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Bang (1886), Zsigmondy (1892) and Birkhoff and Vandiver 
(1904) initiated the study of the largest prime divisors of 
sequences of the form an − bn, denoted P (an − bn), by 
essentially proving that for integers a > b > 0, P (an − bn) ≥
n + 1 for every n > 2. Since then, the problem of finding 
bounds on the largest prime factor of Lehmer sequences, Lucas 
sequences or special cases thereof has been studied by many, 
most notably by Schinzel (1962), and Stewart (1975, 2013). 
In 2002, Murty and Wong proved, conditionally upon the abc
conjecture, that P (an − bn) � n2−ε for any ε > 0. In this 
article, we improve this result for the specific case where b = 1. 
Specifically, we obtain a more precise result, and one that is 
dependent on a condition we believe to be weaker than the 
abc conjecture. Our result actually concerns the largest prime 
factor of the nth cyclotomic polynomial evaluated at a fixed 
integer a, P (Φn(a)), as we let n grow. We additionally prove 
some results related to the prime factorization of Φn(a). We 
also present a connection to Wieferich primes, as well as show 
that the finiteness of a particular subset of Wieferich primes 
is a sufficient condition for the infinitude of non-Wieferich 
primes. Finally, we use the technique used in the proof of the 
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aforementioned results to show an improvement on average of 
estimates due to Erdős for certain sums.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

In 1965, Erdős [2] conjectured that

P (2n − 1)
n

→ ∞ as n → ∞,

where P (m) denotes the largest prime factor of m. This prompted the study of this 
special case of Lucas numbers. In 1975, Stewart showed [13] that given 0 < λ < 1/ log 2,

P (an − bn)
n

→ ∞

as n goes to infinity, provided that n only runs through integers with at most λ log logn
prime factors. By a famous theorem of Hardy and Ramanujan [4], “almost all” numbers 
(in the sense of natural density) satisfy this condition. His approach relies heavily on 
Baker’s theory of linear forms in logarithms.

In 2002, Ram Murty and Wong [9] proved, conditionally to the abc conjecture, that 
for any ε > 0 and a > b > 0 integers, then

P (an − bn) > n2−ε (1.1)

for n large enough, which in particular gives a conditional proof of Erdős’s conjecture. 
As remarked above, Theorem 1.1 gives an improvement on this result in the specific case 
of b = 1, mostly by weakening the hypothesis.

In 2004, Murata and Pomerance [5] proved conditionally to the generalized Riemann 
hypothesis that

P (2n − 1) > n4/3

log log n

for a set of positive integers n of asymptotic density 1.
Finally, in 2013, Stewart [12] proved Erdős’s conjecture unconditionally, specifically 

by showing that for suitable α and β (for which the corresponding Lucas sequence is 
non-degenerate),

P (Φn(α, β)) > n exp
(

logn
)

104 log log n
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for n large enough, where, Φn(α, β) denotes the homogeneous cyclotomic polynomial. 
For α = 2, β = 1, this proves Erdős’s conjecture (see Remark 1 below).

These last two results use heavily the method of linear forms in logarithms and meth-
ods of transcendental number theory.

Here, we give an improvement on the result of Murty and Wong in the specific case 
where b = 1. Specifically, we give an alternative hypothesis which we believe to be weaker 
than the abc conjecture, and obtain a more precise formulation of the lower bound.

Theorem 1.1. Let P (m) denote the largest prime divisor of m. Let a > 1 be an integer, 
and fa(p) be the multiplicative order of a modulo p. Suppose that there exists a constant 
κ for which ordp(afa(p) − 1) ≤ κ for all primes p. Then, there exists a positive constant 
C (depending on a and κ) such that

P (Φn(a)) > Cφ(n)2

for all n.

This is related to the study of P (an − 1) as explained in Remark 1.
This result is in line with a conjecture that Stewart formulated in [14], stating that 

for α and β real numbers, it should be the case that

P (Φn(α, β)) > Cφ(n)2

for any n > 2 and where C is a positive constant. Stewart also states that the conjecture 
is true when Φn(α, β) is square free, and hints at part of the argument we use in the 
proof of Theorem 1.1.

