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1. Introduction

The study of convolution sums of arithmetic functions lies at the heart of analytic
number theory. Ingham studied [9] the shifted and additive convolution sums of the
divisor function. For any integer n, let d(n) denote the number of positive divisors of n.
Ingham showed that for a positive integer h,

S d(n)d(n+ h) = :o;ﬂMN&gNY+%XNng) (1)
n<N
as N — oo and
z:ﬂMﬂN—M:;%NNM%NV+OWNNﬂngQ%N) @)

n<N

as N — oo, where o,(n) := ) 4, d® for a complex number s.

d>0
For a fixed positive integer h, the triple convolution sum of the divisor function is
defined as

=Y d(n) h)d(n + h).

n<x

It is still an open problem to determine the asymptotic behaviour of this sum. In
[3], Browning suggested using some algebraic and geometric methods that S(x;h) ~
cnr(logz)® as © — oo for a precise constant ¢, > 0, defined as

-3 ()

p

with an explicit function f defined multiplicatively by f(1) =1 and

-1 2
44 1 _ 3vtd 3v+2 2 _1 ;
Fo) = (L+i+h-2H-shr282)(1+2) (1-1) " ifp>2, "
i Tvon ifp=2,

for v > 1. While this conjecture is still open, Browning [3] proved that for e > 0 and
H > zi%¢ as x — 0o, one has

Z (S(z;h) — cpz(logz)®) = o(Hz(log z)*). (5)

h<H

There is a typo in formula (1.2) on page no. 580 in the published version of the article [3].
The factor (1 — %)’1 should be (1 — %)*2 for p > 2 as we have written here in (4). This
correction is consistent with our new heuristic derivation below using multiple Dirichlet
series. In fact, the definition in the arXiv version of [3] agrees with (4).
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Formula (5) suggests that the conjectured asymptotic formula for S(z;h) is true “on
average.” Since divisor functions appear as the Fourier coefficients of Eisenstein series,
spectral methods have been extensively used by several authors in the study of the
convolution sums of the divisor functions. For example, Blomer [1] derived a related
average result with power-saving error terms in this context using spectral tools. A far
reaching generalisation of these average results for the higher convolutions of a fixed
generalised divisor function was recently obtained by Matomaéki, Radziwill, Shao, Tao
and Teravéinen [11].

1.1. Statement of the theorems

First and foremost, we provide a new framework using the theory of Dirichlet series
attached to the multivariable arithmetic functions to predict the constant cp in Browing’s
conjecture. It is worth noting that a lower bound of the correct order of magnitude can
be obtained using elementary arguments (given in Section 3). However, our result go
further to capture an explicit constant in the lower bound. Using the theory of the
multiple Dirichlet series, we prove the following unconditional lower bound of S(x;h).

Theorem 1.1. As x — oo, we have
S(x;h) > cpr(logz)? /27 4+ Op(z(log x)?).

Our method of dealing with the triple convolution sum S(z; k) leads to the constant ¢y,
as in (3) (see Proposition 4.1). This provides a theoretical framework to get to the arith-
metic constants appearing in several convolution questions related to divisor functions,
which is studied in the forthcoming paper [12].

The study of the asymptotic behaviour of the divisor function at polynomial argu-
ments has a classical origin. Using the theory of smooth numbers, Erdés [6] established
in 1952 that as ¢ — o0, D
with integer coefficients. Wolke [20] generalised this result for a general multiplicative

n<z A(F'(n)) < xlogz, where F(t) is an irreducible polynomial
function evaluated at a sequence of natural numbers, under certain sieve-theoretic hy-
potheses. Applying inequality (7), it can be shown from Wolke’s results that as z — oo,
S(z; h) <p, x(logz)3. Further generalisations of Wolke’s work were obtained by Nair [14],
and subsequently by Nair and Tenenbaum [15].

An upper bound of the correct order can also be derived from the main theorem
of Nair [14]. For the sake of clarity of our exposition, we give a streamlined proof of
the upper bound inequality by applying the theory of smooth numbers implicit in the
method of Erdds. Such a streamlined proof will make the method available for more
general problems in number theory.

Theorem 1.2. As x — oo, we have

S(z;h) <p, z(logz)®.
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2. Preliminaries

In this section, we collect the results that are required to prove our theorems. Firstly,
we need a variant of the Chinese remainder theorem. The key tools for the first theorem
come from the theory of the multiple Dirichlet series and Tauberian theorems due to de
la Bretéche [2]. For the second theorem, we need some results on smooth numbers, which
is a standard chapter in sieve theory.

