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Abstract. In this paper, we investigate the properties of Ramanujan
polynomials, a family of reciprocal polynomials with real coefficients
originating from Ramanujan’s work. We begin by finding their number
of real zeros, establishing a bound on their sizes, and determining their
limiting values. Next, we prove that all nonreal zeros of Ramanujan poly-
nomials lie on the unit circle, and are asymptotically uniformly distributed
there. Finally, for each Ramunujan polynomial, we find all its zeros that
are roots of unity.

1. Introduction

This paper investigates the properties of Ramanujan polynomials, which, for
each k ≥ 0, the authors of [2] define to be

R2k+1(z) =
k+1∑

j=0

B2 j B2k+2−2 j

(2 j)!(2k + 2 − 2 j)!
z2 j ,

where B j denotes the j th Bernoulli number. Of particular interest is the loca-
tion of the zeros of these polynomials, whose knowledge will give rise to
explicit formulas for the Riemann zeta function at odd arguments in terms of
Eichler integrals.

The first author was supported in part by an NSERC Discovery Grant.
The third author was supported by an NSERC Undergraduate Student

Research Award.

107



108 M. Ram Murty, Chris Smyth and Rob J. Wang

Ramanujan polynomials are reciprocal polynomials with real coefficients,
meaning that they satisfy the functional equation

R2k+1(z) = z2k+2 R2k+1

(
1

z

)
,

where 2k + 2 = deg(R2k+1). This elegant property greatly simplifies the
analysis of their zeros, the details of which will be unveiled in later sections.

To begin, this paper will derive certain basic properties of Ramanujan poly-
nomials, including a bound on the sizes of their real zeros. Furthermore, we
will show that the largest real zero of R2k+1 tends to 2 from above as k
approaches infinity.

The subsequent section will give a proof that all nonreal zeros of
Ramanujan polynomials lie on the unit circle. In particular, we prove that for
each k, these zeros (which take the form eiθ ) are interlaced between angles
θ for which sin kθ assumes the values ±1. Hence, as k tends to infinity, the
nonreal zeros of R2k+1 become uniformly distributed on the unit circle.

The final section of the paper will determine which zeros of R2k+1 are 2k-th
roots of unity. Specifically, the roots of unity that are zeros of R2k+1 are

• Both ±i if k is even;
• All four of ±ρ, ±ρ̄ if k is a multiple of 3,

and no others. Here ρ is a primitive cube root of unity.

2. Motivation

In Ramanujan’s notebooks, we find the following remarkable formula
involving the odd values of the Riemann-Zeta function (see [3]):

α−k

{
1

2
ζ(2k + 1) +

∞∑

n=1

n−2k−1

e2αn − 1

}

= (−β)−k

{
1

2
ζ(2k + 1) +

∞∑

n=1

n−2k−1

e2βn − 1

}

− 22k
k+1∑

j=0

(−1) j B2 j B2k+2−2 j

(2 j)!(2k + 2 − 2 j)!
αk+1− j β j , (1)

where α, β > 0 with αβ = π , and k is any positive integer. We recognize
immediately that the sum involving the Bernoulli numbers is

αk+1 R2k+1

(
i

√
β

α

)
.
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A rigorous proof of this formula together with a generalization was obtained
by Grosswald. He proved the following (see [1]):

Theorem 2.1 (Grosswald). Let

σk(n) =
∑

d|n
dk

and set

Fk(z) =
∞∑

n=1

σk(n)

nk
e2π inz

for �(z) > 0. Then

F2k+1(z) − z2k F2k+1

(
−1

z

)
= 1

2
ζ(2k + 1)(z2k −1) + (2π i)2k+1

2z
R2k+1(z).

(2)

The function Fk(z) is an example of an Eichler integral, and the above
formula relates the values of two Eichler integrals to ζ(2k + 1) through the
Ramanujan polynomial. In particular, zeros of R2k+1(z) that lie in the upper
half plane and that are not 2k-th roots of unity give us a formula for ζ(2k + 1)

in terms of Eichler integrals. Indeed, the results of this paper tell us that, for
each k ≥ 4, there exists at least one algebraic number α with |α| = 1, α2k �= 1
lying in the upper half plane such that R2k+1(α) = 0 and hence

1

2
ζ(2k + 1) = F2k+1(α) − α2k F2k+1(−1/α)

α2k − 1
.