We call the primes p such that ap−1 ≡ 1 mod p2 Wieferich primes (for a). Classically, 
Wieferich primes usually refer to the specific case where a = 2. However, every argument 
goes through for arbitrary a ≥ 2. We expect them to be sparse in all the primes. The 
only Wieferich primes p ≤ 4 × 1017 for a = 2 are 1093 and 3511, and those are the only 
two we know of at the moment. Heuristically, if we think of (ap−1 − 1)/p as a random 
integer, the probability that p divides it is approximately 1/p. As such, according to 
these heuristics, we could expect around

∑
p≤x

1
p
� log log x

Wieferich primes up to x (see [1] for more details). As they are expected to be sparse, it 
is difficult to determine whether there are finitely many or infinitely many of them.

We can then restrict our attention to the set of super-Wieferich primes (for a) which 
are the primes p such that ap−1 ≡ 1 mod p3. Obviously, they form a subset of the 
Wieferich primes. However, the same heuristics suggest that the number of such primes 
is
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∑
p

1
p2 ≤ c′,

that is, there are only finitely many of them. In turn, this suggests that there should be 
an integer k, independent of p, for which ap−1 �≡ 1 mod pk for any prime p. Notice that 
this is an even weaker assumption to make than the finiteness of super-Wieferich primes.

The hypothesis appearing in the statement of Theorem 1.1 is even weaker. Let pγp

be the largest power of p dividing ap−1 − 1, and pαp be the largest power p dividing 
af(p) − 1. Instead of looking at the γp, our hypothesis will concern αp. Since f(p)|p − 1, 
we can write f(p)r = p − 1 so that

ap−1 = af(p)r ≡ 1r ≡ 1 mod pαp

and so

αp ≤ γp (1.2)

for all p. We will be assuming in Theorem 1.1 that αp is bounded. Again, this would 
follow from the finiteness of super-Wieferich primes.

Remark 1. Recall that ∏
d|n

Φd(a) = an − 1, (1.3)

and therefore, Φn(a) divides an−1. As such, the above Theorem 1.1 implies that P (an−
1) > Cφ(n)2 for n large enough granted that αp is bounded. Additionally, recall that we 
have the bound φ(n) 	 n

log log n due to Ramanujan. As such, we get as a corollary that 
under the same hypothesis on αp,

P (an − 1) > C ′ n2

(log logn)2 .

For any integer n > 4, n �= 6, 12, we will see from Lemma 2.3 that there is at most 
one prime dividing both n and Φn(a), which we will call Pn. We define δn as the largest 
power of Pn dividing Φn(a), i.e.

pδp ||Φn(a).

Actually, in Lemma 2.3 below, we will see that δn is always 0 or 1.
We will be proving the following theorem about δn.

Theorem 1.2. For some θ < 1, ∑
δn logPn = O(xθ).
n≤x
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This also gives the following obvious corollary.

Corollary 1.3. For some θ < 1,

∑
n≤x

δn = O(xθ).

In particular, this shows that δn is zero “most of the time”.
Using our analysis of Wieferich primes used to prove Theorem 1.1, we are also able 

to prove the following result.

Theorem 1.4. Suppose that there are only finitely many super-Wieferich primes. Then, 
there are infinitely many non-Wieferich primes.

Finally, applying the technique developed in Section 3 to different arithmetic func-
tions, we are able to prove the following result

Theorem 1.5.

∑
n≤x

∑
d|an−1

1
d

= Rx + o(x)

where R is the “Romanoff” constant

R :=
∑
d≥1

(d,a)=1

1
d fa(d)

.

In particular, this gives an improvement on average to a result of Erdős [3] (see (5.1)
below).

2. Proof of Theorem 1.1

Let fa(p) be the order of a in the group (Z/pZ)×. For the sake of readability, we will 
write f(p) instead of fa(p) when a is clear from context. We start by stating a few facts 
about the cyclotomic polynomials Φn(x).

Proposition 2.1. For any prime p not dividing m or a,

fa(p) = m if and only if p|Φm(a).

