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Annals of Mathematics, 133 (1991), 447-475 

Mean values of derivatives of 
modular L-series 

By M. RAM MURTY AND V. KUMAR MURTY 

1. Introduction 

Recently, Kolyvagin [4] proved the finiteness of the Tate-Shafarevic group 
111E/Q of certain modular elliptic curves E over Q. More precisely, let E/Q be 
a modular elliptic curve with conductor N and L(s) its associated L-series: 

00a(n) 
L(s) = ns 

n=1 

Set 

00 a(n) (iD) 

where (D/n) is the Legendre symbol. Suppose that L(1) # 0 and there exists a 
D < 0, such that 

(i) LD(s) has a simple zero at s = 1 and 
(ii) all primes which divide the conductor of E split in the imaginary 

quadratic field QG'h). 
Under these conditions, Kolyvagin [4] showed that both E(Q) and HIE/Q are 
finite. More recently, he extended this theorem to show that if L(s) has a simple 
zero at s = 1 and there is a D < 0 satisfying (ii) above and LD(1) # 0, then 
rank E(Q) = 1 and 111E/Q is finite. Previously, Rubin [11] established the 
finiteness of 111E/Q for CM elliptic curves for which L(1) 0 0. The work of 
Rubin and Kolyvagin represents significant steps toward the resolution of the 
important conjecture that 111E/Q is finite. 

The purpose of this paper is to establish the existence of a D < 0 such that 
LD(s) has a simple zero at s = 1 and all primes dividing the conductor of E 
split completely in the quadratic field Q(v7Y). Thus, the result of Kolyvagin can 
be stated without any hypothesis on quadratic twists of L(s). We prove our 
theorems by showing that the mean value of L'D(1) is non-zero. More precisely, 
we prove the following. 

Research of both authors partially supported by grants from NSERC. 
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THEOREM 1. Suppose that L(1) # 0. Let 

N E a(nin 2) k(n2) 

2Nn, n2 nin2 n2 

where ni ranges over positive integers with the property that p I nI implies 
p 1 4N and (n2,4N) = 1 and 0 denotes Euler's function. Then, C # 0 and 

, L',V(1) = CY(log Y) + o(Y log Y), 
0< -D<Y 

D=- 1(mod 4N) 

as Y -- oo. 

The theorem is, in reality, a theorem about the mean values of derivatives 
of L-series attached to modular forms. 

To fix ideas, let F(z) be a cusp form of weight 2 on Jo(N) which is a 
normalized eigenform for the Hecke operators. Suppose that F is not a modular 
form on Fo(M) for any proper divisor M of N, and write 

00 

F(z) = E a(n)e2rinz 
n= 1 

for its Fourier expansion at the cusp ioo. Let 
00 a(n) 

L(s) = E 
n = n=1 n 

be the associated L-series which satisfies a functional equation: 

AsF(s)L(s) = wA2-sF(2 - s)L(2 -s), 

where w = + 1 and A = v /2wr. Let XD(n) = (D/n) be a real character 
mod D. Then, we can consider 

00 a(n) D\ 
LD(s)= 1: 

n=1 n n, 

It extends to an entire function of s, and if D is a fundamental discriminant 
prime to N, then LD(S) satisfies a functional equation: 

(AIDI)sF(s)LD(S) = WXD(-N)(AIDI) F(2 - s)LD(2 - s). 

THEOREM 2. Suppose that L(1) # 0. Let 

1 a(n4n 2) 0(n2) 
C= - E a-n2n ) 

2N with2 n1n t n2 

where nj ranges over positive integers with the property that p I n 1 implies 
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p 1 4N and (n2, 4N) = 1 and 4 denotes Euler's function. Then C 0 0 and 

, L'f(1) = CY log Y + o(Y log Y), 
0< -D<Y 

D- =(mod 4N) 

as Y -- oo. 

COROLLARY. Suppose that L(1) $ 0. Then, there are infinitely many funda- 
mental discriminants D < 0 such that LD(s) has a simple zero at s = 1 and all 
primes dividing the conductor of E split completely in the imaginary quadratic 
field Q(GVT). 

This corollary was also established by Bump, Friedberg and Hoffstein [1] 
utilising the automorphic theory of GSp(4). 

Remark 1. The proof will show that we need not assume that L(1) $ 0 but 
only that the root number of L(s) is + 1. 

Remark 2. We know that 

W = (_)ord= LL(E s) 

Therefore, the assumption that w = + 1 and the congruence D 1(mod 4N) 
imply that WXD(-N) = -1 and so LD(E, s) has an odd order zero at s = 1. 

Remark 3. To see that C is non-zero, we obtain that 

a(nln 2) 4(n2) 

nj, n2 (n n22 n2 

-( b0 a(b))H p 1 a(p~2)a( P4) ) E| bF S|HNI1 + 
p 

2s 
+ P4S + 

pb=pi4N 
+N 

plb-p14N 

Now consider the Euler product above. For p + 4N, let us write a(p) = + /3p 
with I aPI = IpI = pl/2. If from the factor at p we factor out Ea(p2a)/p2as, we 
find (for even N) 

a(nln ) 2 (n) (n 4N)=21 a2))H( P) (nin2) n2 (,4)=I 4 
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where 

p + 4N + 
p | 4s-2)(t - 22P 

x(1 p$)(- p2s=1) -1 

We observe that this product converges absolutely for Re(s) > 1/2 and 
that none of the Euler factors vanishes at s = 1. Since a(p) = 0, ? 1, for 
p 1 4N, 

FH (I aA) ) . 

