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§1. Motivation.

This paper is partially expository and is intended as an introduction
to the Langlands program for number theorists. The new theorem in the
paper is that automorphic induction map for Hecke characters implies both
the Artin conjecture and the Langlands reciprocity law. (See below for
definitions.) In the last section, we describe some recent work with K.
Murty [18] that applies the theory of base change to elliptic curves. The
paper is not an exhaustive survey. We have tried to use some classical
problems of number theory as motivation for discussion. For instance, we
concentrate on GL, though the functoriality conjecture predicts that this
is not a limitation. Nevertheless, our discussion is sufficiently motivated
from the number theoretic point of view that a non-specialist in the field
can appreciate the depth and profundity of these ideas.

We begin by considering two open problems confronting number theory:
Fermat’s last theorem and the Sato-Tate conjecture.

First, we must understand the notion of a modular form. Let SLy(Z)
denote the full modular group. That is,

SL;;(Z):{(“ 3) : a,b,c,dEZ;ad—bc:l}.

c

If b denotes the upper half-plane, a holomorphic function f : h—C is called
a modular form for SL3(Z) of weight & if

a b

aztby _ (cr b d)if(z) v ( ‘ d) € SLy(Z)

cz+d

K(

and f is “holomorphic at infinity”. Since f(z + 1) = f(z), such a function
f has a Fourier expansion and the condition “holomorphic at infinity” can
be stated by saying that f has a Fourier expansion of the form
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38 Introduction to the Langlands Program

o0
f(z) = Z anezﬂ'nz )
n=0
More generally, we may consider for each natural number N, the subgroup
T'o(N) defined as the subgroup of matrices

_fa b
=(C4)

of SLy(Z) satisfying ¢ = 0( mod N). A modular form of weight k for
I'o(N) is defined analogously. (All rational numbers are SLz(Z)-equivalent
to i00. The I'o(N) equivalence classes of rational numbers are called cusps
for T'4(N) and sometimes we refer to a representative of the class as a cusp.
We require that the modular form for I'o(N) be holomorphic at each of
these cusps. )

Now let A, B, C € Z be coprime integers such that A'+ B+ C = 0 with
32|B and 4|(A + 1). Let E be the curve

E: ¥’ = z(z — A)(z + B).
For each prime p not dividing ABC let N, be the number of solutions of
E mod p. Define
tpy=p—N,.
Then a classical theorem of Hasse (conjectured by E. Artin in his doctoral
thesis) states that |a,| < 2,/p. Set

e =F@ I ( —“—"’+pz.,1_1)—1

ofABC r
where
=10 ()2 6 (2 - (2)2)°

By virtue of Hasse’s inequality, this infinite product converges for Re(s) >
3/2 and so in this half-plane, we can write Lg(s) as a Dirichlet series

= a

n
LE(&) = -1;;-

nx=l
This defines the a, (which coincides with a, when n is prime, so the nota-
tion is consistent). Define

(=]
N=1] »  fe(z) =3 ane?minz.
p|ABC n=1

In 1955, Taniyama [32] made the astounding conjecture that fg(z) is a
modular form of weight 2 for I'y(N). In 1985, Frey [7] noticed that there



M. Ram Murty 39

may be a link between Taniyama’s conjecture and Fermat’s last theorem.
This led Serre [28] to formulate more precise conjectures concerning the
ramification of modular Galois representations which culminated in K. Ri-
bet [22] proving in 1989 the following remarkable theorem:

THEOREM 1. (Ribet, 1989) Taniyama’s conjecture implies Fermat’s
last theorem.

Taniyama’s conjecture reduces to the problem of determining when a
given sequence of numbers {a,}32; is the sequence of Fourier coefficients
of a modular form. In 1967, A. Weil [34] answered this question in the
following way. Let

o0

Qan
L(S) = —s
n=1 n

and for each Dirichlet character y mod c define

o Gnx(n)
n
L(S, X) = Z T
n=1
Suppose that the a,’s are of polynomial growth and for each primitive
character x mod ¢ and (¢, N) = 1, L(s, ) extends to an entire function

and satisfies the functional equation
(VN /21) T(s)L(s, x) = wy(eV'N /27)*~*x(~N)L(k — 5, %)

where wy, is a complex number of absolute value 1. Then

[o=]

f(z) = E qnezﬁnz

n=1

is 2 modular form of weight k for I'o(N).

In view of Weil’s theorem, Theorem 1 reduces Fermat’s last theorem to
an assertion about analytic continuation of certain Dirichlet series. This
is not the first time that such an event has taken place in number theory.
In retrospect, we see that the introduction of the zeta function to solve
problems of the distribution of prime numbers or the use of Dirichlet I-
functions to describe the behaviour of primes in arithmetic progressions
foreshadowed this event.

As we shall see, the Taniyama conjecture is a special case of the Lang-
lands program which seeks to unify representation theory, number theory
and arithmetic algebraic geometry. The binding link between all these
diverse disciplines is the notion of an L-function of an automorphic rep-
resentation and the relation between its analytic properties and the un-
derlying algebraic structures. The L-functions of automorphic forms and
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automorphic representations generalise the classical zeta and L-functions
of Riemann, Dirichlet and Hecke.

To further motivate our understanding, I would like to describe the
Sato-Tate conjecture. Let E be an elliptic curve defined over Q. By Hasse’s
inequality, we know jap| < 2,/p. Let us write

ap = /p(e’’? + &™) = 2, /pcosb,.

Sato and Tate independently asked the question how does 6, vary as p
varies and were led to conjecture that if the elliptic curve is not of CM
type, then the 6,’s are uniformly distributed with respect to the measure

2 sin? 8d9.
T

In his McGill lectures given in 1967, Serre [27] reformulated this conjecture
as follows. Let ap = €' and B, = €™, For each m, define the L-series

m(s) = HH(I— _Jﬂ])l

p =0

Each L, (s) converges for Re(s) > 1. Suppose that each L, (s) extends to
an entire function for all s € C and L, (1 + it) # 0 for all real values of ¢.
Then, Serre {27] showed that fthe 0 s are uniformly distributed with respect
to the (Sato-Tate) measure 2sin 0/7r In 1979, Kumar Murty [17] showed
that analytic continuation of each L,.(s) to Re(s) = 1 alone suffices to
imply the Sato-Tate conjecture.