Proof. This is exercise 1.5.25 in [6]. �
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Proposition 2.2.

Φn(a) ≥ 1
2a

φ(n).

See [15] for the proof.
We also need the following description of the primes dividing Φn(a), which is [14, 

Lemma 6].

Lemma 2.3. If n > 4 and n �= 6, 12, then P (n/(3, n)) divides Φn(a) to at most the first 
power. All other primes factors of Φn(a) are congruent to 1 (mod n).

Finally, we will need to use the Brun-Titchmarsh Theorem, which we recall here.

Theorem 2.4 (Brun-Titchmarsh). Let θ < 1 and d < xθ. For x sufficiently large,

∑
p≤x

p≡1 mod d

log p ≤ 2x log x
φ(d) log(x/d)

where φ(d) is Euler’s totient function.

Recall that we define the integer αp as ordp

(
af(p) − 1

)
, i.e.

pαp ||af(p) − 1.

Clearly, αp ≥ 1 for every prime p.

Proposition 2.5. For every prime p coprime to a, ordp

(
Φf(p)(a)

)
= αp.

Proof. Let p be any prime coprime to a. We can factor af(p) − 1 above to get that

pαp ||
∏

d|f(p)

Φd(a).

We claim that actually, p cannot divide any factor Φd(a) other than Φf(p)(a). Indeed, 
suppose that p divides Φd(a) for some d strictly dividing f(p). Clearly, p does not divide 
d as d divides f(p) which divides p − 1. Therefore, by Proposition 2.1, f(p) = d which is 
a contradiction. We conclude that

pαp ||Φf(p)(a). �
Note that we essentially have the prime factorization for Φn(a). If we take any n, 

then every prime factor p of Φn(a) other than those dividing n are such that f(p) = n

by Proposition 2.1. Therefore, by the above, for those primes, pαp ||Φn(a). The only 
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prime factors of Φn(a) for which we don’t know the order are those also dividing n. By 
Lemma 2.3, there is at most one such prime, namely Pn = P (n/(3, n)) (when n > 4 and 
not 6 or 12). Additionally, Lemma 2.3 tells us that

P δn
n ||Φn(a)

where δn is either 0 or 1. We just proved the following.

Proposition 2.6. For n > 4, n �= 6, 12,

Φn(a) = P δn
n

∏
p|Φn(a)
p�=Pn

pαp .

With this description in hand, let us now prove Theorem 1.1.

Proof of Theorem 1.1. We will argue by contradiction. Suppose that P (Φn(a)) ≤
Cφ(n)2. Then,

Φn(a) ≤ P δn
n

∏
p≤Cφ(n)2

p�=Pn

pαp

and by the second part of Lemma 2.3,

≤ P δn
n

∏
p≤Cφ(n)2
p≡1 mod n

pαp .

By taking the logarithm,

log Φn(a) ≤ logP δn
n +

∑
p≤Cφ(n)2
p≡1 mod n

αp log p.

Since we assume that αp ≤ κ for all p, we have

≤ logP δn
n + κ

∑
p≤Cφ(n)2
p≡1 mod n

log p

and by Theorem 2.4

� δn logPn + κ

(
2Cφ(n)2

φ(n)

)
(2.1)

for n large enough.
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On the other hand, by Proposition 2.2 we have

Φn(a) ≥ 1
2a

φ(n)

and so

log Φn(a) ≥ φ(n) log a− log 2. (2.2)

Putting (2.1) and (2.2) together, we get that

φ(n) log a− log 2 � 2κCφ(n) + δn logPn.

Note that logPn ≤ log n. Therefore, if C is sufficiently small, we obtain a contradiction 
for n large enough. �

As we pointed out, this result is close to (1.1) which Murty and Wong obtained 
assuming the abc conjecture. We remark here that assuming a weaker hypothesis, to 
which we will refer as the quasi-abc, we easily get a lower bound on P (an − b) for any 
a, b ∈ Z with a ≥ 2.

Conjecture 2.7 (The quasi-abc conjecture). There exists a constant k such that for any 
mutually coprime integers a, b and c such that a + b = c,

max (|a| , |b| , |c|) ≤ (rad(abc))k .