2.1. Elementary number theory results

The following variant of the Chinese remainder theorem can be found in [10, Theorem
3-12]. Apparently, this non-standard version of the Chinese remainder theorem for non-
coprime moduli was first written down by the Buddhist monk Yih-hing in 717 CE (see
pages 57-64 of [5]). The first formal proof seems to have been written down by Stieltjes
(of Stieltjes integral fame) as late as 1890.

Lemma 2.1. For positive integers dy, ...,d; and integers ay,...,ax, the system

T = a; mod d;
(6)

T = ap mod dy,

has a solution if and only if ged(d;, d;) | (a; — aj) for all 1 <i,j < k. Moreover, when a
solution exists, it is unique modulo the least common multiple [dy, ..., dg].

Related to the above lemma, we will need various facts regarding the number of
solutions of the congruence

f(n) =0mod a,
for a given polynomial f(z) = apx™ + a12™ ' + -+ + a,, € Z[x]. Such a polynomial is
called an integral polynomial. It is said to be primitive if the greatest common divisor

of a;’s is equal to 1. We quote the following from Nagell [13, Theorems 52 and 54, page
no. 90].

Lemma 2.2. Let f(x) be a primitive integral polynomial of degree m with non-zero dis-
criminant D. If p is a prime divisor of D, then the congruence

f(z) =0 mod p*

has at most mD? many solutions. If p is coprime to D, then the number of solutions is
at most m.
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Combining this with the Chinese remainder theorem and specialising to the polyno-
mial f(x) = z(x + h)(x — k), immediately we get the following:

Lemma 2.3. For hk(h + k) # 0, the number of solutions of the congruence
n(n+h)(n—k)=0mod a

is bounded by 3 (hk)*(h + k)*, where w(a) is the number of distinct prime divisors of
a.

Lemma 2.2 has since been improved by Huxley [8], who gave a bound of m|D|/?
instead of mD? in the case p | D. Thus, the bound in the above Lemma 2.3 can be
improved to

3*@hnk(h + k).

We will not need the sharper result, but we merely record it here for academic interest.
We will need to use the elementary results recorded in the next lemma. They follow
from standard analytic number theory (see [17, Ex. 4, Chap. 1.3]).

Lemma 2.4. For an integer a > 1, let w(a) be the number of distinct prime divisors of a.
Then as x — oo, we have

3w(a)

Z 3¢ <« z(logz)? and Z

a<lx alx

< (logz)3.

We will also need the following result from elementary number theory.
Lemma 2.5. For the divisor function d(n), we have for hk(h + k) # 0,
d(n)d(n + h)d(n — k) < d(h)d(k)d(h + k)d(n(n + h)(n — k)). (7)
Proof. As usual, we denote by (u,v) and [u,v], the gcd and lem respectively of the
integers u,v and by (u,v,w) and [u,v,w], the ged and lem respectively of the integers
u, v, w. Given three non-negative integers a, b, ¢, it is evident that

max{a,b,c} = a+ b+ c—min{a, b} — min{a, ¢} — min{b, ¢} + min{a,b,c}. (8)

The easiest way to see this is by setting S, = {1,...,7} so that the assertion is equivalent
to

|Sa USyUSe| = |Sal + |Se| + |Se] = |Sa NSy — [Sa NSe| =[Sy N Se| + [Se NSy N Sels
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which follows from the inclusion-exclusion principle. The equality (8) implies that for
any multiplicative arithmetic function f, we have

S, v, w)) f((u, ) f (0, ) f (0, w))

F f(0)f(w) = o ,

(9)

generalising the familiar identity for two variables, f([u,v])f(u,v) = f(u)f(v), which
can be derived using the fact that max{a,b} = a + b — min{a, b}. Applying (9) to the
divisor function gives

d([n,n+ h,n —k])d((n,n + h))d((n,n — k))d((n + h,n — k))
d((n,n + h,n —k)) '

d(n)d(n+ h)d(n — k) =
Thus,

d(n)d(n + h)d(n — k) < d(h)d(k)d(h + k)d(n(n + h)(n — k)),
as claimed. O
2.2. Results from multiple Dirichlet series theory

We now recall the setup of arithmetic functions of several variables and the multiple
Dirichlet series. It seems that the arithmetic functions of several variables were first
discussed by Vaidyanathaswamy [19] in 1931. He defined a multiplicative function of
several variables as a function f : N¥ — C that satisfies the property

f(mlnl, ce ,mknk) = f(ml, N ,mk)f(nl, ce ,’I’Lk)

when ged(my -+ - mg, ny - -ng) = 1. In the one variable case, we know that the Dirichlet
convolution of two multiplicative functions is again a multiplicative function. The same
can be found true if we define the Dirichlet convolution of two arithmetic functions of
several variables f and g as

