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In this paper, we give some results on simultaneous non-vanishing and simultaneous
sign-changes for the Fourier coefficients of two modular forms. More precisely, given two
modular forms f and g with Fourier coefficients an and bn respectively, we consider the
following questions: existence of infinitely many primes p such that apbp �= 0; simulta-
neous non-vanishing in the short intervals and in arithmetic progressions; simultaneous
sign changes in short intervals.
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1. Introduction

The vanishing or non-vanishing of an arithmetically defined analytic function is a
recurring motif in mathematics. In recent times, such questions have arisen in the
context of modular forms both of integral weight and half-integral weight. In this
paper, we will study simultaneous non-vanishing of Fourier coefficients of distinct
modular forms of integral weight.

Throughout, let k, N be positive integers and p be a prime. We write Sk(Γ0(N))
for the space of cusp forms of weight k for the group Γ0(N). Let f(z) =

∑∞
n=1 anqn ∈

Sk(Γ0(N)) and g(z) =
∑∞

n=1 bnqn ∈ Sk(Γ0(N)) be two nonzero cusp forms which
are not a linear combination of CM forms. One of the goals of this paper is to
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study simultaneous non-vanishing of an, bn partially inspired by a long-standing
conjecture of Lehmer which predicts that τ(n) �= 0, for all n > 0, where

∆(z) =
∞∑

n=1

τ(n)qn = q
∞∏

n=1

(1 − qn)24, q := e2iπz

is the unique normalized cusp form of weight 12 on SL2(Z). In relation to Lehmer’s
conjecture, Serre in his paper [21] motivated the general study of estimating the
size of possible gaps in the Fourier expansion of modular forms via the gap function

if(n) := min{j ≥ 0 : an+j �= 0}.
He proved that if (n) �f n, where f(z) is a cusp form which is not a linear combi-
nation of CM forms. In the same paper [21], he posed the question of whether one
can prove an estimate of the form

if(n) �f nδ,

where δ < 1. In his paper [14], Murty first pointed out that if(n) � n3/5 follows
immediately from the celebrated work of Rankin [19] and Selberg [20] done in
1939/40. After that many authors improved the value of δ (for more detail see [4]).

In the case of level 1 and f an eigenform, Das and Ganguly [4] discovered a
clever argument to show if(n) � n1/4 by combining a classical result of Bambah
and Chowla [1] with a congruence of Hatada [6] along with a basic lemma of Murty
and Murty [15]. Here is a synopsis of their elegant proof. In 1947, Bambah and
Chowla showed using an elementary argument that in any interval of length x1/4

there is a number n (say) which can be written as a sum of two squares. As f is an
eigenform, an is multiplicative. Hatada’s theorem [6] implies that ap ≡ 2 (mod 4),
for p ≡ 1 (mod 4) and apr ≡ 1 (mod 4) if r is even and p ≡ 3 (mod 4). The
lemma in [15] shows that apr �= 0 for p ≡ 1 (mod 4) provided p is sufficiently
large. These congruences combined with the classical theorem about factorization
of natural numbers that can be written as a sum of two integral squares now imply
an �= 0 provided n is coprime to a given finite set of primes. Thus, one now needs the
Bambah–Chowla theorem with n coprime to a finite set of primes. One can tweak
the argument in [1] to accommodate this extra condition and thus deduce the non-
vanishing result as done in [4]. Actually, the argument of Bambah and Chowla
can be generalized with considerable latitude. We prove the following which is of
independent interest.

Theorem 1.1. Let r and s be natural numbers and set α = (r−1)(s−1)/rs. There
is an effectively computable C (depending only on r and s) such that in any interval
of the form [n, n + Cnα], there is a number m which can be written as

m = Ar + Bs,

with A and B integers.

We hasten to highlight that the argument of Das and Ganguly allows for simul-
taneous non-vanishing. In fact, if f1, . . . , fr are normalized eigenforms of level 1,
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with corresponding Fourier coefficients an(fj), then one can find an i with i � n1/4

such that

an+i(fj) �= 0, ∀ 1 ≤ j ≤ r.