Proposition 2.8. Let a, b be integers, a ≥ 2. Assuming the quasi-abc conjecture, there 
exists an effectively computable constant C depending on a and b such that

P (an − b) ≥ Cn.

Proof. We write an − b + b = an and apply the quasi-abc conjecture. There exists a 
constant k such that

an ≤

⎛
⎝ab

∏
p|an−b

p

⎞
⎠

k

and so

n log a ≤ k
∑

p≤P (an−b)

log p + C ′.

We know that (see [6, 3.1.2]) ∑
log p � x,
p≤x
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by Chebycheff. Therefore, we conclude that

P (an − b) ≥ Cn

as required. �
3. Proof of Theorem 1.2

We first need the following simple formula for the p-adic valuation of certain binomial 
coefficients.

Lemma 3.1. For any prime p and any integer 1 ≤ k ≤ pn,

ordp

((
pn

k

))
= n− ordp(k).

Proof. For k = pn, this is clear. For any m in the range 1 ≤ m < pn, by the ultrametric 
inequality, we have that ordp(pn −m) = ordp(m). By definition,

k!
(
pn

k

)
= pn(pn − 1) · · · (pn − (k − 1)),

and by taking the valuation on both sides

ordp(k!) + ordp

((
pn

k

))
= n + ordp((k − 1)!),

from which the result follows directly. �
Next, we give a description of the multiplicative order of the element a modulo powers 

of the prime p. Here, we extend the definition of fa(p) to powers of p in the obvious way, 
by defining f(pn) to be the multiplicative order of a in the group (Z/pnZ)×.

Proposition 3.2. Let p be any prime, a any non-zero integer and define αp as ordp(af(p)−
1). Then, for any r ≥ 0,

f
(
pαp+r

)
= prf(p).

Proof. In this proof we fix p and write α = αp for simplicity of notation. To begin, notice 
the following three facts that are true for any r.

(1) f(pα+r) divides prf(pα).
Indeed,

ap
rf(pα) = (1 + mpα)p

r
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for some integer m, and so by the binomial theorem

ap
rf(pα) =

pr∑
k=0

(
pr

k

)
mkpkα.

We note in passing that for any integer k > 0,

k ≥ pordp(k) ≥ 2ordp(k) ≥ ordp(k) + 1.

For k > 0, the kth term in the sum is given by

Tk :=
(
pr

k

)
mkpkα

and so

ordp(Tk) ≥ r − ordp(k) + kα,

and by Lemma 3.1,

≥ r − (k − 1) + kα

≥ r + α + (α− 1)(k − 1)

≥ r + α,

where the last inequality follows from α ≥ 1. Therefore, we conclude that

ap
rf(pα) ≡ 1 mod pα+r,

meaning that f(pα+r) divides prf(pα).
(2) For any m, f(pm) divides f(pm+1).

This is because

af(pm+1) ≡ 1 mod pm+1

and so

af(pm+1) ≡ 1 mod pm.

Note that this fact actually implies the following
(3) f(p) = f(p2) = . . . = f(pα).

Indeed, for any 1 ≤ m ≤ α, f(p)|f(pm) by the above. On the other hand, af(p)−1 ≡
0 mod pm, meaning that f(pm)|f(p).
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Now, to show the statement of Proposition 3.2, we proceed by induction on r. From (3) 
above, we can instead show that f (pαp+r) = prf(pα).

When r = 1, we have from (1) above that f(pα+1)|pf(pα). However, f(pα+1) must be 
a multiple of p, as otherwise

f(pα+1)|f(pα) = f(p)

meaning that

af(p) − 1 ≡ 0 mod pα+1

which contradicts the definition of α.
On the other hand, by (2) above, f(pα+1) must be a multiple of f(pα). We conclude 

that f(pα+1) = pf(pα) which is the base case.
Using induction, we show that f(pα+r) = prf(pα).
As before, using (1) we get

f(pα+r)|prf(pα).

On the other hand, by the induction hypothesis and (2),

pr−1f(pα) = f(pα+r−1)|f(pα+r).