If N is odd, a similar non-zero factor is obtained. Moreover, the Euler product 
of the series 

a(n') 

n=1 
(n, 4N)= 1 

differs from that of L(s, Sym2)4(2 s - 2)-1 at only a finite number of primes and 
at these primes, none of the Euler factors vanishes at s = 2. Thus, 

C # O. 

since L(2, Sym2) $ 0 (see for example [5] or [8]). Therefore, our theorem shows 
that there exists D such that (i) and (ii) hold. 

Remark 4. Our proof produces an error term of O(Y(log Y)' -P) for an 
explicit value of p. 

Remark 5. Our method is applicable to holomorphic modular forms f of 
any weight k 2 2 for Fo(N). 

Proof of the corollary. Suppose there are only a finite number of Di's, 
D Dr, say, satisfying (i) and (ii). Set 

1 E 2(n) 

L(s) n 1 

Notice that Ig-(d)l < d(d)@d and g(d) = 0 if p3Id for any prime p. (We write 
d(n) for the number of positive divisors of n.) Then, fixing an i and writing 
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D = Di 2, we have the relation 

LD(S) = LDi(s) E ( d?) 

We deduce that 

L'D(1) = L'D(1) S2 d (Ed) 

Thus, 

I d l Lf L(1) << I LfDi(1)i E E d 
0< -D<Y 0?8?< d162 
D =Di 

9 12(d)lI 

d<Y d <g 
62-0(mod d) 

We write d = dodf with do) d1 coprime and squarefree. Then, the inner sum is 

dd + 0(1). 

Then our sum is 

d(d2) d(do) (VT? 
d <Y dI do<Y/dl V dod1 

and we easily deduce that this is 

<<?F logY. 

Summing over i produces a contradiction. 

There are heuristics that suggest, in fact, that there should be a positive 
proportion of such D's. To approach the problem of getting an estimate for the 
number of such D's, one should modify the kernel in our integrals to make it 
more sensitive to the counting problem. 

We close this section by introducing some further notation. If DO is a 
fundamental discriminant which is coprime to N, then 

LD (1 + S) = WXD (-N)IDOI A F(- ) LD (1 - S). F(A + s) 

Any D 1(mod 4) can be written as D = Dor , where Do is a fundamental 
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discriminant and 

LD(S) =LD(s) E ds d 
dir2 

Let us set 

fy(n. s; a) = ( )IDI D unrestricted 
0< -D<Y n 

D--a(mod 4N) 

fy(n, s; a) = (' ID0Is, Do fundamental 
0< -DO<Y 

n 

Do=-a(mod 4N) 

fy(n; a) = fy(n, O; a), fy(n; a) = fy(n, O; a). 
We shall write d(n) for the number of positive divisors of n. 

We stress that the naive approach to the proof of the main theorem works 
after a few technical details are surmounted. The reader interested in ignoring 
these details and desiring an intuitive description of the proof can find it in [9]. 

The next two sections establish the requisite lemmas to estimate the sums 
we will encounter. 

2. Lemmas 

Throughout this paper, we will adopt the convention that a natural number 
n is written as njn2, where n1 has the property that any prime divisor of it is 
also a divisor of 2N and n2 is coprime to 2N. On certain occasions, the same 
convention applies when we write m = mlm2. 

LEMMA 1. For (a, N) = 1, 
2 

(k~ ?l)<< (N2/k (N))XYlog2 X 
n<X 0<-h<Y n 

n=nln2 h a(mod N) 

where the implied constant is absolute and the sum over n < X such that n2 is 
not a perfect square. 

Proof. This lemma is easily derived from the results of Jutila [3] (for the 
case N = 1) and Fainleib and Saparnijazov [2] (for the general case). They 
prove: 

2 

(n, 2N) = 1 h _ a(mod N) 
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where the prime on the first sum means that n is not a square. The sum in the 
lemma is seen to be 

2 

nl<X n2<X/n1 O<-h<Y n2 

h-a(mod N) 

By (1), the sum in question is 

<< N i -Y log2 X << (NXY log2 x)H (1-) 
nl <X ni pl 2N P 

which is the desired result. 

LEMMA 2. Let d and a be fixed integers, with a 1(mod 4), (ad, 4N) = 1. 
Then, 

a(n) < (Ud)12Y/2 logYlog(Ud). n?U~~d~2 nfy (nd; a) ?<(d 
n<U,n2db 2n 

Proof: By partial summation and Lemma 1, 

h__ E (Lh) U1/2Y log2 U. m <U 4M h<Y m 
h-a(mod 4N) 

Let X(a) denote the principal character mod a. The sum in question is 

E a(n) D 
n?U,n2dkb2 n O<-D?Y 

nd )21D 
D -a(mod 4N) 

- E H(i) E ax(n) ~j)(nd) E (nd) 
j2<y n<Un2d kb2 n 0<-h < Y/j2 

h aj2(mod 4N) 

2 \1/2 

12 j1/ 1 ( h 

j2<y <y 
n 

n-<US n b 2 0< -h< <y/j2 nd 
h _ a2(mod 44N) 

2) 1/2 

j2<Y m?Ud 0< -h< y/j2 J) 
h =-aj (mod 4N) 

<< U /2d/ Y /2 (log Y)(log Ud), 
as desired. 
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LEMMA 3. For 9 s = -i7, 0 < ij < 1/2, a -(mod 4), (ad, 4N) = 1, 

a(nPKPj(nd) h 1 '2d~Y~lgd 
sU~d 2 n-s (_ << U 1/2 1d/2y 1/2loUd 

n?<U, n2d:*b2 i O< -h?Y \l 
h-a(mod 4N) 

Proof: We apply Cauchy's inequality:A 

2 1/2 (2\ 1/2 
Ia(n)Ij2 ~ h 
n3"2~ / _7 2<-h<Y7 nd nU n<U,n2dskb2 O<n-h<Y ( 

h-a(mod 4N) 

<< d1/2U 1/2 -77y 1/2 log Ud 

by partial summation. 