It has been suggested that perhaps if(n) � nε for any ε > 0. Perhaps even the
stronger conjecture if (n) � 1 is true (see for example, [14]).

It would be nice to extend these results to higher levels but as the authors in [4]
remark, one needs to extend Hatada’s result, which probably can be done, but
would take us in a direction orthogonal to the methods of this paper. We expect to
return to this question at a later time.

In this paper, we introduce the analogous concept of gap function if,g for simul-
taneous non-vanishing and then we derive a bound for if,g as small as possible, based
on current knowledge. One can, of course, consider more general gap functions for
several modular forms.

Theorem 1.2. Let f(z) =
∑∞

n=1 ann
k−1
2 qn ∈ Sk(Γ0(N)) and g(z) =∑∞

n=1 bnn
k−1
2 qn ∈ Sk(Γ0(N)) be two newforms which are not CM forms, then there

exist infinitely many primes p such that

apbp �= 0.

Actually, as we show below, the theorem is true without the constraint that the
forms are not CM. It should be remembered that the recent solution of the Sato–
Tate conjecture for two distinct eigenforms (see [16] and the references therein),
the theorem is immediate. This is because there is a positive density of primes
p such that both ap and bp are simultaneously nonzero since the joint Sato–Tate
distribution holds for two eigenforms f and g. But this is invoking a “sledgeham-
mer” result and we underscore that our methods do not make use of this major
advance. This comment amplifies that there are other ways of approaching such
questions.

Now, for n ∈ N define

if,g(n) := min{m ≥ 0 : an+mbn+m �= 0},
which is well-defined from the above theorem. We are interested to find the growth
of the function if,g(n) as n → ∞. In 2014, Lu [10] by using the result of Chan-
drasekharan and Narasimhan [2] proved the following.∑

n≤x

a2
nb2

n = cx + O(x
7
8+ε),

where c is a nonzero constant. It then follows that

if,g(n) � n
7
8+ε.

In this paper, we give a better estimate than above.

Theorem 1.3. Suppose that f(z) =
∑∞

n=1 ann
k−1
2 qn ∈ Sk(Γ0(N)) and g(z) =∑∞

n=1 bnn
k−1
2 qn ∈ Sk(Γ0(N)) are two newforms with k > 2 which are not a linear
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combination of CM forms. Then the following results hold.

(i) For every ε > 0, x > x0(f, g, ε) and x
7
17 +ε ≤ y we have

|{x < n < x + y : anbn �= 0}| 
f,g,ε y. (1)

In particular, we get that if,g(n) �f,g,ε n
7
17 +ε.

(ii) For every ε > 0, x ≥ x0(f, g, ε), y ≥ x
17
38+100ε and 1 ≤ a ≤ q ≤ xε with

(a, q) = 1, we have

|{x < n ≤ x + y : n ≡ a (mod q) and anbn �= 0}| 
f,g,ε y/q. (2)

In 2009, Kohnen and Sengupta [7] considered a problem related with the simul-
taneous sign changes. They proved that, given two normalized cusp forms f and
g of the same level and different weights with totally real algebraic Fourier coeffi-
cients, there exists a Galois automorphism σ such that fσ and gσ have infinitely
many Fourier coefficients of the opposite sign. Recently Gun, Kohnen and Rath [5]
removed the dependency on the Galois conjugacy. In fact, they extended their result
to arbitrary cusp forms with arbitrary real Fourier coefficients but they assumed
that both f and g should have first Fourier coefficient to be nonzero. More precisely,
they proved the following.

Theorem 1.4. Let

f(z) =
∞∑

n=1

anqn and g(z) =
∞∑

n=1

bnqn

be nonzero cusp forms of level N and weights 1 < k1 < k2, respectively. Suppose
that an, bn are real numbers. If a1b1 �= 0, then there exist infinitely many n such
that anbn > 0 and infinitely many n such that anbn < 0.

