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The similarity between prime numbers and irreducible polynomials has been a dom-
inant theme in the development of number theory and algebraic geometry. There are
certain conjectures indicating that the connection goes well beyond analogy. For ex-
ample, there is a famous conjecture of Buniakowski formulated in 1854 (see Lang [3,
p. 323]), independently reformulated by Schinzel, to the effect that any irreducible
polynomial f (x) in Z[x] such that the set of values f (Z+) has no common divisor
larger than 1 represents prime numbers infinitely often. In this instance, the theme is
to produce prime numbers from irreducible polynomials. This conjecture is still one
of the major unsolved problems in number theory when the degree of f is greater than
one. When f is linear, the conjecture is true, of course, and follows from Dirichlet’s
theorem on primes in arithmetic progressions.

It is not difficult to see that the converse of the Buniakowski conjecture is true;
namely, if a polynomial represents prime numbers infinitely often, then it is an irre-
ducible polynomial. To see this, let us try to factor f (x) = g(x)h(x) with g(x) and
h(x) in Z[x] of positive degree. The fact that f (x) takes prime values infinitely often
implies that either g(x) or h(x) takes the value ±1 infinitely often. This is a contradic-
tion, for a polynomial of positive degree can take a fixed value only finitely often.

There is a stronger converse to Buniakowski’s conjecture that is easily derived (see
Theorem 1). To be specific, if a polynomial f (x) belonging to Z[x] represents a single
prime number for some sufficiently large integer value of x , then the polynomial is
irreducible. A classical result of A. Cohn (see Pölya and Szegö [5, p. 133]) states that,
if we express a prime p in base 10 as

p = am10m + am−110m−1 + · · · + a110 + a0,

then the polynomial

f (x) = am xm + am−1xm−1 + · · · + a1x + a0

is necessarily irreducible in Z[x]. This problem was subsequently generalized to any
base b by Brillhart, Filaseta, and Odlyzko [1]. We will give a proof of this fact that is
conceptually simpler than the one in [1], as well as study the analogue of this ques-
tion for function fields over finite fields. More precisely, let Fq denote the finite field
of q elements, where q is a prime power. Fix a polynomial b(t) in Fq[t]. Given an
irreducible polynomial p(t) in Fq [t], we write it in “base b(t)” as

p(t) = am(t)b(t)m + · · · + a1(t)b(t) + a0(t).

The analog of Cohn’s theorem to be proved in what follows is that

f (x) = am(t)xm + · · · + a1(t)x + a0(t)

is irreducible in Fq[t, x]. The proof in the function field case is much simpler and is
motivated by the following elementary result, which can be viewed as somewhat of a
strong converse to the conjecture of Buniakowski.
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Theorem 1. Let f (x) = am xm + am−1xm−1 + · · · + a1x + a0 be a polynomial of de-
gree m in Z[x] and set

H = max
0≤i≤m−1

|ai/am |.

If f (n) is prime for some integer n ≥ H + 2, then f (x) is irreducible in Z[x].
The proof will be based on the following elementary lemma.

Lemma 1. Let f (x) = am xm + · · · + a1x + a0 be of degree m and have α in C as a
root. Then

|α| < H + 1,

where H is defined as in Theorem 1.

Proof. Clearly,

−amαm = am−1α
m−1 + · · · + a1α + a0,

so

|α|m ≤ H
(|α|m−1 + · · · + |α| + 1

) = H

( |α|m − 1

|α| − 1

)
. (1)

If |α| ≤ 1, then |α| < H + 1 and the conclusion of the lemma is trivial. If |α| > 1,
then multiplying (1) by |α| − 1 we deduce that

|α|m+1 − |α|m < H |α|m,

from which |α| < H + 1 follows.

The theorem can now be proved using this lemma.