Since the a,’s behave like Fourier coefficients of cusp forms of weight 2, it
is reasonable to expect the same type of behaviour from Fourier coefficients
of cusp forms which are eigenfunctions of Hecke operators. To illustrate,
consider the Ramanujan 7 function defined by the power series

¢JIa-g* =3 (e
n=1 n=1

If we set ¢ = e?™*, then the series defines a cusp form of weight 12 for the
full modular group. In 1916, Rarmanujan [20] conjectured that 7 satisfies

(1) r(nm) = r(n)r(m) if (n,m) =1 and
(2) |7(p)] < 2p**/? whenever p is prime.

(1) was proved by Mordell in 1928, but he overlooked the depth of the
ideas that went into his proof. Hecke [12] saw in it the theory of certain
operators acting on the space of cusp forms. But (2) defied many attempts
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until Deligne [4] in 1974 proved it as a consequence of his proof of the Weil
conjectures. We can therefore write, in analogy with elliptic curves,

T(p) = p11/2(ei0,. + e-—i@,) = p11/2(ap +ﬁp)-

With this notation, the series L (s) can be analogously defined. Serre [27]
conjectured that the f,’s are uniformly distributed with respect to the Sato-
Tate measure. In terms of L-functions and Kumar Murty’s theorem, this
means we must continue each Ly, (s) to the line Re(s) = 1. fm = 1, Ly(s)
is the Mellin transform of a cusp form and so has analytic continuation by
the work of Ramanujan and more generally by the work of Hecke. If m = 2,
Rankin [21] and Selberg [26] (independently) showed in the 1940’s that
¢(s)L2(s) has an analytic continuation and satisfies a functional equation.
Since the (-function does not vanish on the line Re(s) = 1, it follows that
L3(s) extends to an entire function to Re(s) = 1. That in fact Ly(s)
extends to an entire function for all values of s was proved by Shimura [30]
in 1975 by a slight modification of the Rankin-Selberg method. In 1982,
Shahidi [29] showed that L3(s) and L4(s) have analytic continuation up
to Re(s) = 1. In 1985, Garrett [8] has also obtained results which imply
these by another method. Their results imply

Theorem. If Ly(s) has no real zeroes in (1/2, 1), then L3(s) is entire.

In 1952, Gelfand and Fomin [9] showed how a modular form gives rise to
a representation of SLy(R). Langlands’ idea is to look at representations of
GL; of the adele ring of the rational numbers. More generally, he attaches
L-functions to representations of adele groups. These L-functions play a
central role in the Langlands program.

2. Artin L-series and Hecke’s [-series.

One can view the construction of L-series in a purely formal way. This
is described by Serre [27] in his McGill lectures alluded to earlier. Let G be
a compact group and g its normalised Haar measure. Let X be the space
of conjugacy classes. Suppose S is a finite set of primes and for each prime
p € S, let X, be a conjugacy class. We can ask the question of how the
Xp’s are distributed as p varies.

Let p be an irreducible representation of G and define

L(s,p) = [T det (1 - p(X,)p~*).
PES

This defines an analytic function for Re (s) > 1. Suppose that each L(s, p)
extends to an analytic function on Re(s) = 1 and does not vanish there.
Then, the X,’s are uniformly distributed with respect to the image of the
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Haar measure in X. This theorem is proved using the standard Tauberian
theory.

Examples.

1. Let r(p) = 2p*'/2cos 8, or a, = 2p*/2cosf,. For each prime p, we can
assoclate

(“w’ c_.-g,) € SU(2,0).

Let p be the standard representation of SU(2,C). Then, all irreducible
representations of SU(2,C) are Sym™(p) and L(s, Sym™(p)) is Lm(s)
defined in the previous lecture. The image of the Haar measure in the
space of conjugacy classes of SU(2,C) is 2sin® §/7.

2. Artin L-series. Let F be an algebraic number field and K/F be a Galois
extension. For each prime ideal p of F, we have the factorization

pOx =P;---P;,

where P;, ..., Pr are prime ideals of K. There is a finite set of primes
S (namely the ramified primes of K) such that for p ¢ S, the decom-
position group

Dp={ce€eG:P’ =P}

is cyclic. One can show that this group is canonically isomorphic to the
Galois group of the extension of finite fields O /P over Op/p which is
generated by z — zVF/e(P), We denote by op € Dp which corresponds
to this element. That is,

op(x) = «NreP)( mod P)

for all z € Ok. If Plp, then the op are conjugate and we denote by
o, the conjugacy class to which the op belong. oy is called the Artin
symbol of p. It is a generalisation of the familiar Legendre symbol which
distinguishes quadratic residues from non-residues. For each irreducible
complex representation of G, L(s, p) is called the Artin L-series attached
to p.

Artin’s conjecture. If g is irreducible and # 1, then L(s, p) extends to
an entire function of s.

This is one of the major unsolved problems in number theory. If p
has degree 1, then Artin showed that his conjecture is true by showing
that L(s,p) = L(s,v) where ¢ is a Hecke character. Hecke had already
shown that such L-series L(s, ) arise as Mellin transforms of generalised
theta functions and so established their analytic continuation and func-
tional equation. This equality is a deep statement which is called the Artin



M. Ram Murty 43

reciprocity law. In the simplest case when F' = Q and K is a quadratic
extension, the identity is equivalent to the law of quadratic reciprocity.
In the general case, Brauer showed that each L(s,p) has a meromorphic
continuation for all s € C. This was a consequence of his induction theo-
rem which says that every character of a finite group G can be written as
an integral linear combination of monomial characters. Thus, every non-
Abelian I-series can be written as a quotient of two entire functions each
of which is a product of abelian L-series. Since these L-series do not vanish
on the line Re(s) = 1, we deduce immediately that the Artin symbols are
uniformly distributed in G. This is the famous Chebotarev density theo-
rem, which plays a central role in many problems of number theory. For
instance, if F = Q and K = Q((), then Gal(K/Q) ~ (Z/kZ)* and the
Artin symbol of p is p mod k. Thus, we recover Dirichlet’s theorem on
primes in arithmetic progressions.