In other words, there exists an explicit formula for the Riemann zeta func-
tion at odd arguments 9, 11, 13, . . . in terms of the difference of two Eichler
integrals.

Though Ramanujan polynomials have appeared in the work of Grosswald
and others, they were never studied for their own sake. It turns out that they are
of tremendous interest in their own right, and serve as motivation for further
applications. Indeed, the authors of [2] study the function

G2k+1(z) = 2

z2k − 1
(F2k+1(z) − z2k F2k+1(−1/z))

and show that the set

{G2k+1(z)|�(z) > 0, z ∈ Q, z2k �= 1}
contains at most one algebraic number.

rns
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3. Basic properties of Ramanujan polynomials

Let us begin with the following simple well-known observation.

Lemma 3.1. Suppose that the polynomial

P(z) = p0 + p1z2 + · · · + pd z2d

has real coefficients p j , and satisfies pd− j = p j , j = 0, . . . , d. Then P(z) is
a reciprocal polynomial and, for z on the unit circle, z−d P(z) is real.

Proof. We have

z2d P

(
1

z

)
=

d∑

j=0

p j z2(d− j) =
d∑

j=0

pd− j z2 j =
d∑

j=0

p j z2 j = P(z).

Hence for z on the unit circle,

z−d P(z) = zd P

(
1

z

)
= z̄−d P(z̄).

�

Corollary 3.2. Ramanujan polynomials are reciprocal.

Proof. This follows from the fact that the coefficient of z2 j of R2k+2(z) is the
same as that of z2k+2−2 j . �

From this corollary we see that replacing z by −1/z in the identity (2) gives
the same identity again.

Before moving on, let us take a moment to list the first few Ramanujan
polynomials and their zeros (the values given in parentheses are approxima-
tions to exact solutions by radicals). Notice that, for 1 ≤ k ≤ 8, R2k+1(z)
has exactly 4 real zeros. Furthermore, the largest of the real zeros is always
between 2 and 2.2 (and it seems to be approaching 2 as k increases). On the
other hand, the nonreal zeros seem to lie exactly on the unit circle.

R1(z) = 1

2 · 3!
(z2 + 1) (this is the trivial case) Zeros: ± i

R3(z) = 1

6!
(−z4 + 5z2 − 1) Zeros: ±

√
5 ± √

21

2
(±2.1889, ±0.4569)
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R5(z) = 1

12 · 7!
(2z6 − 7z4 − 7z2 + 2)

Zeros: ± i, ±
√

9 ± √
65

4
(±2.0653, ±0.4842)

R7(z) = 1

10!
(−3z8 + 10z6 + 7z4 + 10z2 − 3)

Zeros: ± ρ, ±ρ̄, ±
√

13 ± √
133

6
(±2.0221, ±0.4945)

R9(z) = 1

12!
(10z10 − 33z8 − 22z6 − 22z4 − 33z2 + 10)

Zeros: ± i, ±

√√√√43

40
+ 3

√
201

40
± 1

2

√
1029

200
+ 129

√
201

200
,

±

√√√√43

40
− 3

√
201

40
± i

2

√
−1029

200
+ 129

√
201

200

(±2.0071, ±0.4982, ±0.7112 ± 0.7030i)

And a few more cases (all zeros other than ±i , ±ρ, ±ρ̄ are approximations):

R11(z) = 1

2 · 15!
(−1382z12 + 4550z10 + 3003z8 + 2860z6

+ 3003z4 + 4550z2 − 1382)

Zeros: ± 2.0022, ±0.4995, ±0.3081 ± 0.9513i ,

± 0.8146 ± 0.5800i

R13(z) = 1

12 · 15!
(210z14 − 691z12 − 455z10 − 429z8 − 429z6

− 455z4 − 691z2 + 210)

Zeros: ± i, ±ρ, ±ρ̄, ±2.0006, ±0.4998, ±0.8715 ± 0.4904i

R15(z) = 1

5 · 18!
(−10851z16 + 35700z14 + 23494z12 + 22100z10

+ 21879z8 + 22100z6 + 23494z4 + 35700z2 − 10851)
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Zeros: ± 2.0002, ±0.5000, ±0.2219 ± 0.9751i , ±0.9058

± 0.4238i, ±0.6247 ± 0.7809i

R17(z) = 1

21!
(438670z18 − 1443183z16 − 949620z14 − 892772z12

− 881790z10 − 881790z8 − 892772z6 − 949620z4

− 1443183z2 + 438670)

Zeros: ± i, ±2.0001, ±0.5000, ±0.3822 ± 0.9241i , ±0.9279

± 0.3729i, ±0.7091 ± 0.7051i .

