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Given two arithmetical functions f , g we derive, under 
suitable conditions, asymptotic formulas with error term, for 
the convolution sums 

∑
n≤N f(n)g(n + h), building on an 

earlier work of Gadiyar, Murty and Padma. A key role in our 
method is played by the theory of Ramanujan expansions for 
arithmetical functions.
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1. Introduction and statement of theorems

The past century of mathematics, in particular number theory, has witnessed a num-
ber of developments in many different directions, originating from different articles by 
Srinivas Ramanujan. One of these is the theory of Ramanujan expansions. In 1918, 
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Ramanujan [10] introduced certain sums of roots of unity. To be precise, for positive 
integers r, n, he defined the following sum,

cr(n) :=
∑

a∈(Z/rZ)∗
ζanr , (1)

where ζr denotes a primitive r-th root of unity. These sums are now known as Ramanu-
jan sums. Among other significant properties of Ramanujan sums, we list a few, which 
can be obtained from elementary observations. For a more elaborate account on Ra-
manujan sums, we refer the reader to the texts [12,11] and the survey articles [7,9]. We 
know:

a) For any r, n, cr(n) ∈ Z. This can be seen by reading the sum in (1) as the trace of 
the algebraic integer ζnr .

b) For fixed n, cr(n) is a multiplicative function i.e. for r1, r2 with gcd(r1, r2) = 1 we 
have cr1r2(n) = cr1(n)cr2(n). This is essentially due to the fact that, for r1, r2 with 
gcd(r1, r2) = 1, the fields Q(ζr1) and Q(ζr2) are linearly disjoint.

c) cr(·) is a periodic function with period r. In fact, cr(n) = cr(gcd(n, r)).
d) cr(n) can be expressed in terms of the Möbius function and written as

cr(n) =
∑

d| gcd(n,r)

μ(r/d)d.

Ramanujan used these sums to derive point-wise convergent series expansion of various 
arithmetical functions of the form 

∑
r arcr(n), which are now called Ramanujan expan-

sions. More precisely, given an arithmetical function f , we say f admits a Ramanujan 
expansion, if

f(n) =
∑
r

f̂(r)cr(n)

for appropriate complex numbers f̂(r) and the series on the right hand side con-
verges. Existence of such expansions for a given arithmetical function and their 
convergence properties have been studied extensively in the past, for example in 
[13,4,11]. However, we do not discuss these here. In this article we focus on a differ-
ent theme.

In [3], Gadiyar, Murty and Padma have studied sums of the kind 
∑

n≤N f(n)g(n +h)
for two arithmetical functions f , g with absolutely convergent Ramanujan expansions. 
They derived asymptotic formulas which are analogous to Parseval’s formula in the case 
of Fourier series expansions. However it seems that the study of error term for these 
sums has not been carried out before. Under certain additional hypotheses we extend 
their results and provide explicit error terms. To be precise we prove,
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Theorem 1. Suppose that f and g are two arithmetical functions with absolutely conver-
gent Ramanujan expansion:

f(n) =
∑
r

f̂(r)cr(n), g(n) =
∑
s

ĝ(s)cs(n),

respectively. Further suppose that

∣∣f̂(r)
∣∣, ∣∣ĝ(r)∣∣� 1

r1+δ

for some δ > 1/2. Then, we have,

∑
n≤N

f(n)g(n) = N
∑
r

f̂(r)ĝ(r)φ(r) + O
(
N

2
1+2δ (logN)

5+2δ
1+2δ

)
.

Theorem 2. Let f and g be two arithmetical functions with the same hypotheses as in 
Theorem 1 and h be a positive integer. Then we have,

∑
n≤N

f(n)g(n + h) = N
∑
r

f̂(r)ĝ(r)cr(h) + O
(
N

2
1+2δ (logN)

5+2δ
1+2δ

)
.

In his article [10], Ramanujan showed that, for real variable s > 0,

σs(n)
ns

= ζ(s + 1)
∑
r

cr(n)
rs+1 , (2)

where σs(n) =
∑

d|n d
s. Hence as an immediate corollary to Theorem 2 we get,

Corollary 1. For s, t > 1/2 and any non-negative integer h, we have,

∑
n≤N

σs(n)
ns

σt(n + h)
(n + h)t = N

ζ(s + 1)ζ(t + 1)
ζ(s + t + 2) σ−(s+t+1)(h) + O

(
N

2
1+2δ (logN)

5+2δ
1+2δ

)
,

where δ = min{s, t}.