Brauer’s theorem is essentially group theoretic in nature. By a similar
argument, one can show that Artin’s conjecture is true for all supersolvable
groups where every irreducible character is monomial. But these are group
theoretic arguments which have limitations. The natural question is what
can we say about representations of degree 2. As we shall see, the Langlands
program will make a precise conjecture as to what L(s,p) should be in
general. In 1975, Langlands made significant progress by proving Artin’s
conjecture in the “tetrahedral case” by using ideas of representation theory.
More precisely, if

p: G—=GLy(C)5 PGL,(C)

is a 2 dimensional representation, then the image of G in PGL4(C) is one
of five possibilities: cyclic, dihedral, A4, S; or As. It was the case of Ay
(tetrahedral) that Langlands [14] dealt with after developing the theory of
base change for GL,. Tunnell [33] in 1982 showed the same ideas work
for S4 (the octahedral case). In his doctoral thesis, Buhler [2] showed that
Artin’s conjecture is true in the icosahedral case for certain cases. The
general case is still open.
Artin’s conjecture suggests the following question: given a sequence
{an}:o=1: deﬁne
bad a
L
L(S) - n=1 ;-l: ‘
When does L(s) have analytic continuation and functional equation. Hecke
obtained such L-series as Mellin transforms of theta functions of several
variables. These are L-series attached to grossencharactere. He also con-
sidered Mellin transforms of modular forms and showed that these series
also enjoyed analytic continuation and functional equations. Let me illus-
trate with a concrete example. Let
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00

A(z) = Y r(n)e?mine.

n=1

Let SLz(Z) be the group of matrices

(‘: 3) a,be,d€Z, ad—bc=1.

Then,
az+b

A(
cz+d
and in particular A(—1/z) = z!2A(z). Consider the Mellin transform

o0 . dy /00 o dy
Aliy)y’ — = r(n)e~ 3 ¥y 2
/0 (iy)y il > 7(n) vy

n=1

= (27)7°T(s) E 11({’1)-

n=1
1 o0
d
= / A(iy)y“ilg+ / Ai)y* =2
0 y 1 vy
bl _s iy % . d
= _/ Aty = + / Adig)y* =2
1 Yy 1 Yy

from which we get analytic continuation and functional equation upon using
the modular relation.

To describe Hecke theory in some more detail, let h denote the upper
half plane. Let GL} (R) denote the non-singular 2x 2 matrices with positive
determinant. GLJ (R) acts on ). Consider T', a congruence subgroup of
SL2(Z). That is, T' D T(N) where

I(N) = {(‘c‘ 3) = I( mod N)}

for some natural number N. For example, Hecke’s group
a b _
To(N) = {(c d) ¢ = 0( mod N)}
a congruence subgroup. Define j(g,2) = (cz + d)(det g)~/2 for all g €

GL}(R) and
* *
4= (c d)’

(flio)(2) = (o, 2)* f(o2)
for all positive integers k. A fundamental domain § for I is any connected
set in § such that no two interior points of § are I' equivalent and every

) = (ez +d)'2A(2)

Set
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point in § is equivalent to some point in F. For example, for T' = SLy(Z),
it is easy to see that a fundamental domain is § = {z==z+iy: -=1/2<
z <1/2, |z| 2 1} because SL3(Z) is generated by

G = (33

For an arbitrary I, a fundamental domain is easily derived from this one as
follows. Let 1, 7;... be the left coset representatives of I in SLy(Z). Then
a fundamental domain for T is U; 7,15,

A cusp for T is an element of Q U {ico} which is fixed by an element
of trace 2. In the case of SZ, (Z), ico is the only cusp up to equivalence.
Let h* = hU cuspsof I'. Then, I'\h* has a complex analytic structure of a
Riemann surface. We also identify this with a fundamental domain of T.

An automorphic form for I' of weight k is a complex valued function
f on b such that
(1) fley=fforally €T,

(2) f is holomorphic on b*.

A cusp form for T is an automorphic form which vanishes at all the
cusps of I'. Let My (T) denote the space of modular forms for T' and Sk(T)
the space of cusp forms. For SLy(Z), dim M;(T') = dim Si(T) + 1 where
the term +1 arises from the subspace spanned by the Eisenstein series:

Ex(z) = E (mz +n)~F.
(m.n)#(0,0)

In the general case for & even and k > 2, dim M3(T) - dim S (T') is equal to
the number of inequivalent, cusps of ' so that there is an Eisenstein series
attached to each cusp. The space of cusp forms is an inner product space
where the inner product is defined by

= Ty
o= [ [ st =5,

Hecke’s First theorem. Let f € Si(I'o(N)) and write

f(z) = ianemrinz

n=1

for its Fourier expansion at fco. Then,
> [43

L(s, f) = —=

ns
n=1

has an analytic continuation and functional equation relating L(s, f) and

L(s, flwn) where wy = (—3\/ (1))
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The Artin conjecture for 2-dimensional Galois representations can now
be reformulated and made more precise. Every 2-dimensional Artin L-
series is the Mellin transform of a cusp form of weight 1 on T'o(N) for some
natural number N. This can be viewed as the “2-dimensional reciprocity
law”.

Hecke was led to ask which L(s, f) have Euler product expansions be-
cause only these will correspond to Artin L-series. He defined certain linear
operators (called Hecke operators) on the space Si(T') and showed that if
f is an eigenfunction of these operators, then L(s, f) has an Euler prod-
uct. Such f’s are called eigenforms. In 1976, Deligne and Serre showed
that for each eigenform of weight one on I'y(XN) of “odd type”, there is a
2-dimensional Galois representation p; over Q such that L(s, ps) = L(s, f).

3. Hecke operators.

Let T' = T'o(N) and let Sk(T') be the space of cusp forms of T of weight
k. Define operators

L) =r G+ 3

b mod p

z4+b
p

)

where p JN is a prime. Then, T} is a linear operator on Si(T).

Hecke’s Second Theorem. Let
o

f(z) = Z an 2™ a; =1

n=]

The a,’s are multiplicative if and only if f is an eigenfunction of all the
Tp’s. In this case, L(s, f) has an Euler product of the form

-1 -1
_ a, 1 ay
s =11 (- 2+ i) T(-3)
vIN p|N
Another way of thinking about the Tp’s is via double cosets. Let

r ({)’ ‘1’) T = Ul

The +; can be taken to be

p 0 19
(0 1) (0 p) b mod p.

It is then easily verified that
T.(f) =) flw

This interpretation will be useful in later generalizations.
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4. Modular forms as representations of SL, (R).

In 1952, Gelfand and Fomin [9] noticed that cusp form of Si(T) define
representations of SL;(R) in the following way. In SLa(R), let

vy D a=((t )

cosf —sind . .
K_{(sina cos 8 )_Ro. 0<8<2n).

Then, SLy(R)= NAK (Iwasawa decomposition).