(fg) (s omg) = Y fldis. oo di)g(na/dy, ... g /dy).
e

In the context of determining the average order of arithmetic functions of several vari-
ables, de la Bretéche [2] derived a multi-variable version of the classical Tauberian
theorems. To state this version, we need the following notations.
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Notations

Let RT denote the set of all non-negative real numbers and R denote the set of all
positive real numbers. For a positive integer m, we denote an m-tuple (si,...,s;,) of
complex numbers by s. Let 7; = Y(s;) and £,,,(C) be the space of all linear forms on
C™ over C. We denote by {e;}"", the canonical basis of C™ and {e;f};nzl, the dual

basis in £,,,(C). Let LR,,(C) (respectively LR (C)) denote the set of linear forms in
L,,(C) whose restriction to R™ (respectively to (R*)™) has values in R (respectively,
in R*). Let 8; > 0 for all j =1,...,m. Then we denote by B the linear form Z —1 Bj€}
and 8 = (f1,...,Bm) be the assomated row matrix. We define X# := (X1 . . XP»).
Let £ be a family of linear forms and for this we define conv(L) := >, . R+€ and
conv*(L) := >, (RF)L. With these notations in place, [2, Théoréme 1] reads as follows:

Theorem 2.1. Let f be an arithmetic function on N™ taking positive values and F' be the
associated Dirichlet series

f(dy,. ..,
=Yy M)
di=1 dym=1

Suppose that there exists & = (o, ..., m) € (RT)™ such that F satisfies the following
three properties:

(1) the series F(s) is absolutely convergent for s € C™ such that R(s;) > au;
(2) there exists a family L of n many non-zero linear forms L := {E(i)}jzl in LR (C)

and a family of finitely many linear forms {h(k)}kelc in LR} (C), such that the
function H from C™ to C defined by

H(s) :=F(s+a) Hé(i)(s)

can be extended to a holomorphic function in the domain
D(51,83) = {s € C™ : R (¢0)(s)) > ~61 for all i and R (A (s)) > —85 for all k € K}

for some 61,93 > 0;
(3) there exists 02 > 0 such that for every e, e’ > 0, the upper bound

|H(s)] < (1+]|3(s) ﬁ( (f() )+1>1—52min{07%(ﬂi)(3))}

i=1

is uniformly valid in the domain D (61 — €', 03 — €').
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Let J(a) :=={j € {1,...,m} : aj = 0}. Letr :== |J(a)| and £V ... £"F") be the linear

forms e for j € J(a). Then for B = (B1,...,0m) € (RT)™, there exists a polynomial
Qp € R[X] of degree less than or equal to n + r — rank ({E(Z }n:f

=20 (E, {h(k }k@c,éhﬁg,ég,a,ﬂ) > 0 such that we have, for X > 1,

) and a real number

SXPy:=" > . > fldr.. . dm) = X@P) (Qpllog X) + O(X 7))

1<d; <X 1<dm <XPBm
We also need [2, Théoréme 2].

Theorem 2.2. Let the notations be as in Theorem 2.1. If we have that B is not in the
span of {é Z)}nJrT then Qg = 0. Next suppose, we have the following two conditions:

(1) there exists a function G such that H(s) = G({(M)(s),...,£("F7)(s));
(2) B is in the span of {E(Z)}nH and there exists no strict subfamily L' of {E(’)}
such that B is in the span of L' with

card(L') — rank(L') = card <{€(i)}j_+:) — rank ({g(i)}:’jlr> .

Then, for X > 3, the polynomial (Qg satisfies the relation

n—+r

Qp(log X) = CoX P I(XP) + O((log X)),

where Cy := H(0,...,0), p:=n+r—rank ({g(i)};—i—;), and

.dy
ﬁ n
100y ffo [P

A(XB) zlz

with

A(XP) = {y € [1,00)" Hyf(i)(ej) < X% for allj}.

i=1
2.83. Results from the theory of smooth numbers

We now recall some key results on smooth numbers. Let 8(x,y) be the set of natural
numbers less than = that have all their prime factors less than y. Such numbers are called
y-smooth. The size of §(x,y) is traditionally denoted by ¥(x,y). The results we record
here can all be found in Chapter II1.5 of Tenenbaum’s book [17]. The first assertion was
first proved by Canfield, Erdés and Pomerance in [4] (see Corollary on page 15). The
second assertion originates in a 1938 paper of Rankin [16] and his method of proof is
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often dubbed as “Rankin’s trick.” The elementary nature of this trick is explained well
in Granville’s survey article [7].