We get from the above that f(pα+r) = pqf(p) where q is either r or r − 1. We are 
only left to show that q cannot be r− 1. Suppose it is. Then, on one hand, by definition,

af(pα+r) ≡ 1 mod pα+r.

On the other hand, write af(p) = 1 + kpα. Then,

af(pα+r) = af(p)pr−1

= (1 + kpα)p
r−1

≡ 1 + kpα+r−1 mod pα+r.

We can conclude that k must be divisible by p, meaning that af(p) = 1 + k′pα+1, which 
is a contradiction to the definition of α. �

Now consider the Dirichlet series

F (s) =
∞∑

n=1

log (an − 1)
ns

.

We need the following lemma about F (s).
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Lemma 3.3. We can write the Dirichlet series F (s) as

F (s) = ζ(s)
(∑

p

αp log p
f(p)s + D(s)

)

where D(s) is a Dirichlet series absolutely convergent for �(s) > θ for some θ < 1.

To prove this lemma, we will need the following two results which can be found in [7].

Theorem 3.4. For any ε > 0,

∑
m≥1

1
mfa(m)ε ≤ eγ log log a + 2eγε−1 + C

for some constant C.

In the above theorem, the definition of fa(p) is extended to any integer m as

fa(m) = inf {r ∈ Z : r ≥ 1 and ar ≡ 1 mod m} .

Theorem 3.5. For any ε > 0,

∑
p

log p
pfa(p)ε

≤ log log a + 2ε−1 + C

for some constant C.

We use this to prove Lemma 3.3.

Proof. First, notice that we can write logm =
∑

d|m Λ(d) where Λ is the von Mangoldt 
function. Therefore, we have the alternative expression for F (s):

F (s) =
∞∑

n=1

1
ns

∑
d|an−1

Λ(d)

=
∞∑
d=1

Λ(d)
∑

n : d|an−1

1
ns

.

We know that d|an − 1 if and only if an ≡ 1 mod d if and only if f(d)|n. Thus,

F (s) =
∞∑
d=1

Λ(d)
∑

n : f(d)|n

1
ns
(d,a)=1
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=
∞∑
d=1

(d,a)=1

Λ(d)
∞∑

m=1

1
(mf(d))s

=
∞∑
d=1

(d,a)=1

Λ(d)
f(d)s ζ(s). (3.1)

Now we show that

∞∑
d=1

(d,a)=1

Λ(d)
f(d)s =

∑
p

αp log p
f(p)s + D(s)

with D(s) as in the statement of the lemma.
We first notice that the summand on the left-hand side is non-zero only when d is a 

prime power. As such, we have

∞∑
d=1

(d,a)=1

Λ(d)
f(d)s =

∑
p prime
(p,a)=1

∞∑
r=1

Λ(pr)
f(pr)s .

Note that for a fixed prime p, the summand for r between 1 and αp will be the same, 
namely log p

f(p)s . For r = αp + q, by Proposition 3.2, it will be log p
pqsf(p)s . We get

∞∑
d=1

(d,a)=1

Λ(d)
f(d)s =

∑
p prime
(p,a)=1

(
αp log p
f(p)s +

∞∑
q=1

log p
pqsf(p)s

)

=
∑

p prime
(p,a)=1

αp log p
f(p)s +

∑
p prime
(p,a)=1

log p
f(p)s

∞∑
q=1

1
pqs

=
∑

p prime
(p,a)=1

αp log p
f(p)s +

∑
p prime
(p,a)=1

log p
f(p)s

(
1

1 − 1
ps

− 1
)

=
∑

p prime
(p,a)=1

αp log p
f(p)s +

∑
p prime
(p,a)=1

log p
f(p)s(ps − 1) .

Consider the series

D(s) =
∑

p:(p,a)=1

log p
f(p)s(ps − 1) .

