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or the original condition of Artin’s conjecture. We give an 
unconditional lower bound for the number of such primes.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In this article we study the two-variable analogue of Artin’s conjecture on primitive 
roots. Artin’s original conjecture suggested that for any integer a other than -1 and per-
fect squares, there are infinitely many primes p for which a generates the multiplicative 
group (Z/pZ)×. Specifically, Artin conjectured that the set

Pa(X) =
{
p ≤ X prime : 〈a mod p〉 = (Z/pZ)×

}

has positive density in the set of all primes. We can trace the origin of this problem all the 
way back to Gauss. It was apparently popular at the time to study decimal expansions of 
certain rational numbers. In his Disquisitiones Arithmeticae, Gauss describes the period 
of the decimal expansion of 1

p in terms of the order of 10 mod p. Some other such specific 
cases of this were considered before 1927, at which time Artin formulated the above 
conjecture.

As of now, the conjecture is still open. There is actually no a for which we know Pa(X)
goes to infinity as X goes to infinity. However, there have been major partial results since, 
the conditional proof by Hooley [10] under the assumption of the generalized Riemann 
Hypothesis being among the most important, as are the works of Gupta and Murty [7]
and Heath-Brown [8]. (See also [14] and [17].) For example, we know that given three 
mutually coprime numbers a, b, c, there are infinitely many primes p for which at least 
one of a, b, c is a primitive root mod p.

Many variations on Artin’s original conjecture have since been studied. Moree and 
Stevenhagen [15] considered a two-variable variant where the set of interest is

S =
{
p prime : b mod p ∈ 〈a mod p〉 ⊆ (Z/pZ)×

}

for given a and b. They adapted Hooley’s argument, as well as using some work by 
Stephens ([22]), to show a positive density result for such primes, conditionally under 
the generalized Riemann Hypothesis. In this article, we prove an unconditional lower 
bound on the number of primes in this set. Specifically, we prove the following result.

Theorem 1.1. Let a, b ∈ Z∗ with |a| �= 1. Then,

∣∣{p ≤ x prime : b mod p ∈ 〈a mod p〉 ⊂ F∗
p

}∣∣	 log x.
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We do so by proving in section 2 a more general result about binary recurrence 
sequences.

Theorem 1.2. Let {un}∞n=1 be a non-degenerate binary recurrence sequence with the n-th 
term given by (2.1). Let ε be a positive real number. There exists an effectively computable 
positive number C, depending at most on ε, a, b, α and β, such that if N exceeds C, then

ω

⎛
⎜⎝ N∏

n=1
un �=0

un

⎞
⎟⎠ >

(
1 − 1/

√
2 − ε

)
N.

Here, ω(n) denotes the number of distinct prime factors of n.

We also prove a more precise result for the specific case of Lucas sequences.

Theorem 1.3. Let {tn}∞n=1 be a non-degenerate Lucas sequence. Then,

ω

(
N∏

n=1
tn

)
≥ N − 9.

Equality holds when tn satisfies

tn = tn−1 − 2tn−2 for n = 2, 3, ...

and N = 30, 31, 32, 33 or 34.

We finally conjecture the following stronger statement.

Conjecture 1.4. There exist positive numbers C1 and C2, which depend at most on a, b, α
and β, such that if {un}∞n=1 is a non-degenerate binary recurrence sequence, then

C1N logN ≤ ω

⎛
⎜⎝ N∏

n=1
un �=0

un

⎞
⎟⎠ ≤ C2N logN.

It can be shown that the lower bound obtained from this conjecture could be used to 
improve Theorem 1.1 by replacing log x with log x log log x in the lower bound.

We shall also give several proofs, which we believe to be of independent interest, for 
the following theorem, which is a weaker version of Theorem 1.1.

Theorem 1.5. Let a, b ∈ Z∗ with |a| �= 1. Then,
∣∣{p ≤ x prime : b mod p ∈ 〈a mod p〉 ⊂ F∗

p

}∣∣	 log log x.
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The last theorem we prove is a disjunction theorem.

Theorem 1.6. Let a, b ∈ Z∗ with (a, b) = 1. Then,

∣∣{p ≤ x prime : b mod p ∈ 〈a mod p〉 or 〈b mod p〉 = F∗
p

}∣∣	 x

(log x)2
.

This theorem suggests that it might be possible to prove positive density of this set 
unconditionally. It is worth noting that unlike the original Artin conjecture, the set S is 
known to be infinite. Moree and Stevenhagen included in [15] a modification of a simple 
argument by Pólya (found in [18]) that proves the infinitude unconditionally. However, 
their argument does not seem to provide any explicit function going to infinity as a lower 
bound.