Proposition 2.1. Letting

log
u = ,
logy

we have

1
U(z,y) < Texp <—§ulogu> ,

as x — 00, provided that for any fized € > 0, we have

log

Also, for any A > 0,

log x
U(z. (log )2 1-% _cosT
(z, (logx)?) < x exp loglogz )’

as T — 00, for a positive constant c.

These results are very useful. In particular, we can apply them to derive the following
variants of Lemma 2.4.

Lemma 2.6. For a fized 6 € (0,1), x large enough, we have

3w(d)
DA
s d
z°<d<z
de8(z;(logz)?)

for any € > 0. Moreover, for a positive integer t such that z/t > (log z)?, we have

3w(d)
Z 7 < (log )% exp(—ctlogt),
a:(s<d§:r
de8(z;zt/?)

for some positive constant c.

Proof. This can be seen as an application of Proposition 2.1 along with partial summa-
tion. O
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3. Setting up the proof of Theorem 1.1

Before embarking on the proof proper, we exhibit an elementary proof of the fact that
S(x; h) >, z(log z)3.

3.1. Elementary proof of the lower bound

We first assume that h is even. Note that if n is coprime to h, then the numbers
n,n £ h are mutually coprime. Therefore, in this case

S(z;h) > > d(n)d(n—h)d(n+h)= Y dnn® - n?)).

(n,h)=1 (n,h)=1

Any divisor of n(n? — h?) factors uniquely as didads with dy | n, do | (n + h) and
ds | (n—h). In counting the divisors of n(n?—h?), we can restrict to counting only divisors
d1,ds, ds less than 2173 to obtain a lower bound for our sum under consideration. By the
coprimality of the terms, we must have n belonging to a unique progression mod dydsds.
Thus,

Sh> Y (dlid3+0(1)>,

dy,dg,d3<z'/3

where the prime on the sum indicates that di,ds, ds are coprime to h. This shows that
S(z; h) >y z(logx)3.

Now if h is odd, we consider only even integers n which are coprime to h. Then the
numbers n,n + h are mutually coprime. Therefore, in this case

S(z;h) > > d(n)d(n—h)d(n+h)= > d(n(n®—h?).

(n,h)=1 (n,h)=1

We can then get a similar estimate as above by choosing the divisor d; of n to be even.
To derive the finer result stated in Theorem 1.1, we proceed as follows.

3.2. Estimating S(x;h)

Without loss of generality, we can assume that A < x/2. We write the triple convolu-
tion sum of the divisor function as follows

S(ayh) =Y dn)dn—h)dn+h) => | > 1| )1 d o1

n<xz n<z \u|n+h v|n w|n—h
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/
=2 2L
u<z+h n<z

v<zx
w<z—h

where the primed sum denotes the sum for n < x where n + h = 0 mod u,n = 0 mod v
and n — h = 0 mod w. Note that the outer sum is over all the integer triples (u, v, w) in
the set [1,2 4+ h] X [1,z] x [1,z — h]. We split the sum to write

S(x; h) = S1(x; h) + Sa(x; h) — S3(x; h),

where

S1(x;h) == Z le, Sa(x; h) = Z le and

uw,w<er n<lx r<u<z+h n<z

v,wlz
YL

ulz+h, vz nlz
r—h<w<z

Ss(x; h) :

It can be seen that Sy(x; h) = O(oy(h)log? ). However, for a lower bound of S(z; h), we
can just write S(z;h) > Sy(xz;h) — Ss(x; h). For Ss(x; h), we prove the following lemma.

Lemma 3.1. For a fized positive integer h, Ss3(x;h) < hd(h)d(2h).

Proof. Note that 1 —h <nmn—h <z —hand w | (n—h). If n — h = mw for some
m>1,thenx —h <w < mw=n-—h <z — h, a contradiction. Hence, n — h = mw
for m < 0. Now suppose n — h = —tw for some t > 1. Since xt — h < w < z, we
have —tx < —tw < —tx +th and 1 — h < n — h < z — h. Therefore, we must have
—tx +th > 1 — h, which implies that h > (1 4+ tx)/(1 + ) > /2, a contradiction. Hence
n = h is the only possibility and thus

Sa(z;h) = Y > 1< hd(h)d(2h). O

u<z+h 2h=0mod u
v<z h=0 mod v

r—h<w<z

This means that to determine the asymptotic behaviour of S(x; k), it suffices to study

Si(z; h).
4. Proof of Theorem 1.1

As mentioned, we begin by estimating S (z; h).
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4.1. Estimating S1(x; h)

Applying Lemma 2.1, we can write the inner sum in the definition of S;(z;h) as

/
S 1= T | ),
[u, v, ]

n<zx
where the error term F := E(z;u,v,w) is bounded by 1, the term [u,v,w] denotes
the least common multiple of u,v,w and g(u,v,w) is a multiplicative function taking
the value 1 if and only if the system n = —h mod u,n = 0 mod v,n = h mod w has a
solution, else it is 0. Therefore,

Si(z:h) = u§<xg(u,v,w) {[uf—w] +E}.

