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On a Problem of Ruderman
M. Ram Murty and V. Kumar Murty

Abstract. In 1974, Harry Ruderman proposed the following problem in the problem section
of this MONTHLY: if m > n ≥ 0 are integers such that 2m

− 2n divides 3m
− 3n , then show

that 2m
− 2n divides xm

− xn for all natural numbers x . This problem is still open. We prove
that there are only finitely many pairs of natural numbers m, n such that 2m

− 2n divides
3m
− 3n . Since the proof involves the Schmidt subspace theorem, our bounds on m and n are

ineffective. We discuss how an effective version of the abc conjecture can be used to derive
effective bounds on m and n.

1. INTRODUCTION. In 1974, Harry Ruderman [12] proposed Problem E2468 in
the problems section of this MONTHLY: Suppose that m > n ≥ 0 are integers such that
2m
− 2n divides 3m

− 3n . Show that 2m
− 2n divides xm

− xn for all natural numbers
x . This problem has remained unsolved for quite a long time and is still unsolved. In
1976, some remarks by W. Vélez [14] were published in which he noted that the pairs
(m, n) =

(2, 1), (3, 1), (4, 2), (5, 1), (5, 3), (6, 2), (7, 3), (1)

(8, 2), (8, 4), (9, 3), (14, 2), (15, 3), (16, 4)

had the property that (2m
− 2n) | (xm

− xn) for all integers x ≥ 1. To this, we can add
(m, n) = (1, 0) to get a total of fourteen such pairs. In his remarks, Vélez [14] showed
that if we write for k ≥ 2,

2k
− 1 =

r∏
i=1

pei
i ,

with pi distinct primes, ei ≥ 1, and k = 2s t with t odd, then

2n(2k
− 1) divides xn(x k

− 1), x = 1, 2, 3, . . .

if and only if

(a) φ(pei
i ) divides k and

(b) ei ≤ n ≤ s + 2,

for 1 ≤ i ≤ r .
A year later, in 1977, some more remarks were published [6] and attributed to “The

Mod Set Stanford University” and Carl Pomerance (independently). These remarks
cited an old paper of Schinzel [13] in which he proved that if k 6= 1, 2, 4, 6, 12, then
2k
− 1 has a prime factor p ≥ 2k + 1. In view of Vélez’s theorem stated above, this

implies that m − n has only five possible values in the conclusion of Ruderman’s prob-
lem. Indeed, by Vélez’s theorem, any prime divisor pi of k = m − n must satisfy
pi − 1 divides k, so that pi ≤ k + 1. But by Schinzel’s theorem, there is a prime factor
which does not satisfy this inequality for k 6= 1, 2, 4, 6, or 12.
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If we let A be the set of pairs (n, k) such that 2n(2k
− 1) divides xn(x k

− 1) for all
positive integers x , then these remarks show that there are only five possible values for
k. Since for x = 3, we see that 2n divides 3k

− 1, we deduce that n is also bounded. A
quick calculation allows us to deduce that (1) gives all such possible pairs (apart from
the trivial (1, 0)). As in [6], if we let B be the set of pairs (n, k) for which 2n(2k

− 1)
divides 3n(3k

− 1), then clearly A ⊆ B, and Ruderman’s problem is to show that A =
B. The authors in [6] comment that a computer search showed there is no pair (n, k) ∈
B with 13 ≤ k ≤ 1900.

The problem resurfaced again in 1981 in Guy’s monograph [5], where the question
of classifying pairs (a, b) such that (2a

− 2b) divides (xa
− xb) for all positive integers

x is attributed to Selfridge. In 1985, Sun and Zhang [9] published a paper answering
this question, apparently unaware of the problem’s history in this MONTHLY.