We will start by proving Theorem 1.2 in section 4 after a few preliminaries in sections 2
and 3. Theorem 1.3 will be proven in section 5. Then, we will use Theorem 1.2 to prove 
Theorem 1.1 in section 6. Our three proofs for Theorem 1.5 are in sections 7, 8 and 9
respectively. Finally, we will prove Theorem 1.6 in section 11.

2. Prime divisors of terms of recurrence sequences

For any non-zero integer n let ω(n) denote the number of distinct prime factors of n. 
Let r and s be integers with r2 + 4s �= 0. Let u0 and u1 be integers and put

un = run−1 + sun−2 for n ≥ 2.

Then,

un = aαn + bβn, (2.1)

where α and β are the roots of the polynomial

x2 − rx− s

and

a = u0β − u1

β − α
, b = u1 − u0α

β − α
.

The sequence {un}∞n=0 is called a binary recurrence sequence. It is said to be non-
degenerate if abαβ �= 0 and α/β is not a root of unity.

Lemma 2.1. For non-degenerate binary recurrence sequences, if |α| ≥ |β|, then

|α| ≥
√

2.
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Proof. Actually, we will prove that |α| ≥ (1 +
√

5)/2. This is stronger than the stated 
lemma, but the bound of 

√
2 is sufficient for our application, and will be used for sim-

plicity.
If α and β are integers this is obvious. Also, since r = α + β, it cannot be the case 

that only one of α and β is an integer.
Suppose that α and β are not integers. If Q(α) is an imaginary quadratic field, αβ is 

a root of unity, which again contradicts the hypothesis.
We therefore assume that Q(α) is totally real. Then, α = a + b

√
D and β = a − b

√
D

for some D ≥ 2 and a, b in Z, or in Z 
[1

2
]

if D ≡ 1 mod 4. Note that b �= 0 since we 
assumed that α, β were not integers. Also, a �= 0 as otherwise α/β = −1 which is a root 
of unity.

Since |α| ≥ |β|, a and b must have the same sign, and so |α| = |a| + |b|
√
D.

If D �≡ 1 mod 4, then |a| + |b|
√
D ≥ 1 +

√
2 ≥ 1+

√
5

2 .
If D ≡ 1 mod 4, then D ≥ 5 and so |a| + |b|

√
D ≥ 1+

√
5

2 . �
In 1921 Polya [18] showed that

ω

⎛
⎜⎝ N∏

n=1
un �=0

un

⎞
⎟⎠→ ∞ as N → ∞; (2.2)

Gelfond [6] and Mahler [13] in 1934 and Ward [27] in 1954 gave alternative proofs of 
(2.2). In 1987 Shparlinski [21] showed that

ω

⎛
⎜⎝ N∏

n=1
un �=0

un

⎞
⎟⎠	 N/ logN, (2.3)

improving on an earlier result of his [20], where he had established (2.3) with its righthand 
side replaced by 

√
N . It should be noted that Shparlinski’s result (2.3) applies not just 

to binary recurrence sequences but to non-degenerate sequences of order k with k ≥ 2.
Theorem 1.2 is an improvement upon (2.3) for binary recurrence sequences. It is the 

key result we need to establish Theorem 1.1.

A Lucas sequence is a non-degenerate binary recurrence sequence {tn}∞n=0 with t0 = 0
and t1 = 1. Thus, a = 1

α−β and b = −1
α−β , so that from (2.1), we have

tn = αn − βn

α− β
(2.4)

for n ≥ 0. The divisibility properties of Lucas sequences have been extensively studied, 
see for example [12,4,25], and for these binary recurrence sequences, Theorem 1.3 gives 
an improvement on Theorem 1.2.
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It is not difficult to show that if {un}∞n=1 is a non-degenerate binary recurrence se-
quence then

ω

⎛
⎜⎝ N∏

n=1
un �=0

un

⎞
⎟⎠�a,b N

2/ logN. (2.5)

To see this suppose that un is given by (2.1) with |α| ≥ |β|. Then,

|un| ≤ (|a| + |b|)|α|n

and therefore, ∣∣∣∣∣∣∣
N∏

n=1
un �=0

un

∣∣∣∣∣∣∣ ≤ (|a| + |b|)N |α|N(N+1)/2. (2.6)

Let 2 = p1, p2, ... be the sequence of prime numbers. By the Prime Number Theorem

t∏
i=1

pi = e(1+o(1))t log t. (2.7)

Observe that if

t∏
i=1

pi ≥

∣∣∣∣∣∣∣
N∏

n=1
un �=0

un

∣∣∣∣∣∣∣ ,

then

ω

⎛
⎜⎝ N∏

n=1
un �=0

un

⎞
⎟⎠ ≤ t.