LEMMA 4. Under the same conditions as in Lemma 3, 

a(n) X(()(nd) )h-2s 
n <Un 2d=Ab2 O< -h?Y 

h-a(mod 4N) 

< (Isi + I)d1/2Ul/2-77yl/2+277 log Ud. 

Proof: Apply partial summation to Lemma 3. 

LEMMA 5. If 9Jts = -ij, 0 < ij < 1/2, a - (mod 4), (ad,4N) = 1, then 

E a(n)_fy(nd, - 2s; a) << (Is + 1)d1/2U'/2-y'l/2+2n log Y log Ud. 
n< U, n2dkb2 

Proof: The sum in question is 

- n) D a-)2s~n)2(i~h2 
n U j n2db2 n O<-D<Y nnd j2ID 

D--a(mod 4N) 

=2 _,(j)j-4s 
2 n I-s E nd ) 

2 

j<y n<U, n2dkb2 0< -h-<yl;2 

h- aj (mod 4 N) 

y l/2 +2ri 
< E j47(IsI + 1)(d'/2U1/2-,7 log Ud ) 

1+2 

j2<y 

by Lemma 4. Summing over j gives the desired result. 
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Putting the above lemmas together proves: 

LEMMA 6. For 9Ms = -ij, 0 < ij < 1/2, a 1(mod 4), (ad, 4N) = 1, 

(i) 

a(n) - F(1 - s) s)d |(fy (nd,- 2s; a)(l + 2s) F(1 + s)xr(S)ds 
n?U,n2dkb 2 

<< x -77d1/2U1/2-?7y1/2+2?7 log Ud, 

and 

(ii) 

a(n) fy (nd,-2 s; a)-(1 + 2 s) F( 
- 
s) x (S) ds 

n? U, n~dnb -Sf(d sa~( 8F(1 + s)xFsd 

< -77d1/2U1/2-77y1/2+2,7 log Y log Ud. 

We now proceed to handle the terms corresponding to n > U. 

LEMMA 7. For 9Ms = -ij, ij > 1/2, (ad, 4N) = 1, 

a(n) Ih 
n 

_ 
Un n ( E << U 1/2 1d/2y 1/2 log Ud. 

n >U, n2d=Ab2 0< h?Y\ 
h -a(mod 4N) 

Proof: By Cauchy's inequality, the sum is bounded by 

_U (32t _ 2 / + 

(nYU ~ ~ /2 >U~nd~b 
~l/+21h-a(mod4N) 

~~/ 22\1/2 

?< = | d m< 0<-h<Y m 

( oo~~~~log~~t 1/21/ 
h-a(mod 4N) 

(lu t /g 'I 1) 

<< U 1/2-77d1/2y 1/2 log Ud, 

as desired. 
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LEMMA 8. Under the conditions of Lemma 7, 

a(n) (kh-2s 
E ( )x(j)(nd) E -h- 

n>U,n2dkb 2 nO< -h?Y 
h a(mod 4N) 

<< (Is I + 1)Y/2 +2 77d1/2U 1/2 -77 log Ud 
Proof: Apply partial summation to Lemma 7. 

LEMMA 9. If 9As = -ij, ij > 1/2, a -(mod 4), (ad, 4N) = 1, then 

a(n) 
E_8fy(nd,- 2s; a) << (Isi + 1)d"'2U"'27Y"'2+27 log Y log Ud. 

n> U, n2d=b2 n 

Proof: The proof is analogous to that of Lemma 5, except we use Lemma 8 
instead of Lemma 4. 

Therefore, we deduce by putting these lemmas together: 

LEMMA 10. For 9As = -ij, 1 > ij > 1/2, a -(mod 4), (ad, 4N) = 1, 

(i) 

a(n) fy (nd,-2 s; a)(( + 2 s) -( 
- 

s) x(s) d 
n > U, n2d =A nis sa)( ~ F(I + 5)xFsd 

<< X77d1/2Ul/2-?7yl/2+277 log Ud, 
and 

(ii) 

f. E (n8 fy (nd,-2 s; a) (l + 2 s) F(I + ) (s) ds 
__ ~ ~ 2n1- I+ 

< - ad 1/2 U 1/2 - 77 y 1/2 + 277 log Y log Ud. 
This is the series of lemmas needed. The next section establishes a lemma 

which refines the above estimates. 

3. Further lemmas 

We begin by proving: 

LEMMA 11. 

E21 X -log - + ly + O((n/X)l if n < -X 
e-exp( -ne 2X) 2 2 

e O(exp( - n/X)) otherwise. 
Proof. This follows easily by partial summation (see, for example, Jutila 

[3, Lemma 1]). 
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LEMMA 12. There is a p > 0 so that if X < Y(log Y) '", a 1(mod4), 
(a,4N) = 1, then, 

am fy(m; a)exp(-me2/X) X Ylog2Y, 
m, e 

(m, j)= 

for any j > 1. 

Remark. Note that in this sum we are not restricting to fundamental 
discriminants. 

Proof: We split the sum into two parts corresponding to m2 a square and 
m2 not a square. 