If G is any group acting transitively on a set S, then S can be identified
with the coset space G/T, where T, is the stabilizer of any ¢ € S. Since
SLy(R) acts transitively on b, and T; = K, we can identify the upper half
plane with SL,(R)/K. Thus, elements of SLz(R) can be thought of as
pairs (z,0) with 2z € h. Let G = SLy(R). Define for g € G and f € Si(T),

$1(9) = i(9, )" f(g - 9).

This satisfies

(1) é(vg) = ¢(9) for all y € T,

(2) ¢(gRe) = e~*¢(y),

(3) fr\c; [#(g)*dg < oo,

(4) forall p € SL»(Z),and all g € G,

1 zh
L\R¢(/)(0 l)g)(l.‘czo

where h is the “width” of the cusp p(icc).

Define the Laplace operator on G
82 ? 8%
- X y_, Y

A=-y <8x2 + 3y2> Vorzon-

Then ¢; satisfies
(5°) &gy = —k(k - 2)¢,/4.
Theorem.  Any function ¢ € L%(T\G) satisfying (1) - (4) and (5") is
necessarily a ¢ for some f € S (D).
If we replace (5°) by

(5) ¢ is an eigenfunction of A
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we get real analytic forms in addition to holomorphic forms. Such forms
were first studied by Maass and are called Maass wave forms. They have
a Fourier expansion of the type

f(z) = Eanezﬁ"’ﬂlﬁr(%rlﬂy)

n

where 72 + 1/4 is an eigenvalue of
.8 &
I (3_5‘ * 51]5)

o
K,(2) = / e=2<oht coch vt dt
0

and

is the Bessel function. Connected with these eigenvalues is the famous
conjecture of Selberg that predicts that if A = r?+ 1/4 is an eigenvalue for
To(N), then X > 1/4. This is equivalent to saying that r cannot be purely
imaginary. This conjecture is known if I' = SL3(Z). Selberg [26] showed
that A > 3/16 for I'y(N). Iwaniec and Selberg have noted that there are
arithmetic applications of this conjecture.

Let L3(T'\G/K) = V be the vector space of square integrable, left-
invariant by T’ and right K-invariant functions on G. Define the right
regular representation of G by

(R(g) - ¢)(h) = $(hg).
Then, AR = RA. Thus, irreducible representations occurring in R coincide
with eigenfunctions of A. (We are ignoring certain growth conditions.)
These ideas can be generalised to GLn(R).

5. GLa(R).

Let K = On(R) be the orthogonal group, Z the group of scalar matrices.
Let T' = GL,(Z). The analog of the upper half plane is the symmetric space

H = T\GL.(R)/KZ.

Every element of G/KZ can be written as a product

1 1 . -:’I
1 219 - - Tim Wyz - Un N
_ 1 =®3 -+ @am : o
1 yﬂ—l

For example, if n = 2,

3@ -=071)

corresponds to = + iy € h.
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We will consider functions satisfying

(1) ¢(79) = ¢(g) for ally € T.

(2) ¢ is square integrable,

(3) ¢ should be an eigenfunction of n — 1 “Laplacians”. More precisely, if
D is algebra of G-invariant differential operators, it is isomorphic to a
polynomial ring of rank n — 1. We require D¢ = p(D)¢ for all D € D.

If these conditions are satisfied by ¢ in addition to the following growth

condition

(4) 160 < Cy1---yn-1)4

then we say that ¢ is an automorphic form for G. An automorphic form is
called cuspidal if

() fé ((é )I() g) dz = 0 for all ¢ € G and X is an n; x n, matrix with

ni +n2=n.

(This definition is due to Gelfand.)
One can equally well develop the theory of Hecke operators. Let

p i) = (pli I,,_i) '

P¢(p, )T = UT'yp i 0
be a double coset decomposition. Define the Hecke operator T, ; by

(T;,,,'QS)(_(/) = Z ¢(.’77p,:',1l)'

Let

If ¢ is an eigenfunction for all Hecke operators T}, ;, we will write
Ti¢ = X' "¢, 1<i<n.
Define for such a ¢,

L(s,¢) = H (I=2ap ™"+ A ep™ >+ ... 2 dpnp™ ™)
v
One has the contragredient form ¢ defined by &(g) = ¢(*g) where
‘g =w'g lw

and

w =

Then, it is known that:
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Theorem. L(s,¢) has an analytic continuation and functional equation
relating L(s, ) to L(s, ¢) where ¢ is the contragredient automorphic form.

These L-functions are related to the ones described previously in the
case n = 1 (Hecke L-series attached to grossencharactere) and n = 2 (Hecke
L-series attached to modular forms or L-series attached to Maass wave
forms).

Langlands has formulated a strong reciprocity conjecture: every Artin
L-series L(s,p) is an L(s,¢) for some automorphic form ¢ on GL.(R),
where r = deg p. The truth of this conjecture implies Artin’s conjecture in
view of the Theorem above. With reference to the Sato-Tate conjecture,
it is also conjectured that L,,(s) should be L(s, ¢) for some automorphic
form ¢ on GLm4+1(R). Again, such a reciprocity conjecture would imply
the Sato-Tate conjecture. One can also show that Selberg’s eigenvalue
conjecture and Ramanujan conjectures also follow from this reciprocity.
Thus, reciprocity is the problem of converse theory (that is generalisation
of Weil’s theorem) to higher GL,.

6. Adeles and ideles.

For z € Q, put vp(z) = ord,(z). Then,

(1) vp(z + y) 2 min (vP($)1 vp(y))’
(2) vp(zy) = vp(z) + vp(v),
(3) 45(0) = oo.

Define a metric on Q by |z —yl, = e~"»(*~¥). Denote by Qj, the comple-
tion of Q with respect to this p-adic metric. We call Q, the p-adic number
field. Let Z, be the subring of p-adic integers. Every p-adic number z can
be written uniquely as

(=]
T = E apt, a; €4{0,1,...,p—1}.
i=-N

We will say that two metrics are equivalent. if they induce the same topology
on Q. We have the famous:

Theorem. (Ostrowski) Up to equivalence, the only metrics on Q are
| -|p and | - |0 (the usual absolute value).

A similar result holds for any algebraic number field. Metrics which do
not correspond to a finite prime (ideal) are called Archimedean valuations
(or infinite primes). Thus, for a number field K, we can consider analo-
gously K, the field of v-adic numbers and the ring O, of v-adic integers.

Consider the following problem: what are the characters of the additive
group of rational numbers Q ?