Proof of Theorem 1. If f (x) is reducible in Z[x], write f (x) = g(x)h(x), where g(x)

and h(x) in Z[x] are of positive degree. Since f (n) is prime, we must have either g(n)

or h(n) equal to ±1. Without loss of generality, we may suppose that it is g(n). We
can express g in the manner

g(x) = c
∏

i

(x − αi ),

where c is the leading coefficient of g and the product is over a subset of the complex
zeros of f . In view of Lemma 1,

|g(n)| ≥
∏

i

(n − |αi |) >
∏

i

(n − (H + 1)) ≥ 1,

which is a contradiction.

Theorem 1 offers a simple irreducibility criterion that is applicable when most tradi-
tional tests fail. An example is given by f (x) = x4 + 6x2 + 1. We leave as an exercise
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for the reader to verify that f (x) is reducible modulo p for every prime p (see Lee [4]).
On the other hand, a simple computation shows that f (8) = 4481, a prime, from which
the irreducibility of f (x) follows by Theorem 1.

Theorem 1 is not quite adequate to establish Cohn’s theorem. In that context, the
largest possible value of H is 9, so Theorem 1 would require that n be at least 11
in order for the theorem to be applicable: the fact that f (10) is prime would not be
sufficient to ensure irreducibility. Moreover, Theorem 1 is “best possible.” Indeed,
the polynomial f (x) = (x − 9)(x2 + 1) = x3 − 9x2 + x − 9 is reducible with all its
coefficients of absolute value at most 9, yet f (10) = 101 is prime. This example shows
that the positivity of coefficients must enter in a vital way into Cohn’s theorem. Indeed,
Filaseta extends Cohn’s theorem by proving that, if f (x) = ∑n

j=0 a j x j is a polynomial
in Z[x] such that 0 ≤ a j ≤ an1030 for 0 ≤ j ≤ n − 1 and if f (10) is prime, then f (x)

is irreducible [2].
On the other hand, it is clear that every number can be represented as

ar 10r + ar−110r−1 + · · · + a110 + a0

with −1 ≤ ai ≤ 8, for the integers belonging to the interval [−1, 8] form a complete
set of residue classes modulo 10. If we write our prime p in this “skewed” base 10
notation, then the resulting polynomial is irreducible by our theorem. This remark
applies for any base b ≥ 3. The same reasoning shows that a similar result can be
stated for any “balanced” base b representation with

p = ar br + ar−1br−1 + · · · + a1b + a0,

where |ai | ≤ b/2.
We will prove that a slight refinement of Lemma 1 suffices to establish Cohn’s

theorem. After showing how this can be done, we discuss the case of function fields
over finite fields. It turns out that a function field version of Lemma 1 is enough to
prove the asserted analogue of the Cohn result.

We begin by indicating how Lemma 1 must be modified in order to obtain Cohn’s
theorem.

Lemma 2. Let f (x) = an xn + an−1xn−1 + · · · + a1x + a0 belong to Z[x]. Suppose
that an ≥ 1, an−1 ≥ 0, and |ai | ≤ H for i = 0, 1, . . . , n − 2, where H is some pos-
itive constant. Then any complex zero α of f (x) either has nonpositive real part or
satisfies

|α| <
1 + √

1 + 4H

2
. (2)

Proof. If |z| > 1 and (z) > 0, we observe that

∣∣∣∣ f (z)

zn

∣∣∣∣ ≥
∣∣∣∣an + an−1

z

∣∣∣∣ − H

(
1

|z|2 + · · · + 1

|z|n
)

> 
(

an + an−1

z

)
− H

|z|2 − |z|

≥ 1 − H

|z|2 − |z| = |z|2 − |z| − H

|z|2 − |z| ≥ 0
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whenever

|z| ≥ 1 + √
1 + 4H

2
. (3)

Consider an arbitrary complex zero α of f (x). If |α| ≤ 1, (2) holds trivially. Assume
that |α| > 1. Either (α) ≤ 0 or (3) must fail for z = α, since | f (z)/zn| is positive
whenever (z) > 0 and (3) holds. Thus, either (α) ≤ 0 or α satisfies (2).