For the first part, it is 

= 1 a( MiM2) 
2 exp(-m1m2e2/X) e _ e (mIm2, j) 1m2 

x(()Y m + O(d(m2))}. 

Using Lemma 11, we see that the above sum is 

E < Y 2 log- + Y E 2 d(m)exp(-m/X) 
m< x mIm2 m m> 1X m1n2 

which is 

< Y(log X)2. 

For the second part, we use the Polya-Vinogradov inequality to see that it is 

I (m)l 1/2 logm -exp(-me2/X). 
m m e e 

Using Lemma 11 for the inner sum, we see that it is 

Ia(m)I m1/21log ML1gI + . a(m)I / << X mlogm - + E m (loggmexp(-m/X) 
m< x mm m> 2X 

and by partial summation and Lemma 17, this is 

<< X(log X)tero 

for some p > O. This completes the proof. 



458 M. R. MURTY AND V. K. MURTY 

LEMMA 13. Let a 1(mod4) with (a,4N) = 1 and a equal to a square 
mod 4N. Then, 

V L(1) << y log 2 y. 
O< -D<Y 

D-a(mod4N) 

Proof: Consider 
1 

2i LD( + s)W(I + 2s)XsF(s) ds, o> 1/2. 

This is 

E-(-)- exp(-nm / ) 
n,m n n m 

(Note that this series converges absolutely.) By the Phragmen-Lindel6f theorem 
[6], 

ILD(1 + s)I ? (Itl + 2)1!/2 -(log(,tI + 2))2 

uniformly for - 1/2 - cr a < 1/2 + c. (The implied constant depends on 
D.) We can therefore move the line of integration to 9Rs = -ij ? - 1/2 -e. 

Moving the line of integration to 9R s = - 7, we obtain 

a~n)(2!exp(-nm2/X) 
n,m n n m 

1 1 
= 2 L'D(1) + 2 fr LD(1 + s);(1 + 2s)XrF(s) ds. 

Writing 

LD(1 + S) = LDO(1 + S) 1 d+S (0d) 

where DO is a fundamental discriminant, we can rewrite the integral as 

1 7r dl^2(d l L) DO(1 + s)( jd )(1 + 2s)(X/d)sF(s) ds. 

Applying the functional equation to LDO(1 + s), we find that the above is equal 
to 

WXDO(-N) 2(d) 00 a(n) (D0\T A 

27ri d152 
d 4 1)n1= n - nd J ? 

x 
- 

s(X/d) F(s) ds. 
F(I + s) 
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We sum this over 82 ? Y, (8,4N) = 1, 0 < -Do ? Y/82, Do02 a(mod4N). 
Recall that we have set 

fy(n, s; a) = E (Z)IDIS, D unrestricted, 
0< <-D < n 

D-a(mod 4N) 

fy(n, s; a) = ( )IDjoiS DO fundamental, 
0< -Do<Y n 

Do- a(mod 4N) 

fy(n; a) = fy(n, O; a), fy(n; a) fy(n, O; a) 
Then, 

( a a(n). 1 
( - fy (n; a)-exp(-nm2/X) 

nm nm 

1 ~~ ~g(d) r a(n) 

2 0<-D<Y 2 2i <2?Y d182 d 1)n-liS 

D _ a(mod 4N) (8, 4N) = 1 

X fy/,2(nd,- 2s; a82g)(1 + 2s) 

X F(i s) A-2s(X/d)sF(s) ds. 
F(l + s) 

Here 88 1(mod 4N). The sum on the left side of (*) is seen to be 

<<Y(logy)2 

by Lemma 12, provided we take X < Y(log Y)l+P. Now we deal with the 
integral on the right side of (*). The integral is first broken up according to 
whether n2d is a square or not. If n2d is not a square, then splitting the series 
at n < Y and moving the integral to 9Ms = -n1, 0 < Y71 < 1/2, we can utilise 
Lemma 6(i) to get an estimate 

E ( )d1/2 log2 Y << Y(Y/X)7 log2 Y. 

The series corresponding to n ? Y is similarly estimated by moving to Ns = 

- 772 ' 772> 1/2 and using Lemma 10(ii). The final contribution when n2d is not 
a square is therefore 

Y{(if771+ (7f2}lg2 
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This term is << Y log2 Y if Y < X. Now we consider the contribution when n2d 
is a square. 

The series in the integral is seen to be 

E a(n1n2) (?aIfy/2(n2d,- 2s, a2). 
'n1, n2 (nln2) nj 

Let 

Hd(s)= E a(nln2) a 
nj, n2 (nln2) U ni pl4Nn2d P 

n2d=b2 

We see that this is equal to 

a(nl)a(n2) ( a:1) {l ( A 

nj, n2 (nin2 ) 
s 

ni pl4Nn2d P 

n2d=b2 

= (Pn~2Na(n,) a a(n2)PINl(+ 
pin:> pl2N n1 n n2d=b2 2 pl4Nn2d )IIE sP( - 

Thus, in order to estimate the integral, we first need an estimate for Hd(s). 

Since the first sum is uniformly bounded in the region under consideration, we 
need only consider the second Dirichlet series. If d = d d 2 do squarefree, then 

a__ n(2)' a(d OM2 

n2d=b 2 pI4Nn2d P M pl4Nmd ( P 

where the sum over m is such that (m, 2N)= 1. Let us now estimate the 
integral. For this purpose, let us define 

00 a(don 2) 
Fd(s )= n1 (don2)' pl4Iind ( P 

By factoring Fd(s) as an Euler product and using simple estimates, we find that 

IFd(S)l << Cv(d)d1/2 -|L(2s, Sym2)(4s - 2)-11 
for of > 3/4. Here, c is an absolute positive constant (we can take c = 200 for 
example) and v(d) is the number of prime factors of d. 