In order to understand the sum > . . g(u,v, w)/[u,v,w], we analyse the multiple
Dirichlet series

gu,v,w) 1 1 1
[u, v, w] ust vs2 wss’

F(sy1,89,83) :=

u,v,w>1

defined for R(s1),R(s2),N(s3) > 1. As g is a multiplicative function (which can be
seen using Lemma 2.1), the function F has a convergent Euler product over the prime
numbers, for R(s1), R(sz2), R(s3) > 1, namely,

1/1’ 1/27 V3 1
F(S1,82,83)=H Z g(p",p"2,p"*)

Vi pl2 pl3 V1S1+V2S2+13S3
p v1,v2,v32>0 [p PP ]p

If at least two of v1,va,v3 are > 1 and g(p**, p”2,p”3) = 1, then p | 2h. So we split the
Euler product into two sub-products, one for p | 2h and the other for p f 2h. We first
consider the infinite product

H Z g(p"*,p"?,p") 1

v 12 v V181+V2S2+13s
D13 \iri a0 [pl’p27p3] pvisitrasatrass
Hence in this product if at least two of vy,1ve,v3 are > 1, then g(p**,p”2,p*3) = 0.
Therefore, we need to consider the cases when at most one of them is positive and
we will get non-zero contributions from the triples (0,0,0), (v1,0,0), (0,2, 0), (0,0, v3),
where v; > 1 in the respective cases. For (14,0, 0), the contribution is

1 1 1 1
Z [pw’ 1, 1] prist = Z p(1+sl)u1 = p1+81 -1

vi2>1 vi2>1
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Similarly, for (0, v2,0) and (0,0, v3), the contributions are

1 1 1 1
Z p(Fsa)vs — pltss _ | and Z p+savs  pltss _ 1)

vp>1 vz>1

respectively. Therefore, for p { 2h the corresponding Euler product is

1 1 1 1
l)f_IQh + p1+sl —1 + p1+32 —1 + p1+53 —1 :
p

We claim that this is same as ((1+ s1){(1+ s2){(1+ s3) up to an infinite product which
is convergent on the domain

1
{(81782783) € C3:R(s;) > —3 for all i = 1,2,3} .

To see this, we study the product

1 1 1 1 1 1 1 1 1 1
H + pltsi — 1 + plts2 — 1 + pltss — 1 B pltsi B plts2 - pltss )

p1f2h

For X,Y, Z # 0,1, note that

() () (v) (- 7)

R S S
B XY YZ ZX XYZ)

Clearly, the infinite product

1 1 1 2
An(s1, 82, 83) = H (1 T opsiteat? | pmatsat? | peateit2 + ps1+s2+S3+3)
p f 2h

converges absolutely if ®(1 4+ s;) > 1/2 for all i = 1,2, 3. In this context, the Tauberian
theorems of de la Breteche, Theorem 2.1 and Theorem 2.2, allow us to derive the following
proposition.

Proposition 4.1. As x — oo, we have

5 % N (1 _ 1)2 (l N %) (log )? + On((log 2)?),

u,v,wx p p

where A(h) is a non-zero constant given by
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1 2\ 9", p”2,p"”*)
A(h)_H(1> (1+> P e ol I (10)
Sl P P e Sy 7P
Moreover, we have A(h) = 11f(h)/8, where f is the multiplicative function given by (4).

Assuming Proposition 4.1, we first complete our proof of Theorem 1.1.

Proof of Theorem 1.1 assuming Proposition 4.1. Note that

Si(@h) = Y g(u,v,w){[u7:7w]+E}2 3 g(u,v,w){[u,f—m}]ﬁ-O(l)}.

u,v,w<z w,v,w<zl/3

Applying Proposition 4.1, we therefore have

Si(z;h) > Z g(u, v, w) 4+ O(2) 2 Cra(logx)? /27 + Op(x(log x)?),

w,v,w<lxl/3

[u, v, w]

where

sl 2 (1+3)

p

Since A(h) = 11f(h)/8, we get Cp, = ¢, (as in (3)) and hence we are done. O

So we are left to prove Proposition 4.1.
4.2. Proof of Proposition /.1

We need to apply both Theorem 2.1 and Theorem 2.2. Recall that

P p”2, p™ 1
F(s1,82,83) = |] > ol )