This result, without the explicit error term was mentioned by Ingham in his article [5]. 
A proof of Ingham’s result was obtained in [3].

Ramanujan [10] also showed that, for s > 0

φs(n)
ns

ζ(s + 1) =
∑
r

μ(r)
φs+1(r)

cr(n), (3)

where φs(n) := ns
∏
p|n

(1 − p−s). Note that, 1
φs(r) � 1

rs . Hence as a corollary we have,

p prime
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Corollary 2. If s, t > 1/2 and h is a non-negative integer, then

∑
n≤N

φs(n)
ns

φt(n + h)
(n + h)t = NΔ(h) + O

(
N

2
1+2δ (logN)

5+2δ
1+2δ

)
,

where

Δ(h)

=
∏
p|h

[(
1 − 1

ps+1

)(
1 − 1

pt+1

)
+ p− 1

ps+t+2

]∏
p�h

[(
1 − 1

ps+1

)(
1 − 1

ps+1

)
− 1

ps+t+2

]

and δ = min{s, t}.

2. Preliminaries

For the sake of completeness we collect a few basic results about certain arithmetical 
functions. They can be found easily in the texts like [1,8,11]. We first list the results 
about the average order of Euler’s phi function φ(·) and the Möbius function μ(·).

Proposition 1. For any real number x ≥ 1,

∑
k≤x

φ(k) = 3
π2x

2 + O(x log x).

Definition 1. The Mertens function M(·) is defined for all positive integers n as

M(n) :=
∑
k≤n

μ(k)

where μ(·) is the Möbius function. The above definition can be extended to any real 
number x ≥ 1 by defining,

M(x) :=
∑
k≤x

μ(k).

Essentially, the error term in the prime number theorem, due to de la Vallée-Poussin 
[2] gives us,

Proposition 2. For any real number x ≥ 1,

M(x) =
∑
k≤x

μ(k) = O
(
xe−c

√
log x

)
,

where c is some positive constant.
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Remark 1. This error term has been improved independently by Korobov [6] and Vino-

gradov [14] in 1958 to O
(
xe

−c (log x)3/5

(log log x)1/5

)
with c > 0, the best known to date. An 

equivalent statement of the Riemann hypothesis is M(x) = O
(
x

1
2+ε
)

for any ε > 0.

Next we note the following very useful theorem known as “partial summation”.

Theorem 3. Suppose {an}∞n=1 is a sequence of complex numbers and f(t) is a continuously 
differentiable function on [1, x]. Let A(t) :=

∑
n≤t an. Then,

∑
n≤x

anf(n) = A(x)f(x) −
x∫

1

A(t)f ′(t) dt.

Let dk(n) be the number of ways writing n as a product of k numbers. Sometimes we 
write d(n) to denote d2(n). Using Theorem 3 we can derive the following result about 
the average order of the arithmetical function dk(·).

Proposition 3.

∑
n≤x

dk(n) = x(log x)k−1

(k − 1)! + O
(
x(log x)k−2) .

We will make use of all these results from basic analytic number theory to extend the 
following theorems of [3].

Theorem 4 (Gadiyar–Murty–Padma). Suppose that f and g are two arithmetical func-
tions with absolutely convergent Ramanujan expansion:

f(n) =
∑
r

f̂(r)cr(n), g(n) =
∑
s

ĝ(s)cs(n),

respectively. Suppose that

∑
r,s

∣∣f̂(r)ĝ(s)
∣∣ gcd(r, s)d(r)d(s) < ∞.

Then, as N tends to infinity,

∑
n≤N

f(n)g(n) ∼ N
∑
r

f̂(r)ĝ(r)φ(r).

Theorem 5 (Gadiyar–Murty–Padma). Suppose that f and g are two arithmetical func-
tions as in Theorem 4 and h is a positive integer. Suppose further that
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∑
r,s

∣∣f̂(r)ĝ(s)
∣∣(rs)1/2d(r)d(s) < ∞.