In spite of these remarks and results, the original question of Ruderman remains
unanswered. Indeed, in the light of the theorems stated above, the following question
arises: are there only finitely many pairs (m, n) such that (2m

− 2n) divides (3m
− 3n)

with m > n ≥ 0? If so, are they given by (1)?
The purpose of this note is to answer the first question. We invoke a result that makes

essential use of Schmidt’s subspace theorem, which is ineffective. Consequently, we
are unable to answer the second question. We will prove:

Theorem 1. There are only finitely many pairs (m, n) with m > n ≥ 0 such that
2m
− 2n divides 3m

− 3n .

The Schmidt subspace theorem is one of the landmark theorems of the 20th cen-
tury and is a sweeping generalization of Roth’s theorem in the theory of Diophantine
approximation. We will not discuss the subspace theorem here but refer the reader to
[4] and [15] for an exposition of some remarkable applications of it. We merely record
here one of these applications due to Bugeaud, Corvaja, and Zannier [3]. To this end,
it is convenient to introduce the notation f (n)� g(n) to mean that there is a constant
C such that f (n) ≤ Cg(n). Then the result in [3] is: for any ε > 0,

gcd(2n
− 1, 3n

− 1)� 2εn, (2)

where the implied ineffective constant depends on ε. Of course, a similar result is valid
with 2 and 3 replaced by two coprime numbers a and b, with the implied constant
depending on ε, a, and b (see [3]).

In the last section, we address the question of effectivity and discuss the role of the
abc conjecture in this context.

2. PRELIMINARIES. The following lemma from elementary number theory is a
key ingredient in our proof.

Lemma 2. Let p be an odd prime. If g is a primitive root (mod p2), then g is a primi-
tive root (mod pα) for every α ≥ 2.

Proof. See p. 102 of [7].

Corollary 3. 2 is a primitive root (mod 3α) for every α ≥ 1.

Proof. Since 2 is a primitive root (mod 9), the result follows from the lemma.
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3. PROOF OF THE THEOREM. Fix ε with 0 < ε < 1. From the relation

2n(2m−n
− 1) | 3n(3m−n

− 1),

we deduce that 2m−n
− 1 = ab, where a = 3r (for some r ≥ 0) and b divides Q: ran in some

equations here to
facilitate paging

(3m−n
− 1). Thus, b divides gcd(2m−n

− 1, 3m−n
− 1). By (2), b � 2ε(m−n). Con-

sequently,

a � 2(1−ε)(m−n).

Since a = 3r and a | (2m−n
− 1), we deduce

2m−n
≡ 1 (mod 3)r .

If m − n is sufficiently large, then by Corollary 3, 2 is a primitive root (mod 3r ) and
so φ(3r ) divides (m − n). Since φ(3r ) = 2 · 3r−1 we deduce that

2(1−ε)(m−n)
� a ≤ 3(m − n)/2,

so that m − n is bounded. Since 2n divides (3m−n
− 1) also, we find n is bounded and

consequently, m is bounded. This completes the proof.

4. RELATIONS TO THE abc CONJECTURE. For notational convenience, we
define the radical of n, denoted rad(n), to be the product of the distinct prime divisors
of n. Now, the abc conjecture is simple to state: for any ε > 0, there is a constant κ(ε)
such that for any mutually coprime A, B,C satisfying A + B = C , we have

max(|A|, |B|, |C |) ≤ κ(ε)(rad(ABC))1+ε .

We refer the reader to [8] and [2] for the history and status of this conjecture. Ef-
fective versions of this conjecture have been suggested by Baker [1], inspired by his
theory of linear forms in logarithms. Namely, he conjectures that there is an effectively
computable absolute constant K such that for any η > 0,

max(|A|, |B|, |C |) ≤ K

 ∏
p|ABC

p/η

1+η

. (3)

We remark that setting η = 1, (3) implies that there are only finitely many triples
A, B,C with a given radical satisfying A + B = C , and these can be effectively
bounded.