4. On real zeros of Ramanujan polynomials

Invoking the identity
B2 j

(2 j)!
= − 2ζ(2 j)

(2π i)2 j
,

where ζ denotes the Riemann zeta function, we may define

M2k+1(z) = (2k + 2)!

B2k+2
R2k+1(z)

= z2k+2 + 1 −
k∑

j=1

2ζ(2 j)ζ(2k + 2 − 2 j)

ζ(2k + 2)
z2 j ,

which is just the monic companion of R2k+1(z).
We now verify the existence of a real zero of M2k+1.

Theorem 4.1. For k ≥ 1 we have M2k+1(2) = −2k − 1.

Proof. Recall that the generating function for Bernoulli numbers is

t

et − 1
=

∞∑

n=0

Bntn

n!
,

and that all Bn with n ≥ 3 and odd are 0. Hence

(
2t

e2t − 1

)(
t

et − 1

)
=

⎛

⎝
∞∑

j=0

B j(2t) j

j !

⎞

⎠
( ∞∑

n=0

Bntn

n!

)
,
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and the coefficient of t2k+2 (for k ≥ 1) in this product of sums is

2k+2∑

j=0

B j B2k+2− j

j !(2k + 2 − j)!
2 j =

2k+2∑

j even

B j B2k+2− j

j !(2k + 2 − j)!
2 j

=
k+1∑

j=0

B2 j B2k+2−2 j

(2 j)!(2k + 2 − 2 j)!
22 j

= R2k+1(2).

Now, notice also that

(
2t

e2t − 1

)(
t

et − 1

)
= t2

(et − 1)2
− t

2
· 2t

e2t − 1
,

and furthermore

d

dt

(
t2

et − 1

)
= 2t

et − 1
− t2

et − 1
− t2

(et − 1)2 .

Hence we can eliminate t2

(et −1)2 to obtain

(
2t

e2t − 1

)(
t

et − 1

)
= 2t

et − 1
− t2

et − 1
− d

dt

(
t2

et − 1

)
− t

2
· 2t

e2t − 1

=
∞∑

n=0

Bn

n!

(
2tn − tn+1 − (n + 1)tn − t

2
(2t)n

)

= −
∞∑

n=0

Bn

n!
((n − 1)tn + (1 + 2n−1)tn+1).

So for n = 2k + 2 with k > 0 the coefficient of t2k+2 is

−(2k + 1)B2k+2

(2k + 2)!
= R2k+1(2),

since B2k+1 = 0. Then

M2k+1(2) = R2k+1(2)
(2k + 2)!

B2k+2
= −(2k + 1).

�
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We mention in passing that the two formulae for R2k+1(2) in the above
proof give, for k > 0, the identity

k+1∑

j=0

B2 j B2k+2−2 j

(2 j)!(2k + 2 − 2 j)!
22 j = −(2k + 1)

B2k+2

(2k + 2)!

between Bernoulli numbers.
Now, it is only a pleasure to state the following corollary:

Corollary 4.2. For k ≥ 1, M2k+1 has exactly four distinct real zeros.

Proof. Now M2k+1(z) is positive for z real, positive and sufficiently large, so,
by the intermediate value theorem, it has a real zero, z0 say, greater than 2.
As M2k+1(z) is reciprocal, 1/z0 ∈ (0, 1/2) is also a zero. By Descartes’ Rule
of Signs, we see that M2k+1(z) can have at most two positive zeros, so z0 and
1/z0 are the only positive zeros. Since M2k+1 is an even function, we may
also conclude that −z0 and −1/z0 are the only negative zeros. �

We may in fact give an upper bound on the size of the largest real zero.
This bound, coupled with the proof that all nonreal zeros of M2k+1 lie on the
unit circle (which will be given in the next section), will tell us that the zeros
of M2k+1 are uniformly bounded for all k.

