,ν3≥0

g(pν1 , pν2 , pν3)
[pν1 , pν2 , pν3 ] 

⎞
⎠ . (10)

Moreover, we have Δ(h) = 11f(h)/8, where f is the multiplicative function given by (4).

Assuming Proposition 4.1, we first complete our proof of Theorem 1.1.

Proof of Theorem 1.1 assuming Proposition 4.1. Note that

S1(x;h) =
∑︂

u,v,w≤x

g(u, v, w)
{︃

x 
[u, v, w] + E

}︃
≥

∑︂
u,v,w≤x1/3

g(u, v, w)
{︃

x 
[u, v, w] + O(1)

}︃
.

Applying Proposition 4.1, we therefore have

S1(x;h) ≥
∑︂

u,v,w≤x1/3

g(u, v, w) x 
[u, v, w] + O(x) ≳ Chx(log x)3/27 + Oh(x(log x)2),

where

Ch = Δ(h)
∏︂
p 

(︃
1 − 1 

p

)︃2 (︃
1 + 2 

p

)︃
.

Since Δ(h) = 11f(h)/8, we get Ch = ch (as in (3)) and hence we are done. □
So we are left to prove Proposition 4.1.

4.2. Proof of Proposition 4.1

We need to apply both Theorem 2.1 and Theorem 2.2. Recall that

F (s1, s2, s3) =
∏︂

p ∤ 2h

⎛
⎝ ∑︂

ν1,ν2,ν3≥0

g(pν1 , pν2 , pν3)
[pν1 , pν2 , pν3 ] 

1 
pν1s1+ν2s2+ν3s3

⎞
⎠×

∏︂
p | 2h

⎛
⎝ ∑︂

ν1,ν2,ν3≥0

g(pν1 , pν2 , pν3)
[pν1 , pν2 , pν3 ] 

1 
pν1s1+ν2s2+ν3s3

⎞
⎠

= Ah(s1, s2, s3)Bh(s1, s2, s3)ζ(1 + s1)ζ(1 + s2)ζ(1 + s3)×

∏︂
p | 2h

⎛
⎝ ∑︂

ν1,ν2,ν3≥0

g(pν1 , pν2 , pν3)
[pν1 , pν2 , pν3 ] 

1 
pν1s1+ν2s2+ν3s3

⎞
⎠ ,

where
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Bh(s1, s2, s3) :=
∏︂
p|2h

(︃
1 − 1 

p1+s1

)︃(︃
1 − 1 

p1+s2

)︃(︃
1 − 1 

p1+s3

)︃
.

Note that from the expressions of Ah(s1, s2, s3) and F (s1, s2, s3), we clearly see that 
F (s1, s2, s3) converges if ℜ(si) > 0 for all i = 1, 2, 3. So we have ααα = (0, 0, 0). 
Moreover, choosing the family ℒ =

{︁
ℓ(1), ℓ(2), ℓ(3)

}︁
of non-zero linear forms defined as 

ℓ(i)(s1, s2, s3) = si for i = 1, 2, 3, we get that the function H(s1, s2, s3), defined by

H(s) := F (s +ααα)
3 ∏︂

i=1
ℓ(i)(s) = F (s1, s2, s3)s1s2s3,

can be extended to the domain 
{︁
(s1, s2, s3) ∈ C3 : ℜ(ℓ(i)(s)) > −1/2 for all i = 1, 2, 3

}︁
. 

So we can choose δ1 = 1/2, to apply Theorem 2.1. Moreover, for the choice of δ2, we note 
the estimate |sζ(s + 1)| ≪ (1 + |t|)1−σ

2 +ϵ for −1/2 < σ < 0, where s = σ + ιt, giving us 
δ2 = 1/2. This uses the standard convexity principle (see Titchmarsh [18, Chapter 5, eq. 
(5.1.4)]). Since ααα = (0, 0, 0), r = |J(ααα)| = | {j ∈ {1, 2, 3} : αj = 0} | = 3. We consider the 
linear forms {ℓ(4), ℓ(5), ℓ(6)} given by ℓ(3+i)(s1, s2, s3) = e∗i (s1, s2, s3) = si for i = 1, 2, 3. 
Therefore, using Theorem 2.1, we conclude that

∑︂
u≤xβ1

∑︂
v≤xβ2

∑︂
w≤xβ3

g(u, v, w)
[u, v, w] ∼ x⟨ααα,βββ⟩Qβββ(log x).