We can write down some obvious ones: given o € R, let xo(z) = ¢
If B € Q,, then 8 = Y _yaip’. Let f = Y [__y aip’ be the “fractional

2xiaz
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part” of . Define xg(z) = €27P= is also a character of Q. It turps out
that all characters of Q are finite products of such characters. To state this
neatly, we can say every character of Q is given by a sequence

a= (aoq, az, ag, ag, )
where a, € R and a, € Q, and a, € Z, for all p sufficiently large.
Such a sequence is called an adele. Defining componentwise addition and
multiplication, we see that the set of all adeles is a ring, called the adele
ring of Q and denoted Ag or simply A. Hence, for a € Ag we set
Xa(z') = ezwi(ao‘,z+a3x+-u)

then every character of Qis of this form. Is this a one-one correspondence?
It turns out to be not. It is a simple exercise to show that two characters
Xa and x; are equal if and only if ¢ — b = (z,z,z,...) for some rational
number z. Thus, we can view Q as a subgroup of Ag embedded diagonally
in this way. Then we have:

Theorem. The character group of Q is isomorphic to Agp/Q as an
abstract group.

Since Q has a natural topology on it, one can ask whether this isomor-
phism can be made as topological groups. For this purpose, it is necessary
to define a topology on Ag so as to have this. To this end, we begin by
putting the product topology on

A" =Rx]]z,
14

and declaring that A" is an open neighbourhood of 0. Thus, a sequence
of adeles a™ = (a{?,a{™, .. .) tends to zero if and only if al™ tends to
zero and a, € Z, for all n sufficiently large. Thus, this is stronger than the
product topology. Thus, the adele ring with this topology is the restricted

direct product
A= H(Q,, : Zy).
r

In general, if K is a number field, the adele ring Ag is the restricted direct
product

Ax = [](%, : 0,).

If G is a linear algebraic group, we can define topological group of its adelic
points by the restricted direct product

G(Ax) = [[(G(K.) : G(0.)).

Ax becomes locally compact topological group and as such has a Haar
measure on it. A similar result holds for G(A). In the course of this paper,
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we will be interested in G = GL,. If G = GLy, then G(K)\G(Ax ) is called
the idele class group of K.

7. Automorphic representations of adele groups.

Let Z be the group of scalar adeles and consider the vector space

V = L(ZG(Q)\G(Ag)-

We will be interested in irreducible unitary representations of G(A). Every
such representation = factors as a restricted tensor product:

T=Qpmp

where 7, is an irreducible unitary representation of G(Q,). In case G =
GL,, these are Hecke’s grossencharactere. In case G = GLj, every irre-
ducible unitary representation arises from either a modular form or a Maass
wave form. Our goal will be to attach an L-function to such a represen-
tation 7. There is a finite set S of primes (namely the ramified primes of
7 ) such that for each prime p € S, we can associate a conjugacy class
Ap in GLA(C). The exact assignment needs more background (see [15])
which we will not discuss here. Suffice it to say that in case f is a Hecke
eigenform, and 7y is the corresponding automorphic representation, then
Tt p is associated to (a” g ) with notation as in §1.
P
G(A) acts on L(ZG(Q)\G(A)) by right translation:

(B(q) - )(=) = é(=g).

An automorphic representation is an irreducible constituent of R. (Cus-
pidal automorphic representations form a subspace corresponding to cusp
forms.)

Let K be a number field and 7 an automorphic representation of G(Ax ).
Let A, be the conjugacy class attached to 7,. Define

L(s,my) = det (1 — A,Nv~°)"!
for non-Archimedean valuations. Setf,

Ls(s,m) = H L(s, 7).

vgS

Theorem. Ls(s,7) has an analytic continuation and at the places
v € S, L(s,7y) can be defined so that the global L-function L(s,7) has a
functional equation.
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This theorem, for n = 1 is the theory of Hecke’s L-series attached
to grossencharacter and Tate, who formulated it adelically in his doctoral
thesis. For n = 2, it is due to Hecke, Maass and the final adelic formulation
is the work of Jacquet and Langlands [13]. The general case for GL, is
due to Godement and Jacquet. A good write up for the J acquet-Langlands
theory is found in Robert [23).

In this adelic framework, Langlands conjectures that every Artin L-
series L(s,p) is and L(s,n) for some automorphic representation: 7 on
GL,(Ax ) where n = deg p. Thus, to each p there should be an automorphic
representation 7(p). In case deg p = 1, this is Artin’s reciprocity law since
Hecke’s grossencharactere are automorphic representations of GL; (A). We
have already discussed the situation if deg p = 2.

To make further progress, we must clarify the converse problem and
resolve it. Namely, given a Dirichlet series

> @
L(S) - n=1 71._‘

when is L(s) = L(s, m) for some automorphic representation 7 of GL,(A).
Weil’s theorem is an incomplete converse theorem for GL- in that it applies
to only modular forms. Jacquet-Langlands [13)] filled this gap to cover
Maass forms as well and generalised to an arbitrary number field. Thus
the analog of Weil’s theorem holds for GL,. For GL3, Gelbart, Jacquet
and Piatetski-Shapiro proved an analogous result. However, it was already
shown by Piatetski-Shapiro [19] that for GL4, one needs to twist by not
Jjust abelian characters but all 2-dimensional representations and establish
analytic continuation and functional equations of the right type before one
can conclude that L(s) = L(s, ) for some automorphic representation
7 on GL4(A). In general, one expects to twist by all representations of
degree d < m — 2 before we can conclude that 7 lives on GL,(4). To
establish continuation and functional equations, one needs the Rankin-
Selberg method.

8. The Rankin-Selberg method.

Recall that the problem of the Sato-Tate conjecture was equivalent to
the problem of analytic continuation of L, (s) to the line Re(s) = 1. L, (s)
was treated by Hecke. We have mentioned that ¢(s)L2(s) was shown to ex-
tend to a meromorphic function with only a simple pole at s = 1 by Rankin
and Selberg (independently) in the 1940’s. Their idea is fundamental in
understanding the mechanism of converse theory so we will describe this
in some detail. I will illustrate it for the full modular group SL,(Z).