Theorem 4.3. The largest real zero of M2k+1 does not exceed 2.2 (for any
k ≥ 0), and approaches 2 as k → ∞.

Note that, for 0 ≤ k ≤ 4, we already have explicit expressions for the real
zeros of M2k+1, and they are certainly bounded above by 2.2. Hence for the
rest of this section, we focus on the case k ≥ 5.

Now, to prove the theorem above, we require three lemmas.

Lemma 4.4. For n ≥ 2, we have the inequalities

1 + 2−n < ζ(n) < 1 + n + 1

n − 1
2−n.

Proof. The lower bound is immediate from the definition of ζ(n). As for the
upper bound,

ζ(n) < 1 + 1

2n
+

∫ ∞

2
x−ndx

= 1 + n + 1

n − 1
2−n .

�
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The second lemma presents two known results concerning series involving
the zeta-function.

Lemma 4.5 (see [4, equations (45) p. 163 and (193) p. 178]). We have

∞∑

j=1

ζ(2 j)

4 j
= 1

2

and
∞∑

j=1

(ζ(2 j) − 1) = 3

4
.

Proof. Now

∞∑

j=1

ζ(2 j)

4 j
=

∞∑

j=1

4− j
∞∑

k=1

1

k2 j

=
∞∑

k=1

∞∑

j=1

1

(2k)2 j

=
∞∑

k=1

1

(2k)2 − 1

= 1

2

∞∑

k=1

(
1

2k − 1
− 1

2k + 1

)

= 1

2
,

where the second equality follows from changing the order of summation, and
last equality follows from telescoping series.

The second result is proved in a similar manner. �

Next, we need the following estimate.

Lemma 4.6. For k ≥ 1 and j = 1, . . . , k, we have

ζ(2k + 2 − 2 j)

ζ(2k + 2)
− 1 < 3 · 4 j−(k+1).

rns
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Proof.

ζ(2k + 2 − 2 j)

ζ(2k + 2)
− 1 < ζ(2k + 2 − 2 j) − 1

<
2k + 3 − 2 j

2k + 1 − 2 j
4 j−(k+1)

≤ 3 · 4 j−(k+1),

using Lemma 4.4, and the fact that j ≤ k. �

Equipped with these lemmas, we are ready to prove Theorem 4.3.

Proof of Theorem 4.3. We have

M2k+1(
√

4 + t)

(4 + t)k+1 = 1 − 2
k∑

j=1

ζ(2 j)

(4 + t) j

ζ(2k + 2 − 2 j)

ζ(2k + 2)
+ 1

(4 + t)k+1 ,

which, on replacing 1 by 2
∑∞

j=1
ζ(2 j)

4 j using Lemma 4.5, gives

2
∞∑

j=k+1

ζ(2 j)

4 j
+ 1

(4 + t)k+1
+ 2

k∑

j=1

ζ(2 j)

(
1

4 j
− 1

(4 + t) j

ζ(2k + 2 − 2 j)

ζ(2k + 2)

)
.

We now claim that M2k+1(
√

4 + t) is positive for some small t > 0 that
goes to 0 as k → ∞. For this to hold, we see from the above expression that
a sufficient condition is

4− j > (4 + t)− j ζ(2k + 2 − 2 j)

ζ(2k + 2)
for j = 1, . . . , k.

Using the upper bound in Lemma 4.6, it is therefore sufficient that

(
1 + t

4

) j

> 1 + 3 · 4 j−(k+1),

or equivalently
t

4
> (1 + 3 · 4 j−(k+1))1/j − 1.

Since for a ≥ 0 and 0 < δ ≤ 1 we have (1 + a)δ ≤ 1 + aδ, we replace this
condition by

t >
3 · 4 j−k

j
.
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This lower bound attains its maximum at j = k, and hence we obtain our
final sufficient condition for M2k+1(

√
4 + t) to be positive, namely that

t >
3

k
.