We apply Lemma 2 to solve a problem suggested in Pólya-Szegö [5, p. 133].

Theorem 2. Let b > 2 and let p be a prime with b-adic expansion

p = anbn + an−1bn−1 + · · · + a1b + a0.

Then the polynomial f (x) = an xn + an−1xn−1 + · · · + a1x + a0 is irreducible over Q.

Remark. Theorem 2 is also true for b = 2, as follows from Lemma 3 and the discus-
sion following the proof of Theorem 2.

Proof. By a celebrated lemma of Gauss (see Lang [3, p. 181]), it suffices to consider
reducibility over Z[x]. If f (x) = g(x)h(x) with g(x) and h(x) nonconstant polyno-
mials in Z[x], then f (b) = p implies either g(b) = ±1 or h(b) = ±1. Without loss of
generality we may assume that g(b) = ±1. As in the proof of Theorem 1, we write

g(x) = c
∏

i

(x − αi ),

where the αi range over a certain subset of the zeros of f and c is a nonzero integer
(namely, the leading coefficient of g(x)). By Lemma 2, every zero α of f either has
nonpositive real part or has absolute value less than

1 + √
1 + 4(b − 1)

2
.

In the former case, we plainly have |b − α| ≥ b; in the latter case, the fact that b is at
least 3 gives

|α| <
1 + √

1 + 4(b − 1)

2
≤ b − 1,

as is easily checked. In particular, |b − αi | > 1 for each i , from which we deduce that
|g(b)| > 1, a contradiction.

A few remarks are in order. First, the proof of Theorem 2 breaks down for b = 2.
But not all is lost. Since when b = 2 the coefficients of the polynomial f (x) are either
0s or 1s and f (2) is prime, we must have a0 = 1. If f (x) has any rational roots, they
can only be ±1. Clearly, x = 1 is not a root. If x = −1 is a root, then 0 = f (−1) ≡
f (2) ≡ p(mod 3), implying that p = 3 and f (x) = x + 1, which is irreducible. Thus,
when p > 3, f (x) does not have any rational roots. This itself suffices to confirm the
irreducibility of f (x) for b = 2 and primes p smaller than 16, since for these primes
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the degree of the polynomial is at most 3. To handle the case b = 2 in general, a bit
more analysis is needed. Suppose that all the roots of f (x) satisfy (α) < v. Then it
is readily seen that the coefficients of the polynomial

g(x + v) = c
∏

i

(x + v − αi )

are all nonnegative. Indeed, if αi is real, the linear polynomial x + v − αi has non-
negative coefficients. If αi is not real, we pair it with its complex conjugate and notice
that

(x + v − αi )(x + v − αi ) = x2 + 2(v − αi )x + |v − αi |2 (4)

has nonnegative coefficients. Observe that g(x) is a polynomial with real coefficients
and therefore, if α is a root of g(x), so is α. As v is real, the same property applies to
the polynomial g(x + v). Because g(x + v) is a product of polynomials of type (4), it
is a polynomial in x with nonnegative coefficients. Hence g(−x + v) is a polynomial
with alternating coefficients. Thus, for any x > 0, we have ±g(−x + v) < g(x + v).
Therefore, |g(−x + v)| < g(x + v). If v < b, then we set x = b − v to deduce that
|g(−b + 2v)| < g(b). If v can be chosen to be 3/2, then we obtain |g(1)| < g(2).
As g(1) �= 0 and this number is an integer, we get |g(2)| > 1. The proof of Theo-
rem 2 then applies to establish the irreducibility of f (x). However, the bound given by
Theorem 1 is (1 + √

5)/2 > 3/2. This suggests the following refinement of Lemma 2.
It is all that is required to extend the proof of Theorem 2 so as to cover the case
b = 2.

Lemma 3. Suppose that α is a complex root of a polynomial

f (x) = xm + am−1xm−1 · · · + a1x + a0

with coefficients ai equal to 0 or 1. If | arg α| ≤ π/4, then |α| < 3/2. Otherwise
(α) < (1 + √

5)/(2
√

2).