In this paper, we extend the above result by removing the assumption a1b1 �= 0.

We prove the following result.

Theorem 1.5. Let

f(z) =
∑
n≥1

anqn and g(z) =
∑
n≥1

bnqn

be nonzero cusp forms of level N and weights 1 < k1 < k2, respectively. Further, let
an, bn be real numbers. Then there exist infinitely many n such that anbn > 0 and
infinitely many n such that anbn < 0.

If f and g are newforms then we have the following quantitative result for the
simultaneous sign changes.

Theorem 1.6. Let k ≥ 2 be an integer. Assume that

f(z) =
∑
n≥1

ann
k−1
2 qn and g(z) =

∑
n≥1

bnn
k−1
2 qn
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are two distinct newforms of weight k on Γ0(N). Further, let an, bn be real numbers,
then for any δ > 7

8 , the sequence {anbn}n∈N has at least one sign change for n ∈
(x, x + xδ] for sufficiently large x. In particular, the number of sign changes for
n ≤ x is 
 x1−δ.

2. Preliminaries

In this section, we collect various results from the literature that will be needed in
our proofs. In 1982, Serre [21, Corollary 2, p. 174] in his very famous paper, proved
the following result.

Lemma 2.1. Let f(z) =
∑∞

n=1 anqn ∈ Sk(Γ0(N)) be a newform with weight k ≥ 2
which does not have complex multiplication. For every ε > 0 we have

|{p ≤ x : ap = 0}| �f,ε
x

(log x)
3
2−ε

.

To prove Theorem 1.3, we shall use the concept of B-free numbers which was
introduced by Erdös in 1966 and later many authors studied the distribution of
B-free numbers.

Definition 2.2 (B-free numbers). Let B = {bi : 1 < b1 < b2 < · · · } be a
sequence of mutually coprime positive integers for which

∑∞
i=1

1
bi

< ∞. A positive
integer n is called B-free if it is not divisible by any element in B.

By using sieve theory and estimates for multiple exponential sums, Chen and
Wu [3], studied the distribution of B-free numbers in short intervals as well as in
an arithmetic progression and they proved the following results.

Proposition 2.3. Let B be a sequence of positive integers satisfying the conditions
in the definition of B-free numbers. Then,

(i) for any ε > 0, x > xo(B, ε) and y ≥ x
7
17 +ε, we have

|{x < n ≤ x + y : n is B-free} | 
B,ε y, (3)

(ii) for any ε > 0, x > xo(B, ε) and y ≥ x
17
38+100ε, 1 ≤ a ≤ q ≤ xε with ((a, q), b) =

1, for all b ∈ B, we have

|{x < n ≤ x + y : n ≡ a (mod q) and n is B-free} | 
B,ε y/q. (4)

Here the implied constants depend only on B and ε.

In the proof of Theorem 1.5 we use the following theorem of Pribitkin [17].

Theorem 2.4. Let F (s) =
∑∞

n=1 ane−sλn be a non-trivial general Dirichlet series
which converges somewhere, where the sequence {an}∞n=1 is complex, and the expo-
nent sequence {λn}∞n=1 is real and strictly increasing to ∞. If the function F is
holomorphic on the whole real line and has infinitely many real zeros, then there
exist infinitely many n ∈ N such that an > 0 and there exist infinitely many n ∈ N

such that an < 0.
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3. Proof of Theorem 1.1

We essentially follow Bambah and Chowla [1] and modify their argument to our
setting. Let t = [n1/s] = n1/s−θ with 0 ≤ θ < 1. Let x1, x2 be positive real numbers
such that

xr
1 + ts = n,

xr
2 + ts = n + Cnα

with C to be chosen later. Thus, xr
2 − xr

1 = Cnα. Now,

x1 = (n − ts)1/r � n(s−1)/rs, x2 � n(s−1)/rs,

by a simple application of the binomial theorem. Hence,

xr−1
2 + xr−2

2 x1 + · · · + xr−1
1 � n(s−1)(r−1)/rs = nα.