Hence for k ≥ 5 the zero z0 of M2k+1 lies in the open interval
(
2,

√
4 + 3

k

)
.

It follows that z0 < 2.15 for k ≥ 5 and z0 → 2 as k → ∞. �

5. Zeros of Ramanujan polynomials on the unit circle

We now ascertain the location of the nonreal zeros of M2k+1.

Theorem 5.1. For k ≥ 0, all nonreal zeros of Ramanujan polynomials lie
on the unit circle.

From Section 3, we know that this result is true for k ≤ 4. We are therefore
again entitled to assume that k ≥ 5.

The idea of the proof is to approximate M2k+1(z) by the polynomial

A(z) = B(z)(z4 − 4z2 + 1), (3)

where

B(z) = z2k − 1

z2 − 1
. (4)

Not only does A have integer coefficients, but we know its zeros exactly.
We then define 
(z) by

M2k+1(z) = A(z) − 
(z). (5)

To proceed, we need two lemmas, which enable us to describe quantitatively
the approximation of M2k+1(z) by A(z).

Lemma 5.2. For k ≥ 5 and k − 1 ≥ j ≥ 2, we have

(2 j + 1)(2 j ′ + 1)

(2 j − 1)(2 j ′ − 1)
< 2.5,

where j ′ = k + 1 − j .

Sketch of Proof. Treat this as a calculus problem involving a function of j .
Then the left hand side is maximized at j = 2, and setting k ≥ 5 gives the
desired result. �

Lemma 5.3. For k ≥ 5, the polynomial 
(z) satisfies |
(z)| < 1.3 for z on
the unit circle. Furthermore, writing


(z) = (ε1 − 1)(z2 + z2k) +
k−1∑

j=2

ε j z
2 j ,
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we have, for 1 ≤ j ≤ k,

ε j = 2

(
ζ(2 j)ζ(2k + 2 − 2 j)

ζ(2k + 2)
− 1

)
.

(6)

Proof. The formula for ε j follows from the easily-verified fact that

A(z) = z2k+2 − 3z2k − 2z2k−2 − · · · − 2z4 − 3z2 + 1.

To bound 
(z), we first note that, since ε1 −1 and all the ε j for 2 ≤ j ≤ k −1
are positive,

|
(z)| < 2(ε1 − 1) +
k−1∑

j=2

ε j

for z on the unit circle. We therefore need to bound this sum from above.
Recalling that ε j = εk+1− j , invoking Lemma 4.4 gives

ε1 = εk = π2

6

2ζ(2k)

ζ(2k + 2)
− 2

<
π2

3

(
1 + 2k + 1

2k − 1
4−k

)
− 2

< 1.3

for k ≥ 5, since the right hand side of the inequality in Lemma 4.4 is strictly
decreasing.

Now, once again invoking Lemma 4.4, we have

ε j < 2

((
1 + 2 j + 1

2 j − 1
4− j

) (
1 + 2 j ′ + 1

2 j ′ − 1
4− j ′

)
− 1

)

= 2

(
2 j + 1

2 j − 1
4− j + 2 j ′ + 1

2 j ′ − 1
4− j ′ + (2 j + 1)(2 j ′ + 1)

(2 j − 1)(2 j ′ − 1)
4−(k+1)

)
.

Summing both sides over j and using Lemma 5.2 gives us

k−1∑

j=2

ε j < 4
∞∑

j=2

2 j + 1

2 j − 1
4− j + 5

4
(k − 2)4−k

= 4
∞∑

j=2

(
1 + 2

2 j − 1

)
4− j + 5

4
(k − 2)4−k

= 2 log 3 − 5

3
+ 5

4
(k − 2)4−k

< 0.7
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for k ≥ 5, using the fact that

log

(
1 + x

1 − x

)
= 2

∞∑

j=1

x2 j−1

2 j − 1
,

and so

log 3 = 1 + 4
∞∑

j=2

1

2 j − 1
4− j ,

on setting x = 1/2. Hence

2(ε1 − 1) +
k−1∑

j=2

ε j < 2 × 0.3 + 0.7

= 1.3,

�

We are now ready prove Theorem 5.1:

Proof of Theorem 5.1. We first note that the polynomial A(z), which approxi-
mates M2k+1(z), can, using (3), be written as

A(z) = zk+1
(

zk − z−k

z − z−1

)
((z − z−1)2 − 2),

Restricting z to the unit circle (in other words, putting z = eiθ ) gives us

z−(k+1) A(z) = −(2 + 4 sin2 θ)
sin kθ

sin θ
= f (θ),

say. In particular, f is a real-valued function of θ . Next, consider

g(θ) = e−(k+1)iθ
(eiθ ).