Then, as N tends to infinity,

∑
n≤N

f(n)g(n + h) ∼ N
∑
r

f̂(r)ĝ(r)cr(h).

Remark 2. Our hypotheses about f̂ , ĝ,

∣∣f̂(r)
∣∣, ∣∣ĝ(r)∣∣� 1

r1+δ
for δ > 1/2,

are extensions of the condition

∑
r,s

∣∣f̂(r)ĝ(s)
∣∣(rs)1/2d(r)d(s) < ∞,

and include it as a consequence. Also note that, if we want to extend the hypothesis of 
Theorems 4, 5 in the form that we have in Theorems 1, 2 then δ > 1/2 is the optimal 
choice.

To prove these theorems they prove certain lemmas about the sums of the from

∑
n≤N

cr(n)cs(n + h).

We will also make use the following.

Lemma 1.

∑
n≤N

cr(n)cs(n + h) = δr,sNcr(h) + O(rs log rs),

where δ·,· denotes the Kronecker delta function.

Lemma 2.

∣∣∣ ∑
n≤N

cr(n)cs(n + h)
∣∣∣ ≤ d(r)d(s)

√
rsN(N + h).

There are other related results in [3] which are of independent interest but not relevant 
to our work here.
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3. Proofs of the theorems

3.1. Proof of Theorem 1

We start as it is done in [3]. Let U be a parameter tending to infinity which is to be 
chosen later. We have by absolute convergence of the series,

∑
n≤N

f(n)g(n) =
∑
n≤N

∑
r,s

f̂(r)ĝ(s)cr(n)cs(n)

= A + B, where

A =
∑
n≤N

∑
r,s

rs≤U

f̂(r)ĝ(s)cr(n)cs(n) and B =
∑
n≤N

∑
r,s

rs>U

f̂(r)ĝ(s)cr(n)cs(n).

Interchanging summations and applying Lemma 1 (for h = 0) we get,

A = N
∑
r2≤U

f̂(r)ĝ(r)φ(r) + O(U logU)

= C + D + O(U logU), where

C = N
∑
r

f̂(r)ĝ(r)φ(r) and D = −N
∑
r2>U

f̂(r)ĝ(r)φ(r).

Note that C is the main term according to our theorem. Using the hypothesis we get,

D = O

⎛
⎝N

∑
r>

√
U

φ(r)
r2+2δ

⎞
⎠ .

Using Theorem 3 and Proposition 1 we get,

O

⎛
⎝ ∑

r>
√
U

φ(r)
r2+2δ

⎞
⎠ = O

⎛
⎜⎝ 1
U δ

+
∞∫

√
U

t2

t3+2δ dt

⎞
⎟⎠ = O

(
1
U δ

)
.

Hence we obtain, D = O
(

N
Uδ

)
.

Now, for B, interchanging the summation and applying Lemma 2 (for h = 0) we get,

B � N
∑
rs>U

d(r)d(s)
√
rs

(rs)1+δ

= N
∑
rs>U

d(r)d(s)
(rs)1+(δ−1/2) .

Note that, 
∑

rs=t d(r)d(s) = d4(t). Using Theorem 3 and Proposition 3 we get,
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O

(∑
t>U

d4(t)
t1+(δ−1/2)

)
= O

⎛
⎝ U(logU)3

U1+(δ−1/2) +
∞∫

U

t(log t)3

t2+(δ−1/2) dt

⎞
⎠

= O

⎛
⎝ (logU)3

U (δ−1/2) +
∞∫

U

(log t)2

t1+(δ−1/2) dt

⎞
⎠ , integrating by parts

= O

(
(logU)3

U (δ−1/2)

)
, integrating by parts multiple times.

Hence we end up getting, B = O
(

N(log U)3
U(δ−1/2)

)
and thus

∑
n≤N

f(n)g(n) = N
∑
r

f̂(r)ĝ(r)φ(r) + O(U logU) + O

(
N(logU)3

U (δ−1/2)

)
.