We are now ready to estimate the integral when n2d is a square. We move 
this integral to q = 1/log Y and evaluate it using the above estimate for Fd(s). 
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By an easy variant of Jutila's result [3, Lemma 1], we find the integral is 

1 , E n a(n) a A2F (1 - ) - + 2s)(X/d)sF(s) 
2'77i I ~ ~i~ ~-A f(1 +s s)) ~s 
2 (r 7) n-i n 1n F (I 

n2d=b2 

X{2( PINld 
1 

(y,/52)12s 
X 7rT 0(4N) 14Nnd2 p) 2s 

yl/2+2?2t 

+ ((IsI + 1)d(4Nn2d) a ds4 

The error term presents no problem. The main term is 

<< 'q ( / 7 (d)(log y )2. 

Summing over d182 and 82 ? Y. we obtain a total estimate of 

<< Y E d2 )d (d/X ) cv(d)(log Y)2 Y< 1Y)2 
, 52 < y ad,2 

This completes the proof of Lemma 13. 

Utilising Lemma 13, we can now derive an alternate estimate for the sum 

a(m) - me%2 
E fy(m; a)expl X . 
m, e me \ XJ 

LEMMA 14. If Y < X, a 1(mod 4), (ad, 4N) = 1, and any j ? 1, 

(i) a( fy(md;a)exp(-me2/X) << d2Ylog2Y. 
m, e me 

(m, j)=1 

Also 

(ii) 

E -(m)f(md; a)exp(-me2/X) << d"/2Y(log2 Y + log X), 
m,e me 

(m, j) = 1 

where the prime on the sum indicates that m2d is not a square. 

Proof. Consider equation (*) in the proof of Lemma 13, which shows that 
under the hypothesis Y < X, the integral in (*) is O(Y log2 Y). Lemma 13 itself 
asserts that the same is true of the sum of the LID(1). Our assertion follows for 
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j = 1 and d = 1. In general, we consider an analogue of Lemma 13 in which we 
multiply both sides of the original equation by (D/d) and only sum over 
D = 82Do with j I S. The estimates proceed exactly as before and we obtain 
assertion (i) of the lemma. For (ii), we need only observe that the contribution 
from those m, e with m2d a square is << d1/2Y(log X). 

LEMMA 15. If a 1(mod 4), (ad, 4N) = 1, then 

aE) - fy(md; a)exp -me2/X) <d"'2X"'2Y"'2 log Xd 
m,e me 

(m, j) = 1 

where the prime indicates that the sum ranges over values of m such that m2d is 
not a square. 

Proof We have to estimate 

a(m) exp(-me2/X) E ( h 
m, e me 0< -h__ md 

(m, j) h a(mod 4N) 

We bring the summation over e inside and use Lemma 11. If we truncate the 
sum over m at 2X, then it is 

m2d ba h-a(mod 4N) 

and by Lemma 1 and the method of Lemma 2, this is 
<< (Xr/{Xdl2~o xd 2 + 

The sum over m > EX is estimated in the same way. It is 

<< E Iam) exp(-m/X) h<< (m 

M< X m O<<h?Y mdY 

m2d-b h h-a(mod4N) 

which is 

<< (Xd )1/4 (Xd )1/2y(log Xd )2 1/2 

In both cases, the estimate simplifies to 

<<(dXY )"'2(log Xd ) 
This proves the lemma. 
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We shall use this to prove the following crucial and penultimate lemma. 

LEMMA 16. Take a 1(mod 4), (ad,4N) = 1. For all X satisfying X > 
Y log-B y7 

E , (me fy (md; a)exp( -me2/X) <<B d1/2X 1/2Y 1/2 (log X)(log log Y) 
m, e me 

where the prime indicates that the sum ranges over values of m such that m2d is 
not a square. 

Proof. We have 

a(m) 2X 
L' ( fy(md; a)exp(-me2/X) 

m, e me 

= EY LL(i) L' e() exp(-me2/X) X, (i) 
j2<y m, e me 0< -h <y/j2 Md 

(, d)= 1 (m, j)=1 h--aj2(mod4N) 

The inner sum is what we have denoted by fy/j2(md; a-2). The sum of the terms 
with j < logB Y can be estimated by Lemma 15 and it is seen to be 

(dXY )1/2 

<< E . log Xd 
j<logBy J 

which is 

d1/2X 1/2y1/2 log X log log Y. 

For j > logB Y, we use the second part of Lemma 14 to get 
Y 

E d"/2 -j(log2 Y + log X) << d"/2Y logB2 y. 
j > logB J 

Since X 2 Y log-B Y, this proves the lemma. 

The final lemma is an estimate for a weighted average of the a(n) which 
will be needed in some of the error term estimates. 

LEMMA 17. There is a p > 0 so that 

E Ia(n) << x(log x) 
n<x ? o 

and 
Ia(n)I 1 

d(n) ?<x (log x)1-2p 
n~x F 



464 M. R. MURTY AND V. K. MURTY 

Proof: The first estimate is due to Rankin [10]. (It should be remarked that 
Rankin proved the estimate for N = 1. However, his proof carries over for the 
general level in view of Shahidi's result [12].) 