Note that, by Lemma 3.1, 
(z) is reciprocal, and g(θ) is real-valued; also, by
Lemma 5.3, it is bounded above by 1.3.

Finally, by confining our attention to θ ∈ (0, π), we see that f (θ) > 2
whenever sin kθ = −1 and f (θ) < −2 whenever sin kθ = 1. This is because

2 + 4 sin2 θ

sin θ
> 2 + 4 sin2 θ

> 2

on the interval (0, π).
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Therefore the function

e(k+1)iθ M2k+1(e
iθ ) = f (θ) + g(θ)

has a zero between every consecutive pairs of values of θ ∈ (0, π) with
sin kθ = ±1. There are precisely k values for which sin kθ = ±1, namely

(2l + 1)π

2k
, l = 1, . . . , k,

giving k − 1 zeros of M2k+1 on the upper half of the unit circle. Taking
complex conjugates yields another k − 1 zeros on the lower half of the unit
circle. Hence M2k+1 has exactly 2k −2 zeros on the unit circle, which is what
we wanted to show. �

Observe that the above theorem not only gives the modulus of the nonreal
zeros, but also gives some restriction on their distribution. In particular, these
zeros are interlaced between angles θ for which sin kθ assumes the values ±1,
which means that, asymptotically, they are uniformly distributed on the unit
circle.

We also observe another useful result concerning zeros of Ramanujan
polynomials:

Corollary 5.4. Ramanujan polynomials have no repeated zeros.

Proof. The real zeros of M2k+1 were already shown to be distinct. The
nonreal zeros on the unit circle are strictly interlaced between angles θ for
which sin kθ assumes the values ±1, and hence never coincide with each
other. �

6. Zeros of Ramanujan polynomials that are roots of unity

In this section we find all zeros of the Ramanujan polynomial R2k+1 that are
roots of unity. We do this in three stages. First, we show that any such zero
must be a 2k-th root of unity. Next, we show that such a zero must in fact be a
primitive 3rd, 4th, or 6th root of unity. Finally, we calculate for which values
of k these three cases occur.

Let

ρ = −1

2
+

√
3

2
i,

a primitive cube root of unity, and φ(z) be the -th cyclotomic polynomial,
whose zeros are the primitive -th roots of unity.
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Our main result is the following.

Theorem 6.1. The roots of unity that are zeros of M2k+1 are

• Both ±i if k is even;
• All four of ±ρ, ±ρ̄ if k is a multiple of 3,

and no others.

In terms of polynomial factors, this says that the only cyclotomic factors of
R2k+1 are z2 + 1 when k is even, and

(z2 + z + 1)(z2 − z + 1)

when k is a multiple of 3.

Proposition 6.2. Any zero of R2k+1 that is a root of unity must be a 2k-th
root of unity.

Proof. As in the previous section, we work with M2k+1 rather than R2k+1,
and write

M2k+1(z) = A(z) − 
(z),

where A and B are given by (3) and (4). Note that A(±1) = −2k, so that
any 2k-th root of unity that is a zero of A is also a zero of B. Suppose that
M2k+1(z) = 0 at a primitive -th root of unity – call it ω – so that φ is a factor
of M2k+1 (φ must be a factor since M2k+1 has rational coefficients). Then

A(ω) = 
(ω)

and since, by Lemma 5.3, |
(z)| < 1.3 for z on the unit circle, we
have |A(ω)| < 1.3. If ω is not a 2k-th root of unity, then the resultant
Res(φ, B) must be a nonzero integer, and so at least 1 in modulus. But (see
[5, Section 5.9]) this resultant is equal to

∏

z: φ(z)=0

B(z).