Thus (2.5) follows from (2.6), (2.7), and Lemma 2.1.
We hypothesize that those bounds could be improved according to Conjecture 1.4.

3. Preliminaries for the proof of Theorem 1.2

The first two results we require concern prime divisors of Lucas numbers.

Proposition 3.1. Let {tn}∞n=0 be a Lucas sequence, as in (2.4), with |α| ≥ |β|. If p is a 
prime number not dividing αβ, then p divides tn for some positive integer n and if � is 
the smallest such n, then
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log p− log 2
2

log |α| ≤ � ≤ p + 1.

Proof. Apart for the lower bound, this is Lemma 7 of [23]. The lower bound follows from 
p ≤ |t�| ≤

√
2 |α|�.

Indeed, note that |α− β| =
∣∣√r2 + 4s

∣∣ and therefore either |α− β| ≥
√

2, in which 
case the triangle inequality yields the desired result, or |α− β| = 1. In this case, we have 
that

|tn| = |α|n
∣∣∣∣ 2
r + 1

∣∣∣∣
n

≤ αn ≤
√

2αn

since the cases r = 0, −1, −2 are either degenerate or can’t yield r2 − 4s = 1. �
For any rational number x let |x|p denote the p-adic value of x, normalized so that 

|p|p = p−1.

Proposition 3.2. Let {tn}∞n=0 be a Lucas sequence, as in (2.4), with α+β and αβ coprime. 
Let p be a prime number which does not divide αβ, let � be the smallest positive integer 
for which p divides t� and let n be a positive integer. If � does not divide n, then

|tn|p = 1.

If n = �k for some positive integer k, we have, for p > 2,

|tn|p = |t�|p |k|p ,

while for p = 2,

|tn|2 =
{
|t�|2 for k odd
2 |t2�|2 |k|2 for k even.

Proof. This is Lemma 8 of [23] and it is based on work of Carmichael [4], see also [25]. �
In addition to the results about Lucas sequences, we need an estimate from below for 

the size of the n-th term of a non-degenerate binary recurrence sequence.

Proposition 3.3. Let un be the n-th term of a non-degenerate binary recurrence sequence 
as in (2.1). There exist positive numbers c0 and c1, which are effectively computable in 
terms of a and b, such that for all n > c1,

|un| ≥ |α|n−c0 log n
.

Proof. This is Lemma 6 in [23] and is a consequence of Baker’s theory of linear forms in 
logarithms. �
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4. The proof of Theorem 1.2

It suffices to prove the result under the assumption that α+β and αβ are coprime or, 
equivalently, that r and s are coprime. We shall also suppose, without loss of generality, 
that

|α| ≥ |β| .

In the following discussion, every ci will denote a positive number effectively computable 
in terms of a, b, α and β. For any prime p let [p] denote the principal ideal generated by 
p in the ring of algebraic integers of Q(α). Put

a′ = (α− β)a, b′ = (α− β)b.

Let p be a prime which divides αβ and let p be a prime ideal which divides [p]. Then, 
since α + β and αβ are coprime integers, p divides either [α] or [β]. Thus, by (2.1) for 
m > c1 we have

|um|p ≥ |a′b′|p . (4.1)

It follows from Proposition 3.3 that um is non-zero for m > c2. Put

γ = 1 − 1/
√

2.

Then γN exceeds both c1 and c2 for N > c3. For each positive integer N with N > c3, 
put

S = S(N) :=
∏

γN<n≤N

un.

Our proof proceeds by a comparison of estimates for S.
By Proposition 3.3, there exists c4 such that

|S| ≥
∏

γN<n≤N

|α|n−c4 log n

and so

|S| ≥ |α|
(1−γ2)N2

2 −c5N log N
. (4.2)

Plainly,

|S| =
∏
p|S

|S|−1
p .
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We first estimate |S|−1
p for primes p which divide αβ. By (4.1), we have

|S|−1
p ≤ |a′b′|−N

p .

We shall now estimate |S|−1
p for primes p which divide S but do not divide αβ. For 

each such prime p, we let n(p) be the smallest integer with γN < n(p) ≤ N for which
∣∣un(p)

∣∣
p
≤ |un|p for γN < n ≤ N.

For positive integers m and r with m ≥ r,

um − βrum−r = a′αm−rtr, (4.3)

with tr as in (2.4).
Let | |p denote an extension of | |p from Q to Q(α). For each integer r with 1 ≤ r <

n(p) − γN ,

|a′b′tr|p ≤ |a′tr|p = |a′αn(p)−rtr|p

and, by (4.3) with m = n(p),

|a′αn(p)−rtr|p ≤ max(|un(p)|p, |βrun(p)−r|p).