Now we will apply Theorem 2.2 for βββ = (β1, β2, β3) = (1, 1, 1). The concerned linear form 

is ℬ(s1, s2, s3) :=
(︂∑︁3

j=1 βje
∗
j

)︂
(s1, s2, s3) = s1 + s2 + s3. The polynomial Qβββ satisfies 

the relation

Qβββ(log x) = C0x
−⟨ααα,βββ⟩I(xβββ) + O((log x)ρ−1),

where C0 := H(0, 0, 0), ρ := n + r − rank
(︂{︁

ℓ(i)
}︁6
i=1

)︂
= 3 and

I(xβββ) :=
∫︂∫︂∫︂
A(xβββ) 

dy1dy2dy3∏︁3
i=1 y

1−ℓ(i)(ααα)
i

,

with

A(xβββ) :=
{︄
yyy ∈ [1,∞)3 :

3 ∏︂
i=1

y
ℓ(i)(ej)
i ≤ xβj for all j

}︄

= {(y1, y2, y3) : 1 ≤ yi ≤ x for all i} .

Therefore,
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I(xβββ) =
x ∫︂

y1=1

x ∫︂
y2=1

x ∫︂
y3=1

dy1dy2dy3

y1y2y3
= (log x)3.

Further,

H(0, 0, 0) =
∏︂

p ∤ 2h

(︃
1 − 3 

p2 + 2 
p3

)︃ ∏︂
p | 2h

(︃
1 − 1 

p

)︃3 ∏︂
p | 2h

⎛
⎝ ∑︂

ν1,ν2,ν3≥0

g(pν1 , pν2 , pν3)
[pν1 , pν2 , pν3 ] 

⎞
⎠

=
∏︂

p ∤ 2h

(︃
1 − 1 

p

)︃2 (︃
1 + 2 

p

)︃ ∏︂
p | 2h

(︃
1 − 1 

p

)︃3 ∏︂
p | 2h

⎛
⎝ ∑︂

ν1,ν2,ν3≥0

g(pν1 , pν2 , pν3)
[pν1 , pν2 , pν3 ] 

⎞
⎠

=
∏︂
p 

(︃
1 − 1 

p

)︃2 (︃
1 + 2 

p

)︃ ∏︂
p | 2h

(︃
1 − 1 

p

)︃(︃
1 + 2 

p

)︃−1

×

⎛
⎝ ∑︂

ν1,ν2,ν3≥0

g(pν1 , pν2 , pν3)
[pν1 , pν2 , pν3 ] 

⎞
⎠

= Δ(h)
∏︂
p 

(︃
1 − 1 

p

)︃2 (︃
1 + 2 

p

)︃
.

4.2.1. Verification of Δ(h) = 11f(h)/8
We begin with an odd prime factor p of h. We have to evaluate the sum

sp :=
∑︂

ν1,ν2,ν3≥0

g(pν1 , pν2 , pν3)
[pν1 , pν2 , pν3 ] .

Recall that g(pν1 , pν2 , pν3) = 1 if and only if (pν1 , pν2) | h, (pν2 , pν3) | h and (pν1 , pν3) | 2h. 
Let r be the highest power of p dividing h. Clearly, if g(pν1 , pν2 , pν3) = 1, then at most 
one of the νi can be ≥ r + 1. The contribution in each case to the sum sp is

(r + 1)2
∑︂

a≥r+1

1 
pa

.

Hence the total contribution here would be 3(r + 1)2
∑︁

a≥r+1 1/pa. Now we can assume 
0 ≤ νi ≤ r for all i = 1, 2, 3. If all these indices are equal, we get the contribution

r∑︂
a=0

1 
pa

.

If exactly two of the indices are equal, then the remaining index has 3 possibilities and 
that index can be bigger or smaller than the other two indices. In any case, we get the 
contribution
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6
r∑︂

a=1

a−1∑︂
b=0 

1 
pa

= 6
r∑︂

a=1

a 
pa

.

Now if all three indices are different, we can have 6 possible ordering among them and 
in this case, we get the contribution

6
r∑︂

a=2

a−1∑︂
b=1 

b−1 ∑︂
c=0 

1 
pa

= 6
r∑︂

a=2

a−1∑︂
b=1 

b 
pa

= 3
r∑︂

a=2

a(a− 1)
pa

,

and hence

sp = 3(r + 1)2
∑︂

a≥r+1

1 
pa

+
r∑︂

a=0

1 
pa

+ 6
r∑︂

a=1

a 
pa

+ 3
r∑︂

a=2

a(a− 1)
pa

.