To optimize the error term we choose, U = N
2

1+2δ (logN)
4

1+2δ and for this choice of U
we get

∑
n≤N

f(n)g(n) = N
∑
r

f̂(r)ĝ(r)φ(r) + O
(
N

2
1+2δ (logN)

5+2δ
1+2δ

)
.

This concludes the proof of Theorem 1.

3.2. Proof of Theorem 2

This proof also starts off similarly and we get
∑
n≤N

f(n)g(n + h) = A + B, where

A =
∑
n≤N

∑
r,s

rs≤U

f̂(r)ĝ(s)cr(n)cs(n + h) and B =
∑
n≤N

∑
r,s

rs>U

f̂(r)ĝ(s)cr(n)cs(n + h).

Likewise, the interchange of the summations and Lemma 1 yield, A = C+D+O(U logU), 
where C = N

∑
r f̂(r)ĝ(r)cr(h), the main term and D = −N

∑
r2>U f̂(r)ĝ(r)cr(h). This 

time we have,

D = O

⎛
⎝N

∑
r>

√
U

cr(h)
r2+2δ

⎞
⎠ .

To apply Theorem 3 we need to know about 
∑

r≤x cr(h). We write,

∑
r≤x

cr(h) =
∑
r≤x

∑
d|r,d|h

μ(r/d)d =
∑
k,d

dμ(k) =
∑
d|h

d
∑

k≤x/d

μ(k).
dk≤x,d|h
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The innermost sum is M(x/d). Now due to Proposition 2 we get,

∑
r≤x

cr(h) = O

⎛
⎝∑

d|h
xe−c

√
log(x/d)

⎞
⎠ = O

(
xe−c

√
log xε(h)

)
,

for some function ε(·) of h which is bounded above by ec
√

log hd(h). Hence using Theo-
rem 3 we obtain,

D = O

⎛
⎜⎝Nε(h)

⎡
⎢⎣
√
Ue−c

√
log

√
U

U1+δ
+

∞∫
√
U

te−c
√

log t

t3+2δ dt

⎤
⎥⎦
⎞
⎟⎠

= O

⎛
⎜⎝Nε(h)

⎡
⎢⎣ 1
U1/2+δ

+
∞∫

√
U

1
t2+2δ dt

⎤
⎥⎦
⎞
⎟⎠ = O

(
Nε(h)
U1/2+δ

)
.

For B, we apply Lemma 2. A similar calculation yields, B = O
(√

N(N+h)(log U)3

U(δ−1/2)

)
. Hence 

for fixed h we can write,

∑
n≤N

f(n)g(n + h) = N
∑
r

f̂(r)ĝ(r)cr(h) + O(U logU) + O

(
N(logU)3

U (δ−1/2)

)

and then similarly as before, choosing U = N
2

1+2δ (logN)
4

1+2δ we conclude,

∑
n≤N

f(n)g(n + h) = N
∑
r

f̂(r)ĝ(r)cr(h) + O
(
N

2
1+2δ (logN)

5+2δ
1+2δ

)
.

3.3. Proof of Corollary 1

Note that using (2) we get,

∑
r

cr(h)
rs+t+2 = 1

ζ(s + t + 2)
σs+t+1(h)
hs+t+1 =

σ−(s+t+1)(h)
ζ(s + t + 2) .

This completes the proof of Corollary 1.

3.4. Proof of Corollary 2

Since μ(r), φs(r), cr(h) are multiplicative functions of r and the Möbius function is 
supported at the square free numbers, we get,

∑ μ2(r)
φs+1(r)φt+1(r)

cr(h) =
∏ (

1 + μ2(p)
φs+1(p)φt+1(p)

cp(h)
)
.

r p prime
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Now, cp(h) =
{
p− 1 if p|h,
−1 if p � h.

Hence we obtain,

1
ζ(s + 1)ζ(t + 1)

∑
r

μ2(r)
φs+1(r)φt+1(r)

cr(h)

=
∏
p|h

[(
1 − 1

ps+1

)(
1 − 1

pt+1

)
+ p− 1

ps+t+2

]

×
∏
p�h

[(
1 − 1

ps+1

)(
1 − 1

ps+1

)
− 1

ps+t+2

]
.

This completes the proof of Corollary 2.
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