It is also evident that if (2) is replaced by

gcd(2n
− 1, 3n

− 1)� 2δn, (4)

for some δ < 1, our proof still works. However, even this weaker result seems to be
beyond the reach of elementary methods (see [3]). The substantially weaker estimate

gcd(2n
− 1, 3n

− 1) ≤
2n

3n

would suffice for our purposes.
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An inequality of the form (4) can be deduced from the abc conjecture. Since there
are effective versions of this conjecture, this opens up the way to prove that the bound
in our main theorem can be made effective modulo the abc conjecture. Below, we will
prove two theorems that suggest how some “weaker results” would lead to an effective
resolution of the Ruderman problem.

We first give a mild revision of (3).

Theorem 4. Let A, B,C be mutually coprime nonzero integers satisfying A+ B = C.
Let N = rad(ABC) be such that N > exp(ee). Assuming conjecture (3), we have

max(|A|, |B|, |C |) ≤ K N 1+ 4 log log log N
log log N .

Proof. The upper bound in (3) can be rewritten as

K N exp (η log N − ω(N )(1+ η) log η) , (5)

where ω(N ) is the number of distinct prime factors of N . We can bound ω(N ) using
Ramanujan’s bound [10]: for N ≥ 3,

ω(N ) <
c log N

log log N

for some absolute constant c. According to Robin [11], c = 1.3841 is large enough.
We now choose

η =
log log log N

log log N
,

and proceed to bound (5). Since N > exp(ee), we see that η > 0. If η ≥ 1, then

η log N − ω(N )(1+ η) log η ≤ η log N

and we are done. If η < 1, then

η log N + ω(N )(1+ η) log
1

η
≤ η log N +

2c log N

log log N
log log log N

=
(2c + 1)(log log log N ) log N

log log N
,

and we are done since 2c + 1 < 4.

Thus we have the following modification of (3): for any ε > 0, there is an effectively
computable K (ε) such that if A + B = C with A, B, and C mutually coprime, then

max(|A|, |B|, |C |) < K (ε)

 ∏
p|ABC

p

1+ε

. (6)

Indeed, we need only observe that

4 log log log N

log log N
(7)
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tends to zero as N tends to infinity. Hence there is an N0(ε) > exp(ee) so that for N =
rad(ABC) ≥ N0(ε), (7) is less than ε. Consequently, we deduce (6) with K (ε) = K
if N ≥ N0(ε). If N < N0(ε), then by our earlier remark, there are only finitely many
triples A, B,C with A + B = C having a given radical, and these can be effectively
determined. Hence, by enlarging K to a suitable K (ε), we deduce (6).

Theorem 5. Assuming the abc conjecture as formulated in (6), we have for any ε > 0,

gcd(2n
− 1, 3n

− 1)� 3(n/2)(1+ε),

where the implied constant depends effectively on ε.

Proof. Let d = gcd(2n
− 1, 3n

− 1). Writing 2n
− 1 = dU and 3n

− 1 = dV , with
(U, V ) = 1, we have U (3n

− 1) = V (2n
− 1) which leads to the equation

U3n
− V 2n

= U − V .

We apply the abc conjecture to this equation, with A = U3n , B = −V 2n , and C =
U − V , noting that all the summands are mutually coprime. Applying the abc conjec-
ture with ε/2 instead of ε, we get

U3n
� [rad(U V (U − V ))]1+ε/2 ≤ [U rad(V (U − V ))]1+ε/2.

After canceling a factor of U from both sides and using the fact that U ≤ dU =
2n
− 1 < 3n , we get

3n
� U ε/2

[rad(V (U − V ))]1+ε/2 ≤ 3nε/2
[rad(V (U − V ))]1+ε/2.

Therefore

3n(1−ε/2)
� [rad(V (U − V ))]1+ε/2.

Raising both sides of this inequality to the power 1/(1+ ε/2), we get

rad(V (U − V ))� 3n(1−ε/2)/(1+ε/2)
≥ 3n(1−ε).