For the second estimate, let b. = la(n) /n1/2 and consider the Dirichlet 
series F(s) = E:=,bnd(n)/ns. Set Q(s) = Eng2(n)bnd(n)/ns. We are inter- 
ested in bounding the partial sums of F(s). Consider first the partial sums of 
Q(s), namely, 

E1 ,u(n)bnd(n) . 
n<x 

The coefficients of Q(s) are dominated by the coefficients of (E: =lbn/ns)2. By 
the first part of the lemma, 

E bn << x/(log x)P. 
n<x 

Hence, 

E bmbn << b. E bm << bn(x/n)(log x) p << x(log x)1-2P 
mn<x n?< r m<x/n n< x 

by partial summation. 
Now set F(s) = Q(s)R(s). Write R(s) = Ec(n)n-s. We see that as the 

Euler product of R(s) converges absolutely for Re(s) > 1/2, the Dirichlet 
series Yc(n)/n is absolutely convergent. Using these facts, we see that 

E bnd(n) = E c(m)u2 (e)bed(e) 
n<x me <x 

?E c(M) (log 2)2 m<x m m 

<<x(log x) '2. 

This proves the lemma. 

4. The main theorems 

Now consider 

I g(d) (Do )4 
2.1 

S ' s E-XFs) s 
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This is 

,~(d) a(m)( D0 - 
E-E-(d - me ) ,md ,Jexp( e2m4/Xd). 

d 1,32 d m, e me md 

On the other hand, moving the line of integration to the left and picking up the 
residue at s = 0, we obtain 

1 1 
D( +S I -L, (1) + f LD(l + s)0(1 + 2S) s d1 l X )& ds. 2 217i (-77) dI,2 \Lt/d 

Writing the functional equation for LD (S), we see that the above integral is 

WXDO(-N) -2F(1 -s) -s f IDI sLD(1 - S)W(1 + 2s) A TX s) ds) 
27 -ni F(1 + s) 

Let Y be such that Y log-B Y < X < Y(log Y) +v where 0 <v <p, with p as 
in Lemma 17. Now we sum the entire expression above over 82 < Y 0 < -DO 
? Y/82, Do02 1(mod4N) and obtain the expression: 