Since |β|p = 1,

max(|un(p)|p, |βrun(p)−r|p) = max(|un(p)|p, |un(p)−r|p) = |un(p)−r|p,

and we deduce that

|a′b′tr|p ≤ |un(p)−r|p

for 1 ≤ r < n(p) − γN . Hence,
∣∣∣∣∣∣

∏
γN<n<n(p)

un

∣∣∣∣∣∣
p

≥
∏

1≤r<n(p)−γN

(
|tr|p |a′b′|p

)
.

Letting � = �(p) be the smallest integer for which p|t�, we have by Proposition 3.1
and Proposition 3.2 that if p > 2,

∏
1≤r<n(p)−γN

|tr|p = |t�|s1p |s1!|p ,

where s1 =
⌊
n(p)−γN

⌋
, while for p = 2,
�
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∏
1≤r<n(2)−γN

|tr|2 = |t�|s12
∣∣∣∣ t2�t�

∣∣∣∣
s2

2
|s2!|2 ,

with s2 =
⌊
n(2)−γN

2�

⌋
.

Next, on setting m −r = n(p) and letting r run over those integers such that n(p) +r ≤
N , we find that for p > 2

∏
n(p)<n≤N

|un|p ≥ |t�|s3p |s3!|p |a′b′|
N−n(p)
p ,

while for p = 2,

∏
n(2)<n≤N

|un|2 ≥ |t�|s42
∣∣∣∣ t2�t�

∣∣∣∣
s4

2
|s4!|2 |a′b′|

N−n(2)
p ,

where

s3 =
⌊
N − n(p)

�

⌋
and s4 =

⌊
N − n(2)

2�

⌋
.

Putting all this together gives, for p > 2,

|S|−1
p ≤ |t�|−s

p |s!|−1
p |a′b′|−N

p

∣∣un(p)
∣∣−1
p

where s =
⌊
N−γN

�

⌋
. As |t�|−1

p ≤ |t�| ≤ 2 |α|�, we find that

|S|−1
p ≤ 2

N
�(p) |α|N−γN |N !|−1

p |a′b′|−N
p

∣∣un(p)
∣∣−1
p

for p > 2. For p = 2 we similarly have

|S|−1
2 ≤ 4

N
�(2) |α|2(N−γN) |N !|−1

2 |a′b′|−N
2

∣∣un(2)
∣∣−1
2 .

Putting T = ω(S), we may suppose T < N for otherwise we are done. Inserting the 
above estimates, we obtain

S =
∏
p|S

|S|−1
p ≤

⎛
⎝∏

p|S
4

N
�(p)

⎞
⎠ |α|(N−γN)(T+1)

N ! |a′b′|N
∏
p|S

∣∣un(p)
∣∣−1
p

. (4.4)

We need to estimate the right hand side and compare it with (4.2). Note that
∏
p|S

4
N

�(p) ≤
∏
p|S

4N ·
∏
p|S

4
N

�(p)
p<T/ log T p>T/ log T
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≤ 4NT/ log T ·
∏
p|S

p>T/ log T

4
N

�(p) .

However, by Proposition 3.1,

�(p) ≥ log p− log 2
log |α| >

log T − log log T − log 2
log |α| .

As |α| ≥
√

2, we deduce

∏
p|S

4
N

�(p) < ec8N
2/ log N .

Inserting this in inequality (4.4) and using N ! ≤ NN , we get

∏
p|S

|S|−1
p < ec9N

2/ log N |α|N(1−γ)T ∏
p|S

∣∣un(p)
∣∣−1
p

.

For each n, we have |un| ≤ (|a| + |b|) |α|n, since |α| ≥ |β|. Put

K := {n(p) : p|S} .

Then, |K| ≤ T . Thus,

∏
p|S

∣∣un(p)
∣∣−1
p

≤
∏
k∈K

|uk| ≤
∏
k∈K

(|a| + |b|) |α|k ≤ (|a| + |b|)T |α|NT−T (T−1)
2 .

Putting everything together, we get

∏
p|S

|S|−1
p ≤ ec10N

2/ log N |α|(2−γ)NT−T2
2 ,

and as |α| ≥
√

2, we get from (4.2)

|α|
N2(1−γ2)

2 < ec11N
2/ log N |α|(2−γ)NT−T2

2 .