Trying to evaluate the series at s = 1, we obtain



14 M.R. Murty, F. Séguin / Journal of Number Theory 201 (2019) 1–22
D(1) =
∑

p:(p,a)=1

log p
(p− 1)f(p)

≤ C ′
∑
p

log p
pf(p)

≤ C ′′

for some constants C ′ and C ′′, where the last inequality is obtained from Theorem 3.5. 
Therefore D(s) is an absolutely convergent series for s = 1. However, Landau’s Theorem 
(see [6, 2.5.14]) tells us that a Dirichlet series with non-negative terms must have a 
singularity at s = σ0, where σ0 is its abscissa of convergence. Since our series D(s)
converges at s = 1, we conclude that 1 cannot be its abscissa of convergence, and so that 
D(s) must converge strictly to the left of 1.

Therefore, we have

F (s) = ζ(s)
(∑

p

αp log p
f(p)s + D(s)

)

with D(s) as required. �
We use this lemma to prove Theorem 1.2.

Proof. From Lemma 3.3,

1
ζ(s)

∞∑
n=1

log (an − 1)
ns

=
∑
p

αp log p
f(p)s + D(s).

On one hand,

1
ζ(s)

∞∑
n=1

log (an − 1)
ns

=
( ∞∑

n=1

μ(n)
ns

)( ∞∑
n=1

log (an − 1)
ns

)

=
∞∑

n=1

1
ns

⎛
⎝∑

d|n
μ(d) log(an/d − 1)

⎞
⎠

=
∞∑

n=1

1
ns

⎛
⎝log

∏
d|n

(an/d − 1)μ(d)

⎞
⎠

=
∞∑

n=1

log Φn(a)
ns

.

On the other hand, we can write

∑
p

αp log p
f(p)s =

∞∑
n=1

an
ns

as a Dirichlet series where
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an =
∑

p:f(p)=n

αp log p.

However, by Proposition 2.1, this is

=
∑

p|Φn(a)
p�=Pn

αp log p

= log
∏

p|Φn(a)

pαp − δn logPn

= log Φn(a) − δn logPn.

Putting the two above statements together, we obtain the following expression for 
D(s).

D(s) =
∞∑

n=1

δn logPn

ns
.

Call bn = δn logPn and notice that bn are all non-negative. Recall that D(s) converges 
absolutely strictly to the left of 1. Therefore, for some θ < 1, we have

∑
n≤x

bn ≤
∑
n≤x

bn

(x
n

)θ

≤ xθ
∞∑

n=1

bn
nθ

= Cxθ

and we conclude that

∑
n≤x

δn logPn = O
(
xθ

)
. �

Corollary 1.3 follows since logPn ≥ log 2.

4. Connection to Wieferich primes

Here, we take a closer look at what it means to be a Wieferich prime in light of 
Proposition 2.5, and in doing so we prove the following result.

Theorem 4.1. Suppose that there are only finitely many super-Wieferich primes. Then, 
there are infinitely many non-Wieferich primes.

We start by proving the following lemma about the characterization of Wieferich 
primes.
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Lemma 4.2. The prime p is a Wieferich prime (for a) if and only if

p2 | Φn(a)

for some n.
Moreover, if p2 divides Φn(a) for some n, then n = f(p).
Finally, p does not divide Φn(a) for n other than f(p) and multiples of p.

Proof. We start by proving the last two statements. Suppose that p divides Φn(a) for 
some n. Then, by Proposition 2.1, either n = f(p) or p divides n.

Now suppose that p2 divides Φn(a) for some n. Since the only prime dividing both n
and Φn(a) does so with order at most one, we know that p does not divide n. Therefore, 
by Proposition 2.1, n = f(p).

For the first part of the lemma, suppose first that p2 divides Φn(a) for some n. By the 
above, n = f(p). By (1.3), p2 also divides af(p)−1. Finally, by (1.2), p2 divides ap−1−1.

To show the other implication, suppose that p is a Wieferich prime. Then, p2 divides 
ap−1 − 1 and by (1.3),

p2 |
∏

d|p−1

Φd(a).

Following exactly the proof of Proposition 2.5, we obtain that p2 divides Φf(p)(a). �
Remark 2. Call a prime p a k-super-Wieferich prime if ap−1 ≡ 1 mod pk. The same proof 
can be used to show the following more general lemma.