2 Ad L'D(1) 2 O<-D?Y 
D_ 1(mod4N) 

- 
E (d) a(m) 

- ~~~d mefy/52(md;82 )exp(-n 84/Xd) 
-2? dI ~ n=1 me=n m 

(&, 4N)= 1 

2+ jf am-fy(m- 2s; 1);(l + 2s) 
27H _0m=l 

F(I - s) 
X -A2sXsF(s) ds, 

F(I + s) 

for - > 1/2. 
The integral is split into two parts. In the first, the sum over m2 is taken 

only over non-squares and, in the second, it ranges over squares. 
Let us consider the first integral. It is easily estimated in the following way. 

Truncating the sum over m at U, we move the integral involving the part 
m < U to 91s = -n where ij1 < 1. The part corresponding to m > U is 
moved to 9i s =-i12 where 2 > 1 Choosing U = Y2/X and using the 
Polya-Vinogradov inequality and Lemma 17, we see that the integral is 
<< X-ly2(log y)l-v. 
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The contribution from the squares is easily handled. With a slight change in 
notation, it is 

1 a( MiM2) ~ F( - s) 
2#7ril_) ~ ( :,;l2~~ -2s ~8 X sA-2srsd 2WjTi I)I (MiM2)(1s)- + D F(1 + s) XA8~)d 

where the sum over D is over 

O < -D < Y. D-1(mod4N), (D,m2) = 1. 

First, we move the integral to a line -i7, with 0 < i < 2. By partial summa- 
tion, it is easily seen that the sum over D is asymptotic to 

1 4(4Nm2) yl-2s 

4(4N) 4Nm2 1 - 2s + O(Y'qd(m2)(ISI + 1)) 

where, as before, d(m2) is the number of divisors of M2. Inserting this into the 
integral, we find that the main term is 

Y 1 ( X \S F(1- s) 1 Y 
I(T(1 ) (I -I 

s I 
(1 + 2s)F(s) ds 

b(4N) 2-i J7) l A2Y2 J F( + s) 1 - 2s 

where 

444Nn2)a(nln 2) 
T(s)= S 

nj, 2 4Nn (n n2) 

The error term is easily seen to be O(Y2,7X-71). Now moving this integral to the 
right of 9 s = 0. and using the expansions 

F(1 - s) 1 

F(1+s) 1-2s =1+(2^y +2)s+(2y2+4y,+4)s2+ + 

( X ) = 1 + (log A2y2)s + _(log2 A2Y2) + 

and 

;(1 + 2s)F(s) = ( + y + } + = + 

we find that it is 

- Y a(nln 2) 4(4Nn) (1 _ 

2 -~ -log 12+ 0(Y). 
0(4N) nln2 n1n2 4Nn2 2 Y2J 

We see that this is 

1 X 
- -CY log - + 0(Y). 

4 2 
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Summarizing, we have proved that the integral is 

1 XI 
- 4CY log y- + 0(Y) + 0 XY2(log y)v) 

Next, we consider the sum which we split into the contribution when m2d 
is a perfect square and when m2d is not a perfect square. 

In the latter case, we estimate the sum as follows. First consider the 
contribution of terms in which 8 > logA Y, for some large A > 0. By using 
Lemma 2 and partial summation, we see that 

1a (m) 
- 1 i,, amfy/ 2(md; 82)exp(-me284/Xd) 
e m 

I Xd 1/2 yl/2 
<< - d (log Y)(log X). 

Thus the contribution of these terms to the sum is 

"< E E -6d) (log Y)(log X) 
> logAY d1862 

and this is clearly O(Y). For 8 < logA Y, we argue as above, except that we use 
the estimate of Lemma 16 in place of Lemma 2. We find that these terms 
contribute an amount 

<< X1/2Y"/2 log X log log X. 

In the former case, it is 

E A(d) I - a(m) ( I 8exp(-n 4/Xd) 
d ~me ~Jx~nX 

5 dI82 n=1 me2=n Do 
m2d=r2 

where the sum on 8 ranges over 

52 < y (vN 2?Y, (8, 4N)=1I 

and the sum on Do ranges over 

Y 
0 < -Do < 

52 Do-82(mod4N), (DO,m2d) = 1, 

Do-1(mod 4), Do fundamental. 
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The sum over Do can be expressed as 

E 2'\(md)' ~ 
I 
1 -( E 2( _ DO)XIM2d) (Do) E j +(2)i( D ) 

0< -DO<Y/82 DD (4N) fimod4N 

which is equal to 

E 1(2) 1 E 2( )X(M2d) 
f mod4N 4 <-Do0 < y/2 

Now we consider the inner sum, 

1(4N) o<_ D </^ (A (a))XM2d) (DO)q(Do). 
(4)0< -Do <y/82 a21IDo 

Rearranging, we find it is 

(N E7ja)X(m2d)(a2)f(a2) 0< E X(2)(h)((h). 
0(4N( ) a < Y/'6 0< -h< y/,2a2 

If ifr is nontrivial, then X0m2d) is a nontrivial character of conductor dividing 
4N. Thus, by Polya-Vinogradov, the innermost sum is 0(1). The whole sum is 
then 

y 1/2 1 
'3 q'4N)J 

On the other hand, if if is the trivial character mod 4N, we get 

I____(Md) 2)4N) { Y 0(4NM2d) Od4md : tt {(a x( ~)a ) (4 )a2) + 0(d(4NM2d))) 444N) a <v'Ib 82 a2 4Nm2d 

Inserting this information into our big sum, we find that it is 

(id) 00a(m)___ 
_ _n1X 1 

,32<Y 
d i2 d n=L me2_ me e(4N) 

(&, 4N)1 m2d=r2 

Y_6 !Y q(4NM2d) 
X s62 7rr2 14t d 1 2 ) 4Nm2 d 

Y 1l/2 
+ 0( d(4Nm2d) ) 

We observe that the contribution from terms with a > X1/5 is negligible. 
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Indeed, it is 

y1/2 If-(d)l I a(m)l 
<< E E 

y>, > X 1/5 16 d2 d m=i m 

xt + +d(4Nmd) )(-exp(me284/Xd)fr 

We use Lemma 11 to estimate the sum over e. 
The terms with m > Xd/2a4 contribute an amount O(S) where 

y_1/2 Ii(d)l Ia(m)I 

>,> Xd1/5 d18 2 d >Xd/2,34 

Y 1l/2 I ' m4 
x a + d(4Nmd)exp - Xd. 

By Lemma 17 and partial summation, we have 

la(m)l M548 /v Xd 
m>Xd/284 d(m)exp - << a-4log-a 

Thus, 

y / 
__ 1I21 a(d)I xd (xd 

S 6>Xt5 < d( 6 +d(4Nd) a 4 log84) 

and this is 

1 IY"12 IAJj/J 

<< (XY)"/2(logX) E 3 E + d(4Nd))d(d). 
>X'1/5I d 12\ / 

Since d(n) << ne, it follows that 

S << YX'1/0+E. 

Now consider the terms with m < Xd/284. Again, by Lemma 11, the sum 
to be estimated is 

y'7/2 Ift(d)I (yl/2 ____~ << E -E , (- + d(4Nmd) 
(m) 

lo>g>Xd15 d5e2 d mr<Xd/2eS 4 m 

Xd 
x log m^4 + 0(1). 