Proof. The cases m = 1 and m = 2 can be verified directly. Assuming that m ≥ 3, we
compute for z �= 0:

∣∣∣∣ f (z)

zm

∣∣∣∣ ≥
∣∣∣∣1 + am−1

z
+ am−2

z2

∣∣∣∣ −
(

1

|z|3 + · · · + 1

|z|m
)

.

For z satisfying | arg z| ≤ π/4 it is true that (1/z2) ≥ 0, so for such z we have
∣∣∣∣ f (z)

zm

∣∣∣∣ > 1 − 1

|z|2(|z| − 1)
= |z|3 − |z|2 − 1

|z|2(|z| − 1)
.

The polynomial f (x) = x3 − x2 − 1 has exactly one real root, and this root is less than
3/2. Indeed, the derivative of this function is 3x2 − 2x = x(3x − 2), revealing that
x3 − x2 − 1 has negative slope only for x in (0, 2/3). Since the value of x3 − x2 − 1
at x = 3/2 is positive, the one real root lies in the open interval (2/3, 3/2). Therefore,
| f (z)| > 0 for |z| ≥ 3/2 and | arg z| ≤ π/4, whence the first part of the lemma is
established. For the second part, we consider the two conditions |α| < (1 + √

5)/2
and | arg α| > π/4. It is not difficult to see that these conditions force (α) to be
smaller than (1 + √

5)/(2
√

2). This completes the proof.
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The foregoing proof of Theorem 2 is really a motivated account of the proof in [1],
where the authors adapted the method indicated in [5, p. 133] to deal with the general
base. Our approach has been more naive and slightly different. The point is that the
naive approach to Lemma 1 and Theorem 1 works in the function field case.

There is a natural generalization of Cohn’s theorem to the case of function fields
over finite fields. Indeed, let Fq denote the field of q elements with q a prime power. Let
K be the field of rational functions Fq(t). One defines a norm on this field by setting
| f (t)/g(t)| = qdeg f −deg g whenever f (t) and g(t) are polynomials with coefficients
in Fq . One considers the completion L of Fq(t) with respect to this norm, and shows
that the norm extends in a natural way to L . If α is algebraic over K , we may take its
norm from L(α) to L and thus get an element in L whose norm is well-defined. Then
we take the dth root of this norm, where d = [L(α) : L], and define this to be the norm
of α. (See Lang [3, p. 474] for details.)

It is easy to see that the counterpart of Lemma 1 carries over mutatis mutandis to this
setting. If we fix a polynomial b(t) of positive degree, then an irreducible polynomial
p(t) can be “written in base b(t)” via the Euclidean algorithm:

p(t) = am(t)b(t)m + · · · + a1(t)b(t) + a0(t).

In analogy with the theorem of Cohn, we can inquire if the polynomial

f (x) = am(t)xm + · · · + a1(t)x + a0(t)

is irreducible in K [x]. By factoring the polynomial over the algebraic closure K of K ,
we see as before that any nontrivial factor g(x) of f (x) can be factored as

g(x) = c(t)
∏

i

(x − αi (t))

for some polynomial c(t). Now

|g(b(t))| ≥
∏

i

(|b(t)| − |αi (t)|) >
∏

i

(qdeg b − (qdeg b−1 + 1)) ≥ 1

unless q = 2 and deg b = 1. The “fringe” case can be handled very easily by observing
that if deg b = 1, then f (x) is the same as p(x) after a linear change of variable.
Therefore, we have irreducibility in this case.

As an illustration of the result in the function field case, consider the irreducible
polynomial p(t) = t4 + t + 1 over the finite field of two elements. We can expand this
in base b(t) = t2 + 1 as (t2 + 1)2 + t . In this instance, we have f (x) = x2 + t , which
is clearly irreducible over F2(t).
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Prize.
Queen’s University, Kingston, Ontario, K7L 3N6, Canada
murty@mast.queensu.ca

458 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 109