Lemma 4.3. The prime p is a k-super-Wieferich prime (k ≥ 2) if and only if

pk | Φn(a)

for some n.
Also, if pk divides Φn(a) for some n, then n = f(p).
Moreover, p does not divide Φn(a) for n other than f(p) and multiples of p.

We now prove Theorem 4.1.

Proof. We start by assuming that there are finitely many super-Wieferich primes. Sup-
pose that p is a super-Wieferich prime. Clearly p is also a Wieferich prime. From 
Lemma 4.2, p only divides Φn(a) for n = f(p) or when n is a multiple of p. Consider the 
set

W :=
{
q prime : q is not a super-Wieferich prime, and

f(p) �= q for any super-Wieferich prime p

}
.
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Then, for every q ∈ W, Φq(a) is not divisible by any super-Wieferich prime. Also, since 
we assume that there are only finitely many super-Wieferich primes, we only remove a 
finite number of primes from the set of all primes, and so the set W is infinite.

Let q be any prime number. Then,

q|Φq(a) ⇒ q|aq − 1

⇒ aq − 1 ≡ 0 mod q

⇒ a− 1 ≡ 0 mod q

since aq ≡ a mod q by Fermat’s little Theorem. Therefore, the only primes q for which 
q can divide Φq(a) are the divisors of a − 1.

Now consider the set

P = W ∩ {p prime : p does not divide a− 1} .

For this set, we also have that q does not divide Φq(a) for all q ∈ P. Since we again only 
remove finitely many primes from W, we still have that P is infinite.

We prove the statement of the theorem by the method of contradiction. In particular, 
we suppose that there are only finitely many non-Wieferich primes. Suppose that there 
are N of them, and call them p1, . . . , pN . Let q ∈ P, and consider Φq(a). We ask which 
primes can divide Φq(a), and with what power.

Of course, any non-Wieferich primes can potentially divide Φq(a), but they must do so 
to at most the first power, as otherwise they would be Wieferich primes by Lemma 4.2. 
Also, as we remarked above, since q ∈ P, no super-Wieferich prime can divide Φq(a). As 
for the Wieferich primes, they can certainly divide Φq(a), but if they do, they must do 
so with order exactly 2. Indeed, if p is such a Wieferich prime dividing Φq(a), then p3

dividing Φq(a) would imply that p is a super-Wieferich prime. Also, if p were to divide 
Φq(a) with order 1, by Lemma 4.2, q would be a multiple of p, that is p = q. However, 
since q ∈ P, this cannot happen.

We therefore have the general form of Φq(a) as

Φq(a) = pε11 · · · pεNN W 2

where each εi is either 0 or 1, and W is a product of distinct Wieferich primes. Since q
is prime, we can write

Φq(a) = aq − 1
a− 1

and so

aq − 1 = (a− 1)pε11 · · · pεNN W 2.



18 M.R. Murty, F. Séguin / Journal of Number Theory 201 (2019) 1–22
Writing q as 3j + δ for some integer j and δ ∈ {0, 1, 2}, we get

aδ
(
aj
)3 − 1 = (a− 1)pε11 · · · pεNN W 2.

The curves

aδX3 − 1 = (a− 1)pε11 · · · pεNN Y 2

are elliptic curves. Moreover, there are 3 × 2N of them. By Siegel’s Theorem [10, IX.3], 
there is a finite number of integral points (X, Y ) on each of them. However, the above 
construction gives a distinct integral point on one of the curves for every q ∈ P. This 
gives a contradiction, and we conclude that there are infinitely many non-Wieferich 
primes. �
Remark 3. It is not known unconditionally at the moment whether there are infinitely 
many non-Wieferich primes. From the heuristics presented in Section 1, along with nu-
merical computations, we suspect that this is the case. In particular, we believe it is 
possible to get a quantitative lower bound on the number of non-Wieferich primes using 
this method. Following the argument presented in [8, Sec. 9] mutatis mutandis, it is 
possible to get a lower bound of log log x non-Wieferich primes up to x. This should be 
compared with [11], where Silverman shows that the abc-conjecture implies that there 
are at least 	 log x non-Wieferich primes up to x. The bound we obtain is more modest 
but depends on an assumption much weaker than the abc-conjecture.