Now writing

(x2 − x1)(xr−1
2 + · · · + xr−1

1 ) = xr
2 − xr

1 = Cnα,

we immediately see that

x2 − x1 > 1,

for a suitable choice of C. (In fact, C = 2rsrs will work.) Therefore, there is a
natural number N in the interval [x1, x2] so that

n = xr
1 + ts < N r + ts < xr

2 + ts = n + Cnα,

as desired. This completes the proof of Theorem 1.1.
We remark that there are several variations of this theorem that can be derived

from this proof. For example, if f(x) is a monotonic, continuous function for x

sufficiently large, and f(x) � xr, then there is a natural number m such that
m = f(A) + Bs for some natural numbers A, B and with m ∈ [n, n + Cnα]. In
particular, this can be applied to the norm form a2 + Db2, with D squarefree. We
record these remarks with the view that the result may have potential applications
in other contexts.

4. Proof of Theorem 1.2

From Lemma 2.1, we have

|{p ≤ x : ap = 0}| �f,ε
x

(log x)
3
2−ε

and

|{p ≤ x : bp = 0}| �g,ε
x

(log x)
3
2−ε

.

Since apbp = 0, we have either ap = 0 or bp = 0. Hence

|{p ≤ x : apbp = 0}| �f,g,ε
x

(log x)
3
2−ε

.
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By the prime number theorem, we have

π(x) := |{p ≤ x}| ∼ x

log x
.

Hence

|{p ≤ x : apbp �= 0}| = π(x) − |{p ≤ x : apbp = 0}| ∼ x

log x
.

Thus there exist infinitely many primes p such that

apbp �= 0.

We make some remarks in the case that either f or g is of CM type. Suppose
first that f has CM by an order in an imaginary quadratic field K and g does not.
Then, for primes p coprime to the level of f , ap = 0 if and only if p is inert in K.
The density of such primes is 1/2 and so

|{p ≤ x : apbp �= 0}| = π(x) − |{p ≤ x : apbp = 0}| � x

2 logx
.

Hence, in this case also, there are infinitely many primes p such that apbp �= 0. If
both f and g have CM by two imaginary quadratic fields K1, K2 (say, respectively),
then we need only choose primes p coprime to the level which split in K1 and K2.
This density is either 1/2 (if K1 = K2) or 1/4 (if K1 �= K2). Thus, in all cases,
Theorem 1.2 is valid in general.

5. Proof of Theorem 1.3

Let S = {p : apbp = 0}∪{p|N}. Put B = S∪{p2 : p /∈ S}. Clearly B is a sequence of
mutually coprime integers and if n is B-free, then n is square-free and anbn �= 0 by
using the multiplicative properties of an and bn. Thus (3) and (4) imply the first and
second assertions of Theorem 1.2 respectively, if we can show that

∑
p∈B

1
p < ∞.

Since
∑

p 1/p2 < ∞, it suffices to show that

∑
p∈S

1
p

< ∞.

We know, from Lemma 2.1 that∑
p≤x
p∈S

1 �f,g
x

(log x)1+δ
, for some δ > 0.

Hence, by partial summation formula, we have

∑
p≤x
p∈S

1
p

=
1
x

∑
p≤x
p∈S

1 +
∫ x

2

1
t2




∑
p≤t
p∈S

1


 dt �f,g

1
(log x)1+δ

+
∫ x

2

dt

t(log t)1+δ
�f,g 1.

This completes the proof of Theorem 1.3.
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6. Proof of Theorem 1.5

We assume that either a1 = 0 or b1 = 0, since otherwise by using Theorem 1.4,
we get the result. We will show that there exists infinitely many n ∈ N such that
anbn < 0 the other case being similar. Suppose not, then there exist n0 ∈ N such
that

anbn ≥ 0,

for all n > n0. Set M =
∏

p≤n0
p. Clearly, anbn ≥ 0 whenever (n, M) = 1 by our

assumption. Let

f1(z) :=
∑
n≥1

(n,M)=1

anqn and g1(z) :=
∑
n≥1

(n,M)=1

bnqn.