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By an argument analogous to that used in the treatment of S we see that the 
above is also 

<< YX?1110+? 

Thus, the sum to be considered is 

E __ 0a(m)1 
sX'/5 dI 2 d n=1 me2=n me e(4N) 

(&,4N)= 1 m2d=r2 

X Y H - 1 -L .rk)4Nmd) +0 d(4Nm2d)P. X 82w2 
pI4Nm2d 

1~ P2J 4md8) 

The error term is 

Y12 - _ d )f d(m)Ia(m)log Xd 
8?<X'/ 5 dI82 m 4Xd/24 m 

+ o | E d(m)ja(m)l _Ma )j4 +01 E ex- dh 
m?>Xd/2& 64 M 

Using Lemma 17 and partial summation, we see that 

d(m)Ia(m)I Xd X 
log ^? << - log X 

m?<Xd/2 34 M M84 

and 

d(m)Ia(m)I ( m84 d 
exp - << - log X. 

Therefore, the error term is 

1 d(d)2 X'72d'72 
8 dI d 2 

82 logX << X1/2Y"/2 log X. 
6 <X 1/53 di 3l2 Fd 

Thus, the sum reduces to 

6Y 1 f(d) 00a(m) ep 41d 

7T20 (4N) 52s x' d __: me2n m exp(-n84/Xd) 86< /5 d 2 n=1 me = 

(&,4N) =1 m2d=r2 

1 + + ( 1 -, 0 (X1'2y"2 log X). 
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Now the sum over n is analysed as follows: 

E, a(m) n (I + exp(-n/X) 
n=1 me2=n me pI4Nm2d P 

m2d = 2 

1 
- 2i Gd(A + s);(l + 2s)XsF(s) ds 

27 Tr 2) 

where 

Gd(s)= E , - 
m=1 m pI4Nm2d P 

m2d=r2 

By the argument used for Fd(s), one finds an absolute constant c > 1 so that 

IGd(s) << Cv(d)IL(2s, Sym2);(4s - 2) |, 
for 91 s > 3/4 (say). Thus, 

E E - nm +I !Yexp(-n/X) 
n=1 me2=n me pI4Nm2d P 

m2d=r2 

1 1 
- - Gd(1)(y + log X) + 2 dG(1) + O(cv(d)) 

as X oc. Inserting the main term into our sum, we obtain 

6Y 1 g(d) 
-n2I(4N) , <?x'/ 5 d1,62 d 

(&, 4N)= 1 

UIy + Xogd -~ a(m) 
(2 ( 6 AJ m2d=r2 m pI4Nm2d( p J 

1 , a(m)logm 

PI4m Id + 
m2d=r2 m p+4Nm2d P 

The second term gives an amount of O(Y). The contribution from the error 
term is also O(Y). The first term is 

3Y 1 ___ a(m) +1\ + 

n2k(4N)(log X) s d2pIE;1;-1 ;I+-) 0 (Y). I 4) 3 <X 1/5 d2 d md=2 m pl4Nr ( P ) () i 4=m2d=r 
(6,4N)=1I 
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Now using the definition of fi, and making use of the fact that 

n~ S L 
) (s) E n-i n ~nJd 3 

we obtain the identity 
52 

a(n) = , fi~d)a(m) 
n dl32 

dm =n 

Therefore, we find that the main term is 

3Y(log X) 1 a(m1) 0 a(r 2) (82 \ 1' 

0(4N) 3,xl/5 82 m ml r= 2 r 
2 
/ p14Nr P1 

(&, 4N)= 1 (r, 2N)= I 

In order to simplify this sum, consider the Dirichlet series 
00 a(r 2) 

Da(s) = I, +Sp~ ( _ I r8 H l+ 
r=1 pI4Nr\ P1 

(r , ) = I 

For Re(s) > 2 it is an absolutely convergent series. Writing each r as r = bu 
where p Ib p 14N and (u, 4N) = 1, we see that 

11(1 -) 1 a(b 2) 0 a (U2)H 
DS(s) = I (+ -) E bs E u pl + 

plb =>p14N (u, 4N)= I 

As in Section 1, write 

B 00~ a (p2j') 

j=O 

Then the sum over u is equal to 

ii(A + (1 + (Bp(s) 1)) 

and, factoring out Bp, we deduce that 

D'6(s) = I~l( + p IBP(s))tN p+ B()i 

Notice that the last product above converges absolutely for Re(s) > 1 and 
at s = 2 can be bounded independently of 8. As for the second factor, we note 
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that it is 

00X a(n 2) 
- H 

and at s = 2 we have (on using the estimate a(p2j) < (2j + l)pj) that it is 
<< a/+(6). 

Inserting this information into our sum, we see that it is 

3Y(log X) 1 a(n2) 

7r +(4N) 3 < X /5 
a 

no ni 
(6, 4N)= 1 

which is equal to 

3Y(log X) I )- a(nl) | 
0 
x 6(n$2) 

'77T(4) pI4N P1 n1In n2= 1 n2 
(n2,2N)= / 

Xp4N1 - B (2))) 

X E 
(2 HB(2r) 

1 

'- 
1 + B (2) 

-1 
(5, 4N) = I 

By the estimate stated at the end of the previous paragraph, we may extend the 
sum over 8 to infinity, thereby introducing an error of only O(YX- 1/5+). Now 
let us simplify the sum over 8. As each summand is multiplicative in 8, we see 
that 

H (1+ - (1 II 
pt4N BP(2)( p+lI BP(2)) 

P 
+ + 

+ 
P2~~~p+ p+4N M u(2)i P + y B.(2) i 

Multiplying this by 



474 M. R. MURTY AND V. K. MURTY 

we find that it becomes 

4N( - _ + + (BP(2) l1) 

We insert this calculation and the sum becomes 

1 1 (Y log X)~ 2~~ 
an) 

2 4(4N) ni n1 (n2,2N)= 2 / 

X 4N P p 4N p BP (2) 

In the notation of Remark 3 of Section 1, 

)= 4N( p ( B(2) - 

The calculation in this remark shows that our sum is 

1 Y(logX) a(nl) a(n2) 
2 .p(4N) ,n n1 n2=' n2 pl4Nn2'% PI* 

(n2,2N)= 1 

Summarizing, we have proved that the sum is 
1 
-CY(log X) + O(Y) + O(X"/2Y"/2 log X log log X) 
4 

All of our estimates were made under the assumption that 

Y logBY < X < Y(log Y)l?V 
where 0 < v < p. Combining the estimates of the sum and the integral, we 
deduce that if X = Y/(log y)A for a small A > 0, then the sum of the sum and 
the integral is 

l a(nj) a(n 2) .k(4Nn2)\(1I 1 

E ( n2 | (2 -Y log X - -Y log-) 

+ O(Y(logX)' V) 

and this is 

2 CY(log Y) + o(y(log y)1 V), 

which completes the proof of the theorem. 
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6. Concluding remarks 

Our theorems can be generalised to include the case when D ranges over 
an arithmetic progression mod M. This gives rise to a more complicated con- 
stant. Though we have not developed it here, the method allows one to obtain 
asymptotic formulas of the form 

E L(D)(1) = CjY logs Y + O(Y logi1 Y) 
0<-D<Y 

as Y -X oo for every j 2 1. The results of these investigations will appear in a 
future work. 
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