5. Generalizations

In [3], Erdős proved estimates of the form

∑
d|an−1

1
d
≤ C(a) log log n. (5.1)

In Section 3, we were considering a very similar sum, namely
∑

d|an−1

Λ(d).

It would be interesting to see the extent with which we can generalize the above discussion 
and if we can obtain a result similar to that of Erdős. We exploited the fact that we 
can write logn as a sum of Λ(d) where d ranges over divisors of n. This is also true for 
σ(n)/n because

σ(n)
n

=
∑ 1

d
.

d|n
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In general, let G(n) be an arithmetic function, and F (n) be defined as

F (n) =
∑
d|n

G(d).

Then, consider the Dirichlet series given by

∞∑
n=1

F (an − 1)
ns

=
∞∑

n=1

1
ns

∑
d|an−1

G(d).

Under suitable convergence conditions, we can interchange the order of summation to 
get

=
∞∑
d=1

(d,a)=1

G(d)
∑

n:d|an−1

1
ns

.

Notice once again that the integers n for which d divides an − 1 are specifically the 
multiples of fa(d). We get

=
∞∑
d=1

(d,a)=1

G(d)
∞∑
r=1

1
(rf(d))s

= ζ(s)
∞∑
d=1

(d,a)=1

G(d)
f(d)s .

In Section 3, we used Theorem 3.5 to show the convergence of the series on the right. 
Suppose that the Dirichlet series

∞∑
d=1

(d,a)=1

G(d)
f(d)s

converges absolutely for �(s) ≥ 1 and the function F (an − 1) ≥ 0 for every n. Then, 
we could apply the Tauberian Theorem, which we recall here. See [6, Thm 3.3.1] for the 
proof.

Theorem 5.1. Let H(s) =
∑∞

n=1 bn/n
s be a Dirichlet series with non-negative coefficients 

and absolutely convergent for �(s) > 1. Suppose that H(s) can be extended to a mero-
morphic function in the region �(s) ≥ 1 having no poles except for a simple pole at s = 1
with residue r ≥ 0. Then,

∑
bn = Rx + o(x)
n≤x
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as x → ∞.

We therefore have
∑
n≤x

F (an − 1) =
∑
n≤x

∑
d|an−1

G(d) = Cx + o(x)

where

C =
∞∑
d=1

G(d)
f(d) .

The above discussion essentially proves the following theorem:

Theorem 5.2. Let G(n) be an arithmetic function, and F (n) be defined as

F (n) =
∑
d|n

G(d).

Suppose that F (an − 1) ≥ 0 for every n,

∞∑
n=1

F (an − 1)
ns

converges for �(s) > 1, and

∞∑
d=1

(d,a)=1

G(d)
f(d)s

converges absolutely for �(s) ≥ 1, then
∑
n≤x

∑
d|an−1

G(d) = Cx + o(x)

where

C =
∞∑
d=1

G(d)
f(d) .

Applying this to F (n) = σ(n)/n and G(d) = 1/d, we get that

∞∑
n=1

σ(an − 1)
(an − 1)ns

= ζ(s)
∑
d=1

1
d f(d)s .
(d,a)=1
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From Theorem 3.4, we know that the series

∑
d=1

(d,a)=1

1
d f(d)s

converges absolutely everywhere to the right of 0 (that is for every s with �(s) > 0). 
Therefore, Theorem 5.2 above can be applied to obtain the following result.

Corollary 5.3.

∑
n≤x

∑
d|an−1

1
d

= Rx + o(x)

where R is the “Romanoff” constant

R :=
∑
d≥1

(d,a)=1

1
d fa(d)

.

It is interesting to see that Corollary 5.3 actually gives an improvement of (5.1) on 
average.

6. Concluding remarks

As noted earlier, the hypothesis of Theorem 1.1 is satisfied if there are only finitely 
many primes p such that

ap−1 ≡ 1 (mod p3).

This is substantially weaker than the abc conjecture and may be amenable to resolution. 
We can of course also replace p3 by pd for any fixed d ≥ 3.
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