Therefore T > (1 − 1/
√

2 − ε)N for N > c12 since the roots of the quadratic x2 − (4 −
2γ)x + 1 − γ2 are γ and γ + 2

√
2.
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5. The proof of Theorem 1.3

Let {tn}∞n=1 be a non-degenerate Lucas sequence with n-th term given by (2.4). We 
may assume, without loss of generality, that α+β and αβ are coprime. A primitive divisor 
of tn is a prime p which divides tn but does not divide (α−β)2t2 · · · tn−1. In [24], Stewart 
showed that there are only finitely many Lucas sequences, with α+β and αβ coprime, for 
which tn does not possess a primitive divisor when n > 4 and n �= 6, and these sequences 
may be explicitly determined. It then follows that the number of distinct prime factors of ∏N

n=1 tn is at least N −5 whenever {tn}∞n=1 is not an exceptional sequence. Bilu, Hanrot 
and Voutier [1] determined the complete list of exceptional sequences, and by examining 
the list we see that whenever {tn}∞n=1 is a non-degenerate Lucas sequence,

ω

(
N∏

n=1
tn

)
≥ N − 9,

with equality holding when tn satisfies

tn = tn−1 − 2tn−2 for n = 2, 3, ...

and N = 30, 31, 32, 33 or 34.

6. Proof of Theorem 1.1

First, notice that the set of interest

Sx =
{
p ≤ x prime : b mod p ∈ 〈a mod p〉 ⊂ F∗

p

}
can be expressed as

Sx = {p ≤ x prime : p|(an − b) for some n}.

Suppose that p divides an − b with n ≤
⌊

log x
log a

⌋
=: N . Then, p ≤ an − b < an ≤ x.

Therefore, it is clear that

#Sx 	 #{p prime : p|(an − b) for some n ≤ N}.

Consider the binary recurrence sequence given by un = an − b (here α, β, a and b in 
(2.1) are respectively a, 1, 1 and b). Then, by Theorem 1.2,

# {p : p|an − b for some n ≤ N} 	 N

for N =
⌊

log x
log|a|

⌋
, and so

# {p ≤ x : p|an − b for some n} 	 log x.
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7. Theorem 1.5 via the greatest prime factor of terms of recurrence sequences

The first proof uses the following result by Stewart about the growth of the largest 
prime divisor in a type of recurrence sequence.

For any integer n let P (n) denote the greatest prime factor of n with the convention 
that P (0) = P (1) = P (−1).

Theorem 7.1 (Stewart [26]). Let un, as in (2.1), be the n-th term of a non-degenerate 
binary recurrence sequence. There exists a positive number C, which is effectively com-
putable in terms of a, b, α and β, such that, for n > C,

P (un) >
√
n exp(logn/104 log log n).

We actually need a special case of this result. Note that for α = 1, x = a, β = b and 
y = 1, the above theorem yields

P (an − b) 	a,b

√
n exp(log n/104 log log n).

This is what we will be using.

Proof of Theorem 1.5. We will prove the theorem for the case a, b > 0 for simplicity. 
The proof can be easily adapted to the general case. See the remark for more details. 
Again, let

Sx =
{
p ≤ x prime : b mod p ∈ 〈a mod p〉 ⊂ F∗

p

}
.

Using the same argument as in section 6, we have

#Sx 	 #{p prime : p|(an − b) for some n ≤ N},

for N :=
⌊

log x
log a

⌋
.

Consider the sequence ξn = an − b for N − y ≤ n ≤ N where y is a parameter to be 
chosen later. As noted above, p|ξn in this range implies p ≤ x. Now consider P (an − b), 
the largest prime factor of an − b, for each of those n. Those yield y primes, albeit a 
priori not necessarily distinct.

Suppose that for some m and n with N − y ≤ m < n ≤ N , we have

P (an − b) = P (am − b) =: q.

Then, an ≡ b mod q and am ≡ b mod q, so

anm ≡ bn ≡ bm mod q,

meaning that q divides bn − bm.
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From Theorem 7.1, we know that q exceeds b for x large enough, and so q does not 
divide b. We conclude that q|(bn−m−1). In particular, we have that q ≤ bn−m−1 < bn−m. 

However, n −m ≤ y, and so choosing y =
log
(
C1

√
N
)

log b yields

P (an − b) = q < bn−m ≤ C1
√
N,

which is a contradiction to Theorem 7.1 for properly chosen C1.
We therefore have y distinct primes in the set Sx, where

y = log log x
2 log b + C ′ 	 log log x. �

8. Theorem 1.5 via Thue equations

The second proof of Theorem 1.5 uses a result on Thue equations. Recall that a Thue 
equation is an equation of the form

F (x, y) = h,

where F (x, y) = a0x
r + a1x

r−1y + · · · + ary
r is an integral binary form of degree at 

least 3. We have the following result for the number of solutions to such an equation.

Theorem 8.1 (Bombieri, Schmidt [3]). Let F (x, y) be an irreducible binary form of degree 
r ≥ 3 with rational integral coefficients. The number of primitive solutions of the equation

|F (x, y)| = h

does not exceed

c1r
t+1,

where c1 is an absolute constant and t is the number of distinct prime factors of h.