It is easy to check that

(r + 1)2
∑︂

a≥r+1

1 
pa

= (r + 1)2

pr+1

(︃
1 − 1 

p

)︃−1

and 
r∑︂

a=0

1 
pa

=
(︃

1 − 1 
pr+1

)︃(︃
1 − 1 

p

)︃−1

.

One can also check that

r∑︂
a=1

a 
pa

=
(︃

1 
p
− r + 1

pr+1 + r

pr+2

)︃(︃
1 − 1 

p

)︃−2

,

and

r∑︂
a=2

a(a− 1)
pa

=
(︃

2 
p2 − r2 + r

pr+1 + 2r2 − 2
pr+2 − r2 − r

pr+3

)︃(︃
1 − 1 

p

)︃−3

.

So,

(︃
1 − 1 

p

)︃3

sp =
(︃

3r2 + 6r + 2
pr+1 + 1

)︃(︃
1 − 2 

p
+ 1 

p2

)︃
+ 6

(︃
1 
p
− r + 1

pr+1 + r

pr+2

)︃(︃
1 − 1 

p

)︃

+ 3
(︃

2 
p2 − r2 + r

pr+1 + 2r2 − 2
pr+2 − r2 − r

pr+3

)︃

=1 + 4 
p

+ 1 
p2 − 3r + 4

pr+1 − 4 
pr+2 + 3r + 2

pr+3 .

This completes the verification of the factors corresponding to the odd prime divisors of 
h, using (4). For the prime p = 2, we show that if r is the highest power of 2 dividing h, 
then the corresponding factor in Δ(h) is

13
2 

− 41 + 15r
2r+3 = 11

8 

(︃
52
11 − 41 + 15r

2r × 11 

)︃
.
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This will complete the proof.
We evaluate the sum

s2 :=
∑︂

ν1,ν2,ν3≥0

g(2ν1 , 2ν2 , 2ν3)
[2ν1 , 2ν2 , 2ν3 ] .

If 0 ≤ νi ≤ r for all i = 1, 2, 3, then as before the contribution to s2 in this case is

r∑︂
a=0

1 
2a + 6

r∑︂
a=1

a 
2a + 3

r∑︂
a=2

a(a− 1)
2a

= 2
(︃

1 − 1 
2r+1

)︃
+ 24

(︃
1
2 − r + 1

2r+1 + r

2r+2

)︃
+ 24

(︃
1
2 − r2 + r

2r+1 + 2r2 − 2
2r+2 − r2 − r

2r+3

)︃

= 26 − 25
2r − 15r

2r − 3r2

2r .

Now we assume that νi ≥ r + 1 for at least one of i = 1, 2, 3. Here the counting is 
different. We note that if g(2ν1 , 2ν2 , 2ν3) = 1, then we have the following conditions: at 
most one of ν1, ν2 > r, at most one of ν2, ν3 > r and at most one of ν1, ν3 > r + 1. We 
then have the following four possible choices:

i) if ν1 = r + 1, then ν2 < r + 1 and ν3 ≥ 0;
ii) if ν1 > r + 1, then ν2 < r + 1 and ν3 ≤ r + 1;
iii) if ν1 < r + 1 and ν2 ≥ r + 1, then ν3 < r + 1;
iv) if ν1 < r + 1 and ν2 < r + 1, then ν3 ≥ r + 1.

The contribution of case i) to s2 is

(r + 1)2

2r+1 + (r + 1)
∑︂

ν3≥r+1

1 
2ν3

= (r + 1)2

2r+1 + (r + 1)
2r .

The contribution of case ii) to s2 is

(r + 1)(r + 2)
∑︂

ν1>r+1

1 
2ν1

= (r + 1)(r + 2)
2r+1 = (r + 1)2

2r+1 + (r + 1)
2r+1 .

The contribution of case iii) to s2 is

(r + 1)2
∑︂

ν2≥r+1

1 
2ν2

= (r + 1)2

2r .

The contribution of case iv) to s2 is



B. Misra et al. / Journal of Number Theory 283 (2026) 97--120 115

(r + 1)2
∑︂

ν3≥r+1

1 
2ν3

= (r + 1)2

2r .