Now

rad(V (U − V )) = rad(V )rad(U − V ) ≤ V (V −U ) ≤ V 2.

Thus,

V 2
� 3n(1−ε).

Therefore V � 3(n/2)(1−ε). Thus, 3n
≥ dV � d 3(n/2)(1−ε), which implies d �

3(n/2)(1+ε).

We remark that a similar method can be applied to treat gcd(an
− 1, bn

− 1) for a
and b coprime integers. Assuming the abc conjecture, one can deduce that for a < b,

gcd(an
− 1, bn

− 1)� [max(
√

b, b/
√

a)]n(1+ε).

If the effective version (3) of the abc conjecture is assumed, then the m and n in
Theorem 1 are effectively bounded.
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One can actually deduce Theorem 1 from a weaker result. Suppose we have that for
r sufficiently large, there is a prime p satisfying p | (2r

− 1) and p - (3r
− 1). Then

one can derive a bound for Ruderman’s problem. This too seems to be out of bounds
of existing knowledge.

Theorem 6. Assume the abc conjecture. Then for r sufficiently large, there is a prime
p such that p | (2r

− 1) and p - (3r
− 1).

Proof. Applying the abc conjecture to the equation (2r
− 1)+ 1 = 2r , we find

rad(2r
− 1)� 2(1−ε)r ,

for any ε > 0, with the implied constant depending on ε. Now suppose that for every
prime p | (2r

− 1), we have p | (3r
− 1). Then rad(2r

− 1) | (3r
− 1). Hence

gcd(2r
− 1, 3r

− 1) ≥ rad(2r
− 1)� 2(1−ε)r .

But by (2), we have that the gcd is bounded by 2εr . Since we may take any ε positive,
we choose ε < 1/2 to derive a bound on r . Thus, for sufficiently large r , there is a
prime p such that p|(2r

− 1) and p - (3r
− 1).

If one could establish an effective version of this theorem, then the Ruderman problem
could be resolved effectively. It is clear that (3) would imply an effective version of
the previous theorem.
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Cyclic Absolute Differences of Integers

Alan F. Beardon

Abstract. We give an elementary proof of the convergence, or nonconvergence, to zero in the
“four numbers game.”

1. INTRODUCTION. Let (a1, . . . , an) be a sequence of integers, where n ≥ 2, and
let θ be the map

θ : (a1, . . . , an) 7→ (|a1 − a2|, . . . , |an−1 − an|, |an − a1|).

The problem (attributed to Enrico Ducci in the late 1800s) is to discuss the iteration of
θ . It is clear that, after one or more applications of θ , each term in the sequence will be
nonnegative, and that, after the first application of θ , max{a1, . . . , an} will not increase
when we apply θ . These facts imply that, regardless of the initial sequence, repeated
applications of θ will eventually produce a periodic list of sequences. Beyond this the
following result is well known.

Theorem 1. Every sequence (a1, . . . , an) eventually maps to (0, . . . , 0) under re-
peated applications of θ if and only if n = 2m for some integer m.

The problem has a long history (see, for example, [1], [2], [4], [5], [6], and [7]),
and the first proof of Theorem 1 seems to have appeared in 1937 [3]. The usual proofs
of Theorem 1 involve expanding a sum of matrices by the binomial theorem over the
field Z2, or using polynomial rings. However, since the problem can be understood by
people with only a minimal background in mathematics, it seems desirable to have a
proof of Theorem 1 that is completely elementary, and significantly less demanding
than the usual proofs. The sole purpose of this article is to provide such a proof. The
ideas that we use are in the literature but not, as far as we know, collected together
in this way. In particular, the argument in Section 2 occurs briefly, and in a different
context, in [6] but, for completeness, we include the argument here.

We write a = (a1, . . . , an), and so on, and 0 = (0, . . . , 0). All sequences in this
paper will be assumed to have nonnegative integral components, and the sequence a
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