We now proceed with our second proof of Theorem 1.5. For this particular proof, we 
require the extra condition that a and b are coprime. However, this condition is not too 
restrictive and we believe the proof to still have its merits.

Proof of Theorem 1.5. Suppose that (a, b) = 1. As in the previous proof, notice that

Sx = {p ≤ x prime : p|(an − b) for some n}.

Fix x. Then, again,

#Sx 	 #{p prime : p|(an − b) for some n ≤ N} (8.1)
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where N :=
⌊

log x
log a

⌋
. Denote by k the quantity on the right hand side of (8.1).

Since there are at most k primes dividing the numbers an − b with n varying, we can 
write

an − b = p
α1(n)
1 p

α2(n)
2 · · · pαk(n)

k

with pi distinct primes, and αi(n) = ordpi
(an − b).

For every fixed n, we have

aδa3j − pε11 · · · pεkk p3j1
1 · · · p3jk

k = b

where δ and εi are the residue of n and αi(n) modulo 3 respectively (δ, εi ∈ {0, 1, 2}). 
We obtain the equation

aδ
(
aj
)3 − (pε11 · · · pεkk )

(
pj11 · · · pjkk

)3
= b.

As n varies, we obtain at most 3k+1 different equations of the form

aδX3 − (pε11 · · · pεkk )Y 3 = b.

The binary form on the left hand side is irreducible unless δ = 0 and all εi = 0. This 
last case is easily dismissed because, by (2.2), |Sx| goes to infinity in x, and therefore 
so does Y . However, X3 − Y 3 = b implies that both X − Y and X2 + XY + Y 2 divide 
b. However, since b is fixed, this implies that there are only finitely many choices for X
and Y , which is a contradiction.

Also, every single n ≤ N gives a different solution to one of those equations. All 
the solutions are primitive since (a, b) = 1. Therefore, one equation has at least N

3k+1

solutions.
Let C = c131+t, where t is the number of prime factors of b, and c1 is the constant 

appearing in Theorem 8.1. Then, N
3k+1 > C would be a contradiction to Theorem 8.1, 

and so we have that

N

3k+1 ≤ C,

that is N � 3k and so logN � k. Recall from the definition of N that N 	 log x, hence

log log x �a,b k,

which completes the proof. It is worth noting that the dependence on a and b can easily 
be made explicit as

k 	 log log x− log log a− ω(b),
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where ω(b) denotes the number of distinct prime factors of b, and the implicit constant 
is absolute. �
9. Theorem 1.5 via Mumford’s gap principle

This proof uses Mumford’s theorem about counting points on curves using a height 
function.

Theorem 9.1 (Mumford [9], [16]). Let C/K be a curve of genus g ≥ 2 defined over a 
number field. Then, there is a constant c depending on C/K and the height function H
used, such that

#{P ∈ C(K) : H(P ) ≤ T} ≤ c log log T

for all T ≥ ee, where H is a fixed multiplicative height function on C.

It is important to note that we can make the constant c in Theorem 9.1 depend only 
on the field K. As such, we can apply the theorem to quadratic twists of the same curve 
with the same constant for each of them. See [11, Lemma 5] for a proof of this fact.

Proof of Theorem 1.5. The general idea of this proof is similar to that of section 8. As 
before,

#Sx 	 #{p prime : p|(an − b) for some n ≤ N} (9.1)

where N :=
⌊

log x
log a

⌋
. Denote by k the quantity on the right hand side of (9.1).

Again, write

an − b = p
α1(n)
1 p

α2(n)
2 · · · pαk(n)

k

with pi distinct primes, and αi(n) = ordpi
(an − b). This time, we consider only the n

divisible by 5, and write

a5j − pε11 · · · pεkk p2j1
1 · · · p2jk

k = b,

where εi are the residue of αi(n) modulo 2, so we obtain the equation

(pε11 · · · pεkk )
(
pj11 · · · pjkk

)2
=
(
aj
)5 − b.

Now, consider the curve given by the equation

Cb : Y 2 = X5 − b.
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We know this to be a hyperelliptic curve over Q, and thus a curve of genus g ≥ 2. Also, 
if we let Dn = pε11 · · · pεkk , we can consider the quadratic twist

Cb,Dn
: DnY

2 = X5 − b.

However, any point (x, y) on this new curve would give

Dny
2 = x5 − b

(
√

Dny)2 = x5 − b,

and so simply amounts to a point on Cb

(
Q
(√

Dn

))
.