Hence, choosing ω to be such a z where |B(z)| is largest, we must have
|B(ω)| ≥ 1. Since

|z4 − 4z2 + 1| ≥ 2

for z on the unit circle, we see from (3) that |A(ω)| ≥ 2, a contradiction.
�

Next, we need the following lemma.
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Lemma 6.3. Every cyclotomic polynomial φ except for φ3, φ4 and φ6 has
a zero z = eiθ with θ ∈ [

0, 14
45π

] ∪ [
π − 14

45π, π
]
.

Proof. If  = 1,  = 2 or  ≥ 8, then the zero e2π i/ of φ has its argument
θ in the required range. Also φ5 has the zero e4π i/5 and φ7 has the zero
e6π i/7, with both these zeros also having their arguments in the required range.

�

Proof of Theorem 6.1. The theorem holds for k < 8 by the computations of
Section 2; we can therefore assume that k ≥ 8. Suppose that ω is a
root of unity lying in the upper half plane such that M2k+1(ω) = 0.
By Proposition 6.2, ω must be a 2k-th root of unity. Then, since A(ω) = 0,
we have 
(ω) = 0. If ω is an -th root of unity then, since 
 has rational
coefficients, φ divides 
. Hence, using Lemma 6.3, unless  = 3, 4 or
6 we can assume, by appropriate choice of zero of φ, that ω = eiθ with
θ ∈ [

0, 14
45π

] ∪ [
π − 14

45π, π
]
.

Now from (5) we have

ω−1
(ω) = (ε1 − 1)(ω + ω2k−1) +
� k+1

2 ∑

j=2

∗ ε j (ω
2 j−1 + ω2(k+1− j)−1),

where the ε j are given by (6), and where the ∗ indicates that the final term is
halved for k odd. So, on putting ω = eiθ we obtain

(
π2

3
· ζ(2k)

ζ(2k + 2)
− 3

)
2 cos θ

+
� k+1

2 ∑

j=2

∗
(

2ζ(2 j)ζ(2k + 2 − 2 j)

ζ(2k + 2)
− 2

)
2 cos((2 j − 1)θ) = 0.

We now introduce an integer parameter r , to be chosen later, lying in the
range 1 ≤ r <

⌊ k+1
2

⌋
. Then we have

(
π2

3
− 3

)
cos θ + π2

3
·
(

ζ(2k)

ζ(2k + 2)
− 1

)
cos θ

+ 2
r∑

j=2

(ζ(2 j) − 1) cos((2 j − 1)θ)
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+
r∑

j=2

2ζ(2 j)

(
ζ(2k + 2 − 2 j)

ζ(2k + 2)
− 1

)
cos((2 j − 1)θ)

+ 2

� k+1
2 ∑

j=r+1

∗
(

ζ(2 j)ζ(2k + 2 − 2 j)

ζ(2k + 2)
− 1

)
cos((2 j − 1)θ) = 0.

Hence, defining

hr (θ) =
(

π2

3
− 3

)
cos θ + 2

r∑

j=2

(ζ(2 j) − 1) cos((2 j − 1)θ),

we have

|hr (θ)| <
π2

3
·
(

ζ(2k)

ζ(2k + 2)
− 1

)
+ 2

r∑

j=2

ζ(2 j)

(
ζ(2k + 2 − 2 j)

ζ(2k + 2)
− 1

)

+ 2

� k+1
2 ∑

j=r+1

(
ζ(2 j)ζ(2k + 2 − 2 j)

ζ(2k + 2)
− 1

)

<
π2

3
· (ζ(2k) − 1) + 2

r∑

j=2

ζ(2 j)(ζ(2k + 2 − 2r) − 1)

+ 2

� k+1
2 ∑

j=r+1

(ζ(2 j)ζ(k + 1) − 1)

<
π2

3
· 2k + 1

2k − 1
4−k + 2

r∑

j=2

ζ(2 j)
2k + 3 − 2r

2k + 1 − 2r
4−(k+1−r)

+ 2

� k+1
2 ∑

j=r+1

(
ζ(2 j)

(
1 + k + 2

k
2−(k+1)

)
− 1

)
,

using Lemma 4.4.
For the last sum of this upper bound, we have, using Lemma 4.5, that, for

r ≤ (k + 1)/2,

2

� k+1
2 ∑

j=r+1

(
ζ(2 j)