Hence the total contribution of these above four cases is

3(r + 1)2

2r + 3(r + 1)
2r+1 ,

and thus

s2 = 26 − 41 + 15r
2r+1 = 4

(︃
13
2 

− 41 + 15r
2r+3

)︃
.

This completes the proof.

5. Proof of Theorem 1.2

In 1952, Erdős proved that if f(x) is any irreducible polynomial with integer coeffi
cients, then there are positive constants c1 and c2 such that

c1x log x ≤
∑︂
n≤x

d(f(n)) ≤ c2x log x,

for x ≥ 2. The result is false if f(x) is not irreducible as can be seen from Ingham’s 
theorem (1). However, the argument of Erdős can be suitably adapted to show that in 
our case, as x → ∞,

S(x;h) ≪h x(log x)3.

Though it is difficult to identify them in Erdős’s paper [6], his method has three steps 
and it proceeds as follows:

We consider f(x) = x(x− h)(x + h). By Lemma 2.5, we first note that as x → ∞,

S(x;h) ≪h

∑︂
n≤x

d(f(n)).

Hence our goal is to bound the latter sum applying the method of Erdős. Suppose that 
f(n) has r many prime factors, counted with multiplicity. We write

|f(n)| = (p1p2 · · · pj)(pj+1 · · · pr), (11)

with p1 ≤ p2 ≤ · · · ≤ pj ≤ pj+1 ≤ · · · ≤ pr and the index j is the largest such that

m := p1p2 · · · pj ≤ x.

The strategy is that the bulk of the divisors of f(n) are actually coming from the factor 
m = (p1p2 · · · pj). Indeed, by the sub-multiplicativity of the divisor function, we have
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d(f(n)) ≤ 2r−jd(p1 · · · pj).

(1) Step 1: If n is such that r − j is bounded by 11 (say), then the contribution to the 
sum S(x;h) from such n is bounded by

≪
∑︂
m≤x

∑︂
a|f(m)
a≤x 

1 =
∑︂
a≤x

∑︂
a|f(m)
m≤x 

1.

By the Chinese remainder theorem as in Lemma 2.3, the inner sum is easily seen to 
be

≪ 3ω(a)x

a 
.

Summing this over a ≤ x and using Lemma 2.4, we get the desired bound of 
O(x log3 x) coming from these n’s.

(2) Step 2: Suppose now that n is such that for f(n), r− j is greater than 11. Choosing 
x large enough, we get that pj+1 < x4/11, for otherwise |f(n)| > x4, a contradiction, 
since in our case f has degree 3 and f(n) = O(n3). By the definition of j, we have

(p1 · · · pj)pj+1 > x

so that

x7/11 < p1 · · · pj < x. (12)

Now, pj ≤ pj+1 < x4/11 and so, there is a positive integer t such that

x1/(t+1) ≤ pj ≤ x1/t.

Step 2a. We first suppose that x1/t > (log x)2. Note that p1 · · · pj is x1/t-smooth. 
The plan is to estimate the contribution from each possible value of t and then sum 
over the t. Thus, fixing t, we see that

pj+1 · · · pr > x(r−j)/(t+1).

For our cubic polynomial, we must have r − j ≤ 3(t + 1). Thus, for such n under 
consideration, we use the elementary inequality

d(n) ≤ 2
∑︂
a|n

a≥√
n

1, (13)

to get
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d(f(n)) < 23t+3d(p1 · · · pj) ≤ 23t+4
∑︂

d|p1···pj

x≥d≥√
p1···pj

1,

with p1 · · · pj being x1/t-smooth and the divisor d > x7/22 by virtue of (12). By 
Lemma 2.3, we have that the total contribution from such numbers is bounded 
above by

∑︂
t≥1 

23t+4
∑︂

d∈𝒮(x,x1/t)
d>x7/22

∑︂
m≤x
d|f(m)

1 ≪
∑︂
t≥1 

23t
∑︂

d∈𝒮(x,x1/t)
d>x7/22

x3ω(d)

d 
.