Suppose that f(z) = -0, ane?™™* and g(z) = 35, b,e2* are two
cusp forms of weight k for the full modular group. (Weaker assumptions



54 Introduction to the Langlands Program

on f and g still lead to the same results but then, our exposition will be
bogged down by unnecessary technical details.) Define the Eisenstein series

E(z,s) = Z Im(yz)*

'VEF.»\F
where )
I‘oo={(0 111) :nEZ}.
Note that .
¥ F(2)9(2)

is SL2(Z)-invariant. Consider

k — dxdy
f /P WZCToLOPE

Inserting the definition of E(z, 5) as a sum and interchanging the sum and
integration we get

E (Im ¥ ))k f(‘)/z) (7z)(Im vz))° : !
Y€las \1"/./ v g ( )
E f(z)g(z
Y€l \1‘/./ y ( )g( )J

-/ /r”\bykﬂz);(?)ys_J

Foo\b = Uyer.\r7(T\H)
which can be taken to be the region —1/2 < =z < 1/2, y > 0. Thus, the

above is
o ri/2 — . dzxd
=/ / P 1@ 5
k+s -27(n+m)y e27i(n—m)z dy-
/ Za bme / dz— )

1/2
= / z anmyk-}se—tlrnyd_g
Y

because

anby,

(47r)k+s+11-(k + 5+ 1) Z

n=1

It is known that
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E*(2,5) = ((25)E(z, )
has an analytic continuation except for a simple pole at s = 1 and satisfies a
functional equation relating the value at s to the value at 1—s. Therefore,
from this integral representation, we obtain the analytic continuation of
the series

T

> daln
2y

n=1 n

Now suppose that f and g are Hecke eigenforms. That is, a, and b, are
multiplicative. Our goal is to write the above Dirichlet series as an Euler
product. Let us write

4 = 2P(k_1)/2(°’p +Bp), b= 2P(k—1)/2(7p +6p).
Let dn = a,/n(*=1)/2 3pq | = n/n*=1/2 Tt is not difficult to show that
a;z+1 —_ ’3;1+1

ap =5

“p" =

and a similar formula holds for b;n whenever p is prime. Then,

i a;;b:; _ H i a;"“ —ﬁ;"H ’Y;H - 5;s+1 p_m ‘
n? B « —Bp T~ b

n=1 n=1

Now we invoke Ramanujan’s identity:

o0 C!n+1 - ,3”+1 7n+1 - fn+l _
% (=) (=) -

n=1

1— afyéT?
(1= «9T)(1 - a6T)(1 = 7T)(1 - BoT)"
Thus, we get the product equal to

-1 Fy -1 ﬁ ” -1 ﬂ P -1
¢(25)"1 (1 - L;yp) (1 - 3‘%) (1 - _Ps_P) (1 - _PTE) )
1;[ p p ? p

This is precisely L(s, 7y ®7,) in the notation of the Langlands’ L-function.
We have therefore

L(s,7; ®1,) = /P P IENEE 5,9)

dzdy
v

Ifwelet f =g, we get
L(s,m; @ 5) = ((s)La(s)

since T® 7 = Alt(7)® Sym %(r). Since the zeta function does not vanish
on the line Re(s) = 1, this gives the analytic continuation of Ly(s) until
this line.



56 Introduction to the Langlands Program

Though we have not mentioned it explicitly, the above construction is a
special case of a more general construction of Langlands of L-functions at-
tached to the tensor product of two automorphic representations. Indeed,
Gelbart, Jacquet and Piatetski-Shapiro [11] showed that L(s, ™ @ 7z2) has
analytic continuation and functional equation except when 73 18 the con-
tragredient of 7, in which case it has a simple pole at s = 1.

The method however does not give the continuation of Ly(s) for all
values of 5. This was done by Shimura [30] by making an ingenious obser-
vation. He noticed that La(s) is essentially

Ap2

n=1 w
and so this should be obtained by taking the Rankin-Selberg convolution of
f with the classical theta function (which is a modular form of half integral
weight). He was able fo show that the theory extends to such a situation
and obtained an integral representation

oo

Z In? (fudge frwto'r)/
n* T

n=1

] _ dzd
yk+1/-4 f(2)8(2) Erya)(z, 5) zzy
o(\b ’

where Epya4)(2,5) is a half-integral weight Eisenstein series belonging to
T'o(4). Therefore, we obtain the analyticity of La(s).

But can we establish Langlands’ conjecture for Ly(s), namely that it
is an L-series attached to an automorphic representation of GLz 7 As
mentioned eatlier, Gelbart and Jacquet proved a converse theorem for GLs
which requires twisting our original series by Dirichlet characters. The
method of Shimura extends to give analytic continnation and functional
equations for all these twists and so Gelbart and Jacquet were able to prove
Langlands’ conjecture for La(s). We state their theorem more precisely:

Theorem. If 7 is an irreducible unitary automorphic representation of
GLy(Ax), then the map 7 — Sym?2(x) (Gelbart-Jacquet lift) is a map
into irreducible unitary automorphic representations on GLs(Ak)-

For further discussion, let us introduce the notation A(GLn) to denote
the space of irreducible unitary automorphic representations of GLn(AK)-
With the information at hand, we can take Rankin-Selberg convolutions:

r® Sym*(m)=7® Sym3(r)
Sym?*(7) ® Sym?*(r) =1@ Sym?(x) @ Sym*(r).
From the first equation, we deduce that Ls(s) is analytic for Re(s) 2 1

upon showing that L(s,7) does not vanish on this line. This is & mi-
nor modification of the classical argument of Hadamard and de la Vallée



M. Ram Murty 57

Poussin. The second equation shows that L4(s) is analytic for Re(s) > 1
by a similar process. If we can consider Sym?(7) ® Sym3(r) then we
would obtain information on Ls(s). This however we cannot do because
we do not know that Sym?3(x) € A(GLs). We need a converse theorem
for GLq.

Piatetski-Shapiro showed that the analog of Weil’s theorem does not
hold for GL, and we need the analyticity of additional twists. It turns out
that these additional twists are representations of GLy. Thus, the converse
theory for GL4 requires analytic continuations of L(s,¢ ® m) as 7 ranges
over A(GLz). It is in this context that the result of Paul Garrett [§] in 1985
on triple convolutions was intriguing. (We shall see later other reasons for
the intrigue.) Namely, Garrett [8] showed that if f, ¢ and h are modular
cusp forms of weight k, with Fourier coefficients ay,, b, and c,, respectively,

then

o0

Z a.,,b,.c,,

oyt n*
can be written as an integral transform of Rankin-Selberg type and an
analytic continuation can be obtained for it. In the notation of Langlands,
this corresponds to L(s,7; ® m, ® m,), an L-function attached to GL, x
GL; x GLj. In the context of converse theory, this result implies that we
will have a map

A(GL3) x A(GL3)—~A(GLas).