(
1 + k + 2

k
2−(k+1)

)
− 1

)

<
3

2
− 2

r∑

j=1

(ζ(2 j) − 1) + k + 2

k2k
ζ(2r + 2)

(
k + 1

2
− r

)
,
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giving finally that

|hr (θ)| <
π2

3
· 2k + 1

2k − 1
4−k + 2

r∑

j=2

ζ(2 j)
2k + 3 − 2r

2k + 1 − 2r
4−(k+1−r)

+ 3

2
− 2

r∑

j=1

(ζ(2 j) − 1) + k + 2

k2k
ζ(2r + 2)

(
k + 1

2
− r

)
.

The big term in this upper bound is

3

2
− 2

r∑

j=1

(ζ(2 j) − 1);

all other terms go to 0 as k → ∞.
We now choose r = 4. Then a Maple plot of h4(θ) shows that it is a

decreasing function of θ for 0 ≤ θ ≤ π/3, and takes the value 0.01398
at θ = 14

45π . However, the upper bound for |hr (θ)|, calculated above, is a
decreasing function of k, and, for r = 4 and k = 8, equals 0.01255. So at this
value we must have θ > 14

45π . As |h4(θ)| is an even function of θ , we see that
θ lies in the interval

(14
45π, π − 14

45π
)
. So  must be 3, 4 or 6.

The above discussion tells us that for k ≥ 8, if ω = eiθ is a root of unity
with M2k+1(ω) = 0, then ω is a primitive 3rd, 4th, or 6th root of unity.

We now proceed to prove that M2k+1(i) = 0 if and only if k is even, while
M2k+1(ρ) = 0 if and only if 3 | k. To begin, we see from (3) that for k odd,
A(i) = 6, so that |
(i)| < 1.3 implies that M2k+1(i) = A(i) − 
(i) �= 0.
Similarly, if k is not a multiple of 3, then |A(ρ)| = 5, which again shows that
M2k+1(ρ) �= 0.

On the other hand, for k even we have 1
2 deg(M2k+1) = k + 1 is odd, so by

the evenness and the functional equation for M2k+1we have

M2k+1(i) = (−1)k+1 M2k+1(i),

giving M2k+1(i) = 0.
Next, fix k ≡ 0 (mod 3) and recall that ρ satisfies

−ρ2 = 1 + ρ = − 1

ρ
.

Now, since ρ lies in the upper half plane, we may evaluate Grosswald’s
formula at ρ, yielding

F2k+1(ρ)−ρ2k F2k+1

(
− 1

ρ

)
= 1

2
ζ(2k +1)(ρ2k −1)+ (2π i)2k+1

2ρ
R2k+1(ρ),
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or equivalently

F2k+1(ρ) − F2k+1(1 + ρ) = (2π i)2k+1

2ρ
R2k+1(ρ).

But since

F2k+1(1 + ρ) =
∞∑

n=1

σ2k+1(n)

n2k+1
e2π in(1+ρ)

=
∞∑

n=1

σ2k+1(n)

n2k+1
e2π inρ

= F2k+1(ρ),

the left-hand side of the above equality is 0, giving R2k+1(ρ) = 0.
Now, from M2k+1(−i) = M2k+1(i) we see that M2k+1(i) = 0 if and

only if M2k+1(−i) = 0. Similarly, we have M2k+1(ρ̄) = M2k+1(ρ) and
M2k+1(−ρ) = M2k+1(ρ), since M2k+1 is a polynomial in z2. So all four of
±ρ, ±ρ̄ are zeros of M2k+1 if any one of them is. Hence both of ±i are zeros
of M2k+1 if and only if k is even, and all four of ±ρ, ±ρ̄ are zeros of M2k+1

if and only if k is a multiple of 3. These are the only zeros of M2k+1 that are
roots of unity. �

As a final observation, for k even, the fact that R2k+1(i) = 0 allows us to
deduce that,

k+1∑

j=0

(−1) j B2 j B2k+2−2 j

(2 j)!(2k + 2 − 2 j)!
= 0,

which agrees with claim (2) in [2]. This also follows from (1), on putting
α = β = √

π .
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