V1 pl2 pVs v181+v2Ssa+v3s3
D3 n \viemes0 PP PP

g, p”,p”) 1
H Z [plll pug pu3] pl’151+V282+1/353
p | 2h \v1,v2,03>0 ) s

= An(s1, 52,53)Br(s1, 52,53)C(1 + 51)¢(1 + s2)¢(1 4 s3) %

I ) g(p™, ", p*?) 1
D13 \iri a0 [pV1’pV27pV3] pV1S1+V282+V383

where
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1 1 1
st T (1 ) 5 (1 k)

p|2h

Note that from the expressions of Ap(s1,s2,53) and F(s1, s2,83), we clearly see that
F(s1,82,s3) converges if R(s;) > 0 for all ¢ = 1,2,3. So we have & = (0,0,0).
Moreover, choosing the family £ = {6(1),6(2),6(3)} of non-zero linear forms defined as
(W) (51, 89,83) = s; for i = 1,2, 3, we get that the function H(sy, s, 53), defined by

3

H(s):= F(s+a) Hé(i) (s) = F(s1, S2, 83)515283,
i=1

can be extended to the domain {(s1,s2,s3) € C3: R((W(s)) > —1/2 for all i = 1,2,3}.
So we can choose d; = 1/2, to apply Theorem 2.1. Moreover, for the choice of d2, we note
the estimate |sC(s + 1)| < (1+ |t])1=2F€ for —1/2 < 0 < 0, where s = o + (t, giving us
d2 = 1/2. This uses the standard convexity principle (see Titchmarsh [18, Chapter 5, eq.
(5.1.4)]). Since a = (0,0,0), r = |J(a)| = |{j € {1,2,3} : a; = 0} | = 3. We consider the
linear forms {¢(®*), ) O} given by €G3+ (51, 50, 83) = €} (s1, 52,83) = s; for i = 1,2,3.
Therefore, using Theorem 2.1, we conclude that

> X X g;‘;’[j’ ~ 2@ Qp(log ).

u<zf1 v<zh2 w<xzP3

Now we will apply Theorem 2.2 for 8 = (81, B2, 83) = (1,1, 1). The concerned linear form

is B(s1,82,83) 1= (23:1 Bj@;) (s1,82,83) = s1 + 2 + s3. The polynomial Qg satisfies
the relation

Qp(logz) = Coz~*P 1(2P) + O((log )" ™),
116
where Cy := H(0,0,0), p:=n+r —rank ({é(l)}izl) =3 and
dyldygdyg
1 31—t (a)’

A(zB) z 1Y

with

3 )
A(aP) = {y € [1oo)®: [Lf ) <2 for al j}

=1

={(y1,y2,¥3) 1 1 <y; <z forall i}.

Therefore,
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I(2P) = / / / dy1dyadys _ (log )"
Y1Y2ys3

y1=1y2=1yz=1

Further,
2 1\3 vipre pts
w000 =TT (1-+55) 11 (1-5) Y el
pt2h p | 2h p | 2h \vi,v2,03>0 (R
1\? 2 1\° g™, p”,p™)
= (1 o 2;) (1 + 1;) H (1 o ]_)) Z [le ,puz 7pl/?,]
pt2h p | 2h p | 2h \wi,v2,v3>0 L
2 -1
1 2 1 2
“I(-5) () T (-=5) (0+)
p p p » | 2n p p

[pv1, p¥2, pve]

v1,v2,v32>0

ol (v-3) ()

4.2.1. Verification of A(h) =11f(h)/8
We begin with an odd prime factor p of h. We have to evaluate the sum

g(p",p", p"*)
Sp = Z [pul pv2 pllg] :

v1,v2,v320 ’ ’
Recall that g(p**, p*2,p¥3) = 1if and only if (p**,p*2) | h, (p*2,p*3) | hand (p**, p*?) | 2h.
Let r be the highest power of p dividing h. Clearly, if g(p**,p"2,p"®) = 1, then at most
one of the v; can be > r 4 1. The contribution in each case to the sum s, is

1
r+1)2 > —.
a>r+1

Hence the total contribution here would be 3(r 41)* Y7, -, 1/p*. Now we can assume
0<y; <rforalli=1,2, 3. If all these indices are equal, we get the contribution

"1

If exactly two of the indices are equal, then the remaining index has 3 possibilities and
that index can be bigger or smaller than the other two indices. In any case, we get the
contribution
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r a—1 1 T a
6 > =63
a:lb:Op a:lp