Then f1 and g1 are cusp forms of level NM2 and weights k1 and k2 respectively.
For s ∈ C with Re(s) 
 1, the Rankin–Selberg L-function attached to f1 and g1 is
defined by

Rf1,g1(s) :=
∑
n≥1

(n,M)=1

anbn

ns
.

For Re(s) 
 1, set

Lf1,g1(s) :=
∏

p|NM2

(1 − p−(2s−(k1+k2)+2))ζ(2s − (k1 + k2) + 2)Rf1,g1(s) (5)

:=
∞∑

n=1

cn

ns
. (6)

Li [9] proved that (2π)−2sΓ(s)Γ(s − k1 + 1)Lf1,g1(s) is entire and we also know
that Γ(s)Γ(s−k1 +1) does not have any zeros. Hence Lf1,g1(s) is an entire function
on C. Let us observe that the coefficients of this Dirichlet series are non-negative
because the term ∏

p|NM2

(1 − p−(2s−(k1+k2)+2))ζ(2s − (k1 + k2) + 2)

is the Riemann zeta function with the Euler factors at primes p|NM2 removed and
so is a Dirichlet series with non-negative coefficients. Hence

∑∞
n=1

cn

ns is entire with
cn ≥ 0 for all n. Now

∑∞
n=1

cn

ns has infinitely many real zeros coming from the real
simple poles of the Γ-function. Then by Theorem 2.4, there exist infinitely many
n such that cn > 0 and there exist infinitely many n such that cn < 0 which is a
contradiction because cn ≥ 0 for all n ∈ N. This completes our proof.

7. Proof of Theorem 1.6

Recently Meher and the second author [11], gave a general criteria for the sign
changes of any sequence of real numbers {an}n∈N. More precisely, they proved the
following.
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Theorem 7.1. Let {an}n∈N be a sequence of real numbers such that

(i) an = O(nα),
(ii)

∑
n≤x an = O(nβ),

(iii)
∑

n≤x a2
n = cx + O(nγ),

with α, β, γ, c ≥ 0. If α + β < 1, then for any δ satisfying

max{α + β, γ} < δ < 1,

the sequence {an}n∈N has at least one sign change for n ∈ [x, x+xδ ]. Consequently,
the number of sign changes of an for n ≤ x is 
 x1−δ for sufficiently large x.

We will prove Theorem 1.6, as an application of the above theorem, for which
we have to analyze the stated conditions for the sequence {anbn}n∈N.

(i) Ramanujan–Deligne:

anbn = O(nε) for all ε > 0. (7)

From the paper of Lu [10], one can deduce the following results
(ii)

∑
n≤x

anbn � x
3
5 (log x)−

2θ
3 , (8)

where θ = 0.1512 . . .

(iii)
∑
n≤x

a2
nb2

n = cx + O(x
7
8+ε).

Hence from Theorem 7.1, we immediately deduce Theorem 1.6.

8. Concluding Remarks

As mentioned earlier, it would be interesting to extend Hatada’s congruence to
modular forms of higher level. This is a research problem of independent interest and
is accessible since there have been significant advances in the theory of congruences
of modular forms. If one assumes standard conjectures about distribution of primes
such as Cramér’s conjecture, then it is easy to deduce that if (n) = O(log2 n). The
other problem that suggests itself is to obtain estimates with their dependence on
level and weight made explicit. An initiation into such an enterprise can be found
in the methods of [12, 13].

The analogues of these questions for modular forms of half-integral weight takes
us into a parallel universe of ideas. There is, of course, a link between these two
worlds provided by Waldspurger’s theorem and the question is equivalent to the
simultaneous non-vanishing of quadratic twists of L-series attached to modular
forms. A modest beginning in this line of research was initiated in [8].
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