From above, we see that every n ≡ 0 mod 5 gives a solution to the curve Cb,Dn
. Since 

the X coordinate of those points are distinct, it is clear that the points are distinct. As 
n varies over multiples of 5 between 0 and N , we get 

⌊
N
5
⌋

distinct solutions to at most 
2k different curves. It follows that one of these curves has at least N

5·2k solutions.
Consider the “naïve” multiplicative height function on Cb,Dn

given by H (P ) =
max{|x| , |d|}, where P =

(
x
d2 ,

y
d3

)
with x, y and d integers, and (x, d) = (y, d) = 1.

Then, note that all the solutions produced above for the curves Cb,Dn
have height at 

most aN . We then apply Mumford’s theorem with this height function to conclude that

#
{
P ∈ Cb,Dn

(Q) : H(P ) ≤ aN
}
≤ c log log aN .

By the previous comment on quadratic twists,

#
{
P ∈ Cb

(
Q

(√
Dn

))
: H(P ) ≤ aN

}
≤ c log log aN .

Note that our previous comment about the independence of the constant on the field in 
Mumford’s theorem allows us to have the constant c here be independent of n. Hence, 
by the above

N

5 · 2k ≤ c log log aN ,

and therefore k 	 logN 	 log log x. �
We want to point out that even if all three proofs give bounds of the same order 

of magnitude with respect to x, the dependence of the implied constants on a and b
vary for each approach. For example, the proof in section 8 reduces the dependence on 
b dramatically. Note also that the dependence on b of the implicit constant in section 9
is harder to make explicit as the constant given from Mumford’s theorem depends on b. 
However, we see that the proof of section 8 requires an extra condition on a and b to use 
Theorem 8.1, albeit a mild one.

In any case, as all three proofs use ideas fundamentally different from each other, we 
believe that they are of independent interest.
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10. Second order recurrence sequences

In [15], Moree and Stevenhagen actually consider the two-variable problem with a
and b rational numbers (and then disregard the finitely many primes dividing their 
numerators or denominators). Here, for clarity, we restricted our attention to integers. 
However, it is not very hard to retrieve our results in the case where a and b are rational 
numbers.

Write a = a1
a2

and b = b1
b2

with gcd(a1, a2) = gcd(b1, b2) = 1. Then, the set of primes 
we are interested in counting,

Sx =
{
p ≤ x prime : b mod p ∈ 〈a mod p〉 ⊂ F∗

p

}
,

can be written as

Sx = {p ≤ x prime : p|(b2an1 − b1a
n
2 ) for some n}.

The sequence (b2an1 − b1a
n
2 ) is a linear recurrence sequence of order 2 and so we may 

again apply Theorem 7.1.
For the proof of section 9, it is also easy to generalize the argument. Indeed, following 

the same notation, we can write for n ≡ 0 mod 10

b2a
n
1 − b1a

n
2 = p2j1+ε1

1 · · · p2jk+εk
k

(pε11 · · · pεkk )
(
pj11 · · · pjkk

a
n/2
1

)2

= b2

(
a
n/5
1

a
n/5
2

)5

− b1,

which gives the rational solution 
(

a
n/5
1

a
n/5
2

,
p
j1
1 ···pjk

k

a
n/2
1

)
to the hyperelliptic curve DnY

2 =

b2X
5 − b1. Since Mumford’s theorem considers any rational solutions, and since the 

height of these solutions is again at most max{
∣∣aN1 ∣∣ , ∣∣aN2 ∣∣} ∼ x, the rest of the proof 

goes through unchanged.
The proof in section 8 is trickier to generalize. Indeed, the result from Bombieri and 

Schmidt we use considers only integral solutions to the Thue equation. However, similarly 
to what we did above, we need here a bound on the number of S-integer solutions to the 
Thue equation. This is given by Evertse in [5].

Theorem 10.1 (Evertse, [5]). Let F (X, Y ) be an irreducible binary form of degree n ≥ 3, 
and let {p1, . . . , pt} be a (possibly empty) set of distinct prime numbers. Then, the equa-
tion

|F (x, y)| = pk1
1 · · · pkt

t

has at most
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2 × 7n
3(2t+3)

solutions (x, y, k1, . . . , kt) ∈ Zt+2 with (x, y) = 1.

Therefore, for a = r/s and b = u/v rational numbers, we get the equation

vrδ
(
rj
)3 − (vpε11 · · · pεkk )

(
pj11 · · · pjkk

)3
= s3j+δu.

We can therefore apply the above theorem and follow the same argument as before.

11. Proof of Theorem 1.6

This proof mainly relies on the following theorem of Gupta and Murty.

Theorem 11.1 (Gupta, Murty [7]). Fix a, b coprime integers. There exists a constant 
c > 0 such that

#
{
p ≤ x prime : p− 1 = 2P2(x) and

(
a

p

)
=
(
b

p

)
= −1

}
≥ cx

(log x)2 ,

where P2(x) is the set of numbers n that can be written either as n = q1 or as n = q1q2, 
in both cases with q1 and q2 primes such that x1/4+ε < q1 < q2.