Now if all three indices are different, we can have 6 possible ordering among them and
in this case, we get the contribution

r 16— r a—1 r
DHWILTD RIETI oL
a=2b=1c 0 a:2b:1p a=2 p

and hence

1 1)2 1\t "1 1 1\t
(r+1)> _(““1)(1> andz—<1 1)(1) .
P prt P p° prt P

and

So,

LY, (b2 N (21 Lortl v V(1
o) T YUt ) G e ) U
_|_

2 r24+r 22—-2 r2_r
3 Z?_ prtl + prt2 o prt3
4
+ -+
p

i 3r+4 4 3r+2

=1

p2 prtl o prt2 prt3

This completes the verification of the factors corresponding to the odd prime divisors of
h, using (4). For the prime p = 2, we show that if r is the highest power of 2 dividing h,
then the corresponding factor in A(h) is

- 11 27 x 11

13 414150 11 (52 41+ 15r
2 k3 T g
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This will complete the proof.
We evaluate the sum

o 9(2111’21/272”3)
52 = Z [2V1’2u2)2y3] :

v1,v2,v32>0

If0 <y <rforall i =1,2,3, then as before the contribution to s in this case is

T 1 T i 71)
22—a+62%+32a(‘2—a

a=0
1 1 r+1 r 1 r+r 2r2-2 r2—7p
:2(1_W)+24(§_W+W>+24<§_ or+1 + gr+2  or+3
Lo 2 Lo 37
2r 27 2r

Now we assume that v; > r + 1 for at least one of i = 1,2,3. Here the counting is
different. We note that if g(2*2,2"2,2¥3) = 1, then we have the following conditions: at
most one of v1,v5 > r, at most one of v5, 3 > r and at most one of vy,v3 > r+ 1. We
then have the following four possible choices:

) if vy =r+1, then vy <r+1 and vz > 0;
) if vy >r+1,then o <r+1and vs <r+1;
iii) if 1 <r+1and vy >r 41, then v3 <r+1;
yifry <r+1land vy <r+1, then vg > r+ 1.

The contribution of case i) to s is

(r+1)2 I (r+1)? (r+1)
2r+1 + (T + 1) >Z+1 273 - 2T+1 ar
V32T

The contribution of case ii) to s is

T T T 2 T
I B

vi>r+1

The contribution of case iii) to sq is

The contribution of case iv) to sy is



B. Misra et al. / Journal of Number Theory 283 (2026) 97-120 115

1 (r+1)?
2 _
vs>r+1

Hence the total contribution of these above four cases is

3r+1)2 3(r+1)
or or+1 ’

and thus

41415 13 41415
82:26—#24(— + r>

or+1 9 or+3

This completes the proof.
5. Proof of Theorem 1.2

In 1952, Erdés proved that if f(x) is any irreducible polynomial with integer coeffi-
cients, then there are positive constants c¢; and ¢y such that

czlogr < Z d(f(n)) < coxlogz,

n<zx

for x > 2. The result is false if f(x) is not irreducible as can be seen from Ingham’s
theorem (1). However, the argument of Erdés can be suitably adapted to show that in
our case, as T — 00,

S(x;h) < z(logx)®.

Though it is difficult to identify them in Erdds’s paper [6], his method has three steps
and it proceeds as follows:
We consider f(x) = x(z — h)(x + h). By Lemma 2.5, we first note that as z — oo,

S(xz;h) <, Z d(f(n)).

n<x

Hence our goal is to bound the latter sum applying the method of Erdds. Suppose that
f(n) has r many prime factors, counted with multiplicity. We write

|f(n)| = (p1p2---pj)(Pjs1- - Pr)s (11)
with p1 <ps <+ <p;j <pjy1 < -+ < pr and the index j is the largest such that
m:=pip2---p; < T

The strategy is that the bulk of the divisors of f(n) are actually coming from the factor
m = (p1p2 - - - p;). Indeed, by the sub-multiplicativity of the divisor function, we have
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(1)
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d(f(n)) < 2"d(p1---p;).

Step 1: If n is such that r — j is bounded by 11 (say), then the contribution to the
sum S(z;h) from such n is bounded by

<> Y 1= > L

m<x alf(m) a<z alf(m)
a<lz m<x

By the Chinese remainder theorem as in Lemma 2.3, the inner sum is easily seen to
be

3w(@ly
<

a

Summing this over ¢ < x and using Lemma 2.4, we get the desired bound of
O(xlog® ) coming from these n’s.

Step 2: Suppose now that n is such that for f(n), r — j is greater than 11. Choosing
x large enough, we get that p; 1 < z4/1 for otherwise | f(n)| > 2%, a contradiction,
since in our case f has degree 3 and f(n) = O(n?). By the definition of j, we have

(1 Pj)Pj+1 >

so that

g < < a (12)

4/11

Now, p; < pjt1 <= and so, there is a positive integer ¢ such that

2D < o< gt

1/t_smooth.