From this, we would obtain the analytic continuation of Ls(s), Le(s), L7(s)
and Lg(s) up to Re(s) = 1. At the end of this paper, we will see another
fundamental reason for the interest in this map.

For the general converse theory on GL,, one needs to twist by represen-
tations of GL,,_, though this has not been formally written up. There are
informal notes of Piatetski-Shapiro which prove this theorem for function
fields.

9. Base change and automorphic induction.

Let K/k be a Galois extension and let G = Gal(K/k). If p is an
irreducible representation of G, then L(s, p, K/k) was conjectured by Artin
to be entire if p # 1. We can extend the definition of Artin L-series to an
arbitrary representation of G by additivity:

L(S:pl @ pz, K/k) = L(S,/)l, Il’/k)L(S,pz, I{/k)

If now 4 is a representation of a subgroup H of G, then L(s, v, K/K¥ )
is the Artin L-series belonging to the extension K/K# where K¥ denotes
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the field fixed by H. A simple calculation shows that Artin L-series are
invariant under induction:

L(s, Ind §y, K/k) = L(s, v, K/K¥).

This last property implies a corresponding property for L-series attached to
automorphic representations. Recall the Langlands’ reciprocity conjecture:
for each p, there is 7(p) € A(GL,(Ax)) so that

L(s,p, K/k) = L(s, ).

The natural question is, how does the map p — =(p) behave under re-
striction to a subgroup? By the reciprocity conjecture, we should have
pla — w(pla) € A(GLn(Ax#)). What is L(s, p|lg, K/KH) 7 A standard
group theoretic result is

Ind §(pler ® ) = p ® Ind G,

Thus,
L(s, md §(p|H ® ¥), K/k) = L(s, p ® Ind §v, K/k).

But the former L-function is L(s, p|lg ® ¥, K/K#) by the invariance of
Artin L-series. Therefore,

L(s,pla, K/KH) = L(s,p ® Ind §1, K/F).

But Ind gl = regg g is the permutation representation on the cosets of H.
This suggests that we make the following definition. Let 7 € A(GL,(Ax)).
For each m,, we associated an A, € GL,(C). Define,

Ly(s,B(7)) = det (1 - A4, @ regG/H(a.,)Nv“')'l,

where ¢, is the Artin symbol of v. Set

L(s, B(m)) = H L,(s, B(m)).

B(m) should correspond to an element of A(GLn(Ap)) where M = KH.
The problem of base change is to determine when this map exists.

For n = 2, this was done by Langlands [14] when M/k is cyclic. He
then used these ideas to deal with the tetrahedral case of Artin’s conjecture.
For arbitrary =, it is the recent work of Arthur and Clozel [1] Again, the
situation is for M/k cyclic.

Now suppose the 1 is a representation of H. Corresponding to % there
should be a 7 € A(GL,(An)) where n = degt. But the invariance of
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Artin L-series under induction implies that there should be an I(r) €
A(GL,.(Ar)) (r = [G: H]) so that

L(s, I(x)) = L(s, Ind $9, K /k).

This map # — I(7), called the automorphic induction map, is conjectured
to exist. Again, Arthur and Clozel showed this exists when M/k is cyclic
and arbitrary n. Thus, if M/k is contained in a solvable extension of k,
the base change maps and automorphic induction maps exist.

Main Theorem. Let K be an algebraic number field of degree n over Q,
and ¥ a Hecke character of K. If there exists an automorphic representation

I(9) of A(GL,(Ag)) such that
L(s, ¥) = L(s, 1(¥))

for every Hecke character ¢ of K, then both Artin’s conjecture and the
Langlands reciprocity conjecture are true.

Proof. Let L/Q be a Galois extension of finite degree and Galois group
G. If p is an irreducible representation of G, and y is its character, we can
write by the Brauer induction theorem,

Y= Zm; Ind g‘.xi,
i

where m; are integers, x; are abelian characters of certain subgroups H;
of G. By the abelian reciprocity law, L(s, x;i, L/LT¢) is equal to a Hecke
L-series L(s, ;) where 9; is a Hecke character of L#i. As such, we can

therefore write
L(s,p, L/Q) = [] L(s, m:)™

where 7; are automorphic representations of Q). By a theorem of Langlands
[15], we can further decompose the product so that each constituent L-
function corresponds to an irreducible automorphic representation of Q.
Thus, without loss, in the above product, we can suppose that each #; is
irreducible and distinct from 7; when ¢ # j. The identity reveals that

x(p) = Z m;u!(,’.)

where a},'.) denotes the p-th coefficient in the Dirichlet series of L(s, 7;). On
one hand, the Chebotarev density theorem shows that

> Ix(@)[*
» P
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has a simple pole at s = 1. On the other hand, the series
212 madl /et
p 3

is on expanding

Z mym; ag")agj)p".
2 »

By a result of Jacquet, Piatetski-Shapiro and Shalika [11], the inner sum
has a simple pole if and only if i = j. Thus, the order of the pole is

S
i

which must equal 1. This forces m; (say) to be +1 and the remaining ones
to be zero. The possibility m; = ~1 implies that L(s,x) has no trivial
zeroes which is not the case. Hence, m; =1 and L(s,x, L/Q) = L(s,m)
as desired.

Unfortunately, the hypothesis of the theorem is known to be satisfied
only if K is a solvable extension of @ by the theorem of Arthur and Clozel
[1]. In the next section, we apply these ideas to the theory of elliptic curves.

10. Application to elliptic curves.

Let E/k be an elliptic curve defined over a number field k. One can
think of this as the set of solutions of an equation of the form

E: Y¥=134ar+b, a,bek.

Let E(k) be the set of k-rational points of E. Then, E(k) can be given the
structure of an additive abelian group. We have the classical:

Mordell-Weil theorem. FE(k) is finitely generated.

Thus,
E(k) 2 27 ® E(k)rors.