Proof of Theorem 1.6. We start by considering only the primes in the set

Tx =
{
p ≤ x prime : p− 1 ∈ 2P2(x) and

(
a

p

)
=
(
b

p

)
= −1

}
,

and ask how many of them are also in our set of interest

S′
x =

{
p ≤ x prime : b mod p ∈ 〈a mod p〉 or 〈b mod p〉 = F∗

p

}
.

Let p ∈ Tx, and let fp(a) and fp(b) denote the order of a and b respectively in F×
p . 

Since by assumption both a and b are not squares modulo p, it follows that 2 divides 
fp(a) and fp(b). From the definition of Tx, either p − 1 = 2q1 or p − 1 = 2q1q2 with q1, q2
primes, and x1/4+ε < q1 < q2.

Case 1 Suppose p − 1 = 2q1. Since fp(a) �= 2, then fp(a) = 2q1 and so a is a primitive 
root for F×

p . p is therefore trivially in S′
x.

Case 2 Suppose p − 1 = 2q1q2. There are three possibilities.
Case 2.1 fp(a) = 2q1q2. Then, a is a primitive root modulo p.
Case 2.2 fp(a) = 2q2.
Case 2.3 fp(a) = 2q1. We now show that this case does not happen too often. Here, 

clearly, x1/4+ε < q1 <
√
x. We then count the number of p ∈ Tx that produce this 

situation. We do so by splitting the range of the possible q1.
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Case 2.3a Suppose that x1/4+ε < q1 <
√
x

log x . Since fp(a) = 2q1, p divides a2q1 −1, and 
the number of such primes when ranging over possible q1 is

�
∑

x1/4+ε<q1<
√
x/ log x

2q1
log x � x

(log x)3 ,

where we use that ω(n) � log n/ log logn. This is a result due to Ramanujan. In fact, 
he proves [19] that

ω(n) ≤ log n
log log n + O

(
log n

(log logn)2

)
.

Case 2.3b Suppose that 
√
x

log x ≤ q1 <
√
x. Since p − 1 = 2q1q2, then we know that 

p−1
2q1 has no small prime factor (in particular is equal to q2). By a theorem of Bombieri, 
Friedlander and Iwaniec [2], we know that for fixed q1 <

√
x,

#
{
p ≤ x prime : p− 1

2q1
has no small prime factors

}
� x

q1(log x)2 .

Thus, summing over all possible q1 in the range, we get that the number of primes p
that contribute to this case is

� x

(log x)2
∑

√
x

log x≤q1<
√
x

1
q1

.

Since we know that 
∑

p<x
1
p = log log x + c + O

(
1

log x

)
, we get

∑
√

x
log x≤q1<

√
x

1
q1

= log log
√
x− log log

√
x

log x + O

(
1

log x

)

= log
( 1

2 log x
1
2 log x− log log x

)
O

(
1

log x

)

= − log
(

1 − 2 log log x
log x

)
+ O

(
1

log x

)
.

For x large enough, 2 log log x
log x is small, and for small y, − log(1 − y) ∼ y. We then get

∑
√

x
log x≤q1<

√
x

1
q1

� log log x
log x .

Therefore,
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x

(log x)2
∑

√
x

log x≤q1<
√
x

1
q1

� x log log x
(log x)3 .

From the bounds we get in cases 2.3a and 2.3b, we conclude that the number of primes 
p in Tx yielding the case 2.3 is negligible compared to the total number of primes in Tx, 
which is at least cx

(log x)2 . We thus have that

|{p ∈ Tx : a is a primitive root mod p or fp(a) = 2q2}| 	
x

(log x)2 .

We can repeat the whole argument for b instead of a with Tx replaced with the set above. 
We then get

∣∣∣∣∣
{
p ≤ x prime : a is a primitive root mod p or fp(a) = 2q2 and

b is a primitive root mod p or fp(b) = 2q2

}∣∣∣∣∣	 x

(log x)2 .

Now, if either a or b is a primitive root modulo p, then p ∈ S′
x. Also, if fp(a) = fp(b) =

2q2, then 〈b〉 = 〈a〉 and so p ∈ S′
x as well.

We thus conclude that |S′
x| 	 x

(log x)2 as desired. �
12. Concluding remarks

The original Artin conjecture was proved conditionally on the generalized Riemann 
hypothesis by Hooley ([10]). The two-variable Artin conjecture was also proved condition-
ally on the generalized Riemann hypothesis by Moree and Stevenhagen ([15]). However, 
Theorem 1.6 suggests that we might not need the generalized Riemann hypothesis to 
show that at least one of them is true.
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