Step 2a. We first suppose that x'/t > (logz)?. Note that p;---p; is @

The plan is to estimate the contribution from each possible value of ¢ and then sum

over the t. Thus, fixing ¢, we see that
Pj1-cDr > 2(r=9)/(t+1)

For our cubic polynomial, we must have r — j < 3(¢ + 1). Thus, for such n under

consideration, we use the elementary inequality

dn) <2 ) 1, (13)
aln

a>\/n

to get
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d(f(n)) < 253d(py - - p;) < 251H4 Z 1

d|p1-p;
r>d>\/P1D;

with p;---p; being z'/*-smooth and the divisor d > z7/?2 by virtue of (12). By
Lemma 2.3, we have that the total contribution from such numbers is bounded

above by
d
3t+4 3t 23«4
PILEED DD DR DD
t=1 des(z,at/t) msz t21 de§(x,at/t)
d>x7/22 d| f(m) d>z7/22

As x — 00, the innermost sum is
< z(logz)? exp (—ctlogt),

for some suitable positive constant ¢, by Lemma 2.6. Since

Z 23t exp (—ctlogt)
t>1

converges, we are done in this case.
Step 2b. It remains to consider the case 2/t < (log )?. Using the familiar estimate
d(n) < n¢, for any € > 0, we first write

d(f(n)) <nd(pr---pj) <ot Y 1,
d\Pl"'pj

x2>d>\/p1D;

7/22

with p; - -+ p; being (log z)?-smooth and the divisor d > z7/?2. Now summing for all

these n’s (indicated by a prime for the n’s under consideration), we get

x3+(®) 142e—7/44

<Lz

S <ot Y

n<z de8(z,(logz)?)
d>z7/22

by Lemma 2.3 and Lemma 2.6. This is negligible for 0 < e < 7/88 and hence
completes the proof. O

We remark that in the above computations, the implicit constants can be made ex-
plicit.
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6. A more general triple convolution sum

For fixed positive integers h, k, we can also consider the triple convolution sum

T(x;h,k) = d(n)d(n+ h)d(n — k).

n<lx

As before, we can write

T(x;sh, k)= dn)dn+h)dn—k)=> | > 1Y 1] > 1

n<z n<z \u|n+h v|n wlin—k

i
= > > L
u<lz+h n<lzx
v<z

w<z—k
where the primed sum denotes the sum for n < x where n + h = 0 mod u,n = 0 mod v
and n — k = 0 mod w. Note that the outer sum is over all the integer triples (u,v,w)
in the set [1,z + h] x [1,z] x [1,x — k]. Again we split the sum to write T'(x;h, k) =
Ty (z; h, k) + To(x; h, k) — T3(x; b, k), where

Ty (z; h, k) = Z Z/l, To(x; h, k) = Z le and

u,v,w<xr nlz r<u<z+h n<lz

v,w<le
Tywihk) = Y S L

u<z+h, o<z n<zc
rz—k<w<z

As earlier, the main contribution comes from T3 (x; b, k), which can be studied using the
multiple Dirichlet series

glu,v,w) 1 1 1
v

[u, v, w] usr vs2 wss’

u,v,w>1
where §(u,v,w) is a multiplicative function which takes the value 1 if and only if the
system n = —h mod u,n = 0 mod v,n = k mod w has a solution, else it is 0. Again we
write this series as a product and split that product into two parts, one for the primes
dividing the least common multiple [h, k, (h + k)] and the other one for the primes not
dividing [h, k, (h + k)]. Applying Theorem 2.1 and Theorem 2.2, we can then derive the
following proposition.

Proposition 6.1. As x — oo, we have

> e A<hvk>H(1—%)2(1+§) (log 2",

u,v,wx p
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where A(h, k) is a non-zero constant given by

—1 -

1 2 175 Vo 173

Ak = ] (1— —) (1+ —) 3 % L (19
p|lh,k,(h+k)] p p v1,v2,v3>0 PP

As before, the lower bound and upper bound of T'(z; h, k) follows from Wolke’s the-

orems [20]. We can also derive an explicit lower bound for T'(x; h, k) along the lines of
the proof of Theorem 1.1.

7. Concluding remarks

Our methods have further applications. For example, we can investigate triple and
higher convolution sums of the generalised divisor functions dg(n), which is the number
of ways of writing n as a product of k factors (k > 2). This is to appear in the forthcoming
article [12]. A further variation arises if instead of summing over n < z, we sum over
primes p < z. A more involved sum

S d(f (),

n<zx

where f(t) is a polynomial with integer coefficients having a specified number of irre-
ducible factors can also be dealt using these methods.
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