As x → ∞, the innermost sum is

≪ x(log x)3 exp (−ct log t) ,

for some suitable positive constant c, by Lemma 2.6. Since

∑︂
t≥1 

23t exp (−ct log t)

converges, we are done in this case. 
Step 2b. It remains to consider the case x1/t ≤ (log x)2. Using the familiar estimate 
d(n) ≪ nϵ, for any ϵ > 0, we first write

d(f(n)) ≪ nϵd(p1 · · · pj) ≪ xϵ
∑︂

d|p1···pj

x≥d≥√
p1···pj

1,

with p1 · · · pj being (log x)2-smooth and the divisor d > x7/22. Now summing for all 
these n’s (indicated by a prime for the n’s under consideration), we get

∑︂′

n≤x 
d(f(n)) ≪ xϵ

∑︂
d∈𝒮(x,(log x)2)

d>x7/22

x3ω(d)

d 
≪ x1+2ϵ−7/44,

by Lemma 2.3 and Lemma 2.6. This is negligible for 0 < ϵ < 7/88 and hence 
completes the proof. □

We remark that in the above computations, the implicit constants can be made ex
plicit.
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6. A more general triple convolution sum

For fixed positive integers h, k, we can also consider the triple convolution sum

T (x;h, k) :=
∑︂
n≤x

d(n)d(n + h)d(n− k).

As before, we can write

T (x;h, k) =
∑︂
n≤x

d(n)d(n + h)d(n− k) =
∑︂
n≤x

⎛
⎝ ∑︂

u|n+h

1

⎞
⎠

⎛
⎝∑︂

v|n 
1

⎞
⎠

⎛
⎝ ∑︂

w|n−k

1

⎞
⎠

=
∑︂

u≤x+h
v≤x

w≤x−k

∑︂′

n≤x 
1,

where the primed sum denotes the sum for n ≤ x where n + h ≡ 0 mod u, n ≡ 0 mod v

and n − k ≡ 0 mod w. Note that the outer sum is over all the integer triples (u, v, w)
in the set [1, x + h] × [1, x] × [1, x − k]. Again we split the sum to write T (x;h, k) =
T1(x;h, k) + T2(x;h, k) − T3(x;h, k), where

T1(x;h, k) :=
∑︂

u,v,w≤x

∑︂′

n≤x 
1, T2(x;h, k) :=

∑︂
x<u≤x+h
v,w≤x

∑︂′

n≤x 
1 and 

T3(x;h, k) :=
∑︂

u≤x+h,v≤x
x−k<w≤x

∑︂′

n≤x 
1.

As earlier, the main contribution comes from T1(x;h, k), which can be studied using the 
multiple Dirichlet series

∑︂
u,v,w≥1

g̃(u, v, w)
[u, v, w] 

1 
us1

1 
vs2

1 
ws3

,

where g̃(u, v, w) is a multiplicative function which takes the value 1 if and only if the 
system n ≡ −h mod u, n ≡ 0 mod v, n ≡ k mod w has a solution, else it is 0. Again we 
write this series as a product and split that product into two parts, one for the primes 
dividing the least common multiple [h, k, (h + k)] and the other one for the primes not 
dividing [h, k, (h + k)]. Applying Theorem 2.1 and Theorem 2.2, we can then derive the 
following proposition.

Proposition 6.1. As x → ∞, we have

∑︂
u,v,w≤x

g̃(u, v, w)
[u, v, w] ∼ Δ(h, k)

∏︂
p 

(︃
1 − 1 

p

)︃2 (︃
1 + 2 

p

)︃
(log x)3,
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where Δ(h, k) is a non-zero constant given by

Δ(h, k) =
∏︂

p|[h,k,(h+k)]

(︃
1 − 1 

p

)︃(︃
1 + 2 

p

)︃−1
⎛
⎝ ∑︂

ν1,ν2,ν3≥0

g̃(pν1 , pν2 , pν3)
[pν1 , pν2 , pν3 ] 

⎞
⎠ . (14)

As before, the lower bound and upper bound of T (x;h, k) follows from Wolke’s the
orems [20]. We can also derive an explicit lower bound for T (x;h, k) along the lines of 
the proof of Theorem 1.1.

7. Concluding remarks

Our methods have further applications. For example, we can investigate triple and 
higher convolution sums of the generalised divisor functions dk(n), which is the number 
of ways of writing n as a product of k factors (k ≥ 2). This is to appear in the forthcoming 
article [12]. A further variation arises if instead of summing over n ≤ x, we sum over 
primes p ≤ x. A more involved sum

∑︂
n≤x

d(f(n)),

where f(t) is a polynomial with integer coefficients having a specified number of irre
ducible factors can also be dealt using these methods.
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