There is a folklore conjecture that |E(k)sors| < Ci where Cy is a constant
depending only on the field. For ¥ = Q, Mazur proved that Cg = 16.
Recently, Kamienny established this for quadratic fields. Given any curve,
there is a finite algorithm which enables us to find E(k)sors -

More intriguing is to find 7 = r, called the rank of E over k. It is
unknown at present whether the rank of E over Q is unbounded though
this is known in the function field case. Birch and Swinnerton-Dyer made
an analytic conjecture about the rank in the following way: for each prime
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ideal p of k, let E(Ox/p) have cardinality Np + 1 — a;. We know, |ap] <
(Np)}/2. Define

a 1 -t
L(E/k,s)=T] (1 - N;, + sz,,l) )
P

where the product is defined over primes where E has good reduction. This
defines an analytic function for Re(s) > 3/2. We have the famous:

Birch and Swinnerton-Dyer conjecture: L(E/k,s) extends to an
analytic function for all s € C and

ord =1 L(E/k,s) = rank E(k).

If K/k is an arbitrary extension, then we can consider E over K and
it is easy to see that rank E(K) > rank E(k). This raises two questions.
First, does L(E/K, s) have analytic continuation given that L(E/k, 5) does.
Second, if it does, then can we prove that

ord ;=1 L(E/K,s) > ord =1 L(E/k, 5).

If we consider the ring of endomorphisms of E, then it is not difficult
to show that there are two possibilities for this. Either it is isomorphic to
Z or an order in an imaginary quadratic field. In the latter case, we say
E has CM (complex multiplication). The latier case is easier to deal with.
For instance, we shall see that the answer to the first question is affirmative
in this case.

Deuring [5] showed that if £ has CM by an order in F, then L(E/k, s)
is a product of two Hecke L-series of k if & D F or equal to a Hecke L-series
of kEF which is a quadratic extension of k.

Thus if £ has CM, then L(E/k,s) extends to an entire function of
s. But recall Taniyama’s conjecture, namely that L(E/k,s) should be an
L(s, =) for some m € A(GL2(At)). We can verify this conjecture for £ with
CM by using automorphic induction.

Suppose that Taniyama’s conjecture is true. Let K/k be any Galois
extension with group G. Then, the theory of f-adic representations shows
that

KE/K,s)= [[ L(E/k, s 0D,

pirred

where L(E/k,s,p) is the “twist” by p. On Taniyama’'s conjecture, this
corresponds to L(s, 7 ® regg) where rege is the regular representation of
G. By what we have seen in the previous section, this is the base change
of m, B(w). We can prove the following theorem:
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Theorem. (joint with Kumar Murty) ([18])

(1) I E over k has CM then, L(E/k,s) extends to an entire function for
all values of s.

(2) Suppose that E/k satisfies Taniyama’s conjecture and K is a finite
extension of k. If K is a solvable extension of k, then, L(E/K,s)
extends to an entire function of s.

(3) In both cases, if K is a solvable extension, then L(E/K,s)/L(E/[k,s)
is entire. In particular,

ord ;=1 L(E/K,s) 2 ord ;=1 L(E[k, s).

If the base change map always exists, one would not have to make
the assumption that K is a solvable extension of k for part (3) of the
theorem. In the CM case, one could strengthen the result by allowing K
to be contained in a solvable extension.

This is highly reminiscent of the Brauer-Aramata theorem that states
that if K/k is Galois, then (x(s)/(x(s) is entire, where (;(s) denotes the
zeta function of k. There is a classical conjecture of Dedekind that predicts
that this should be true even if K/k is not Galois. This is of course implied
by Artin’s conjecture. All these would follow from the development of the
theory of base change.

Our method of proof deviates from the method of Brauer or Aramata.
Instead, we use a device exploited by Kumar Murty in his exceedingly
simple proof of the Brauer-Aramata theorem (see [6]).

Fix so € C. Let K/k be Galois with group G. For each character x of
G, let

ny = ord ;=., L(s, x, K/k).

Theorem. (Kumar Murty) 3° n2 < (1r¢0)°

Corollary. (x(s)/Ck(s) is entire.
Proof. From the inequality, we get

2

"f S nreg

from which the result follows.
Proof of the theorem. Let H < G. For each character ¢ of H define
ny = ords=,,L(s, ¥, K/KH).

by = Z ny¥,

veH

Define
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where H denotes the set of irreducible characters of H. Then,
bcla =D nexla =D ny Y (xlm, ¥)o.
XEG x€€  yeH
The inner sum is by Frobenius reciprocity
= Z(x, Ind §4)%.
veH

Inserting this and interchanging summation we obtain

balr =Y | D n2x(x, nd§v) | .

yeH \xeG

We recognise the inner sum as ny because Artin L-series are invariant
under induction. Thus, 8|y = 0. Now,

1 .
(6c,06)=Y_ni= G > 186(9)1.
X€G 966G
But by what was shown above, 8c(g) = (4 (9)- If H is cyclic,
62 ()l € Y ny = nreg
yeR
by the abelian reciprocity law. This gives

(0g,06) < ("reg)z-

This same proof carries over with a few modifications to show that if p
is an arbitrary representation, then

L(s,p®regg, K/E)/L(s, p, K[k)

is entire. By a similar method, one can show that if 7 is an automorphic
cuspidal representation and B(w) is the base change of it, then the L-func-
tion L(s, B(m))/L(s, ) is entire.

11. Concluding remarks.

We therefore see that Artin Galois representations should correspond
to automorphic representations. The Taniyama conjecture predicts the
same should happen for elliptic curves. But there are more automorphic
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representations than Galois representations or elliptic curves. This led
Langlands to conjecture a super-reciprocity law in the following form.

If K is a field and G is a group, we can consider the category of all
K representations of G. This is a category with tensor products and fibre
functor (namely the map that takes each representation to its underlying
vector space). Langlands drew attention to the fact that there is a result
of Rivano Saavedra [24] that the converse of this is true. That is, if C is
a category with tensor products and fibre functors (together with a few
other minor compatibility assumptions), then C is the category of repre-
sentations of a group G. Such a category with tensor products is called a
Tannakian category. Is the category of automorphic representations Tan-
nakian ? If so, then there is a giant. (or monstrous) group which we can call
the automorphic Galois group from which all L-functions arise. Such a sit-
uation is not outlandish. In the context of converse theory, it requires us to
show that the Rankin-Selberg convolution is the L-series of an automorphic
representation. More precisely, there should be a map

A(GLn) x A(GLpn)—A(GLmn).

By the predicted converse theory of GL.,,., we must twist the Rankin-
Selberg convolution by automorphic representations of GL, for all r <
mn — 2, and so we are in the case of triple convolutions. That is why it
is tantalizing to understand Garrett’s work and extend it (if possible) to
higher GL,. Such a step would be a major one in establishing a super-
reciprocity law and which would resolve a huge chunk of the classical un-
solved problems of number theory.
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