
Remark. Admittedly, these two suggestions for evaluating the infinite series might,
for some readers, not qualify as proof. For the sceptical reader we recommend the exer-
cise of evaluating the infinite series as a partial fraction expansion. In fact, by analogy
with the elementary, real analysis derivation of

∑∞
k=−∞ 1/(k π + x)2 = 1/ sin2 x pre-

sented in [3, p. 198], we get

∞∑
k=−∞

ε

ε2 + (k π + x)2
← 1

n

n/2−1∑
k=−n/2

sinh(2ε/n)/2

sinh2(ε/n) + sin2((k π + x)/n)

= sinh(2ε)/2

sinh2 ε + sin2 x

as n = 2ν → ∞. Here, the identity follows recursively from the simple case ν = 1. A
little endurance in massaging the hyperbolic and trigonometric functions helps us to
conclude the proof with the identity

1

1 + η2
· sinh(2ε)/2

sinh2 ε + sin2(arctan η)
= tanh ε

tanh2 ε + η2
.
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Pick’s Theorem via Minkowski’s Theorem
M. Ram Murty and Nithum Thain

In 1899, Georg Alexander Pick published one of his most beautiful theorems [12]. This
theorem provided a formula for easily calculating the area of a planar polygon P whose
vertices have integer coordinates. Such a polygon is called a lattice polygon, since the

732 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 114



points in the plane with integer coordinates are sometimes called lattice points. In fact,
Pick’s theorem states that if I is the number of lattice points in the interior of P and B
is the number of lattice points on its boundary, then the area A of P is given by

A = I + B

2
− 1.

The beauty of this formula stems from its simplicity and depth. It has been successfully
explained to twelve-year-olds, and yet mathematicians are still researching some of its
consequences today.

Pick was born into a Jewish family in Vienna on August 10, 1859. He received
his Ph.D. from the University of Vienna under the supervision of Leo Koenigsberger
in 1880. He spent most of his working life at the University of Prague, where his
colleagues and students praised his excellence at both research and teaching. In 1910,
Albert Einstein applied to become a professor of theoretical physics at the University
of Prague. Pick found himself on the appointments committee and was the driving
force in getting Einstein accepted. For the brief period that Einstein was at Prague, he
and Pick were the closest friends. They were both talented violinists and frequently
played together. In 1929, Pick retired and moved back to his hometown of Vienna.
Nine years later, Austria was annexed by Germany. In an attempt to escape the Nazi
regime, Pick returned to Prague. However, on July 13, 1942, he was captured and
transported to the Theresienstadt concentration camp. He passed away there thirteen
days later, at the age of 82 [8].

Pick’s formula first came to popular attention in 1969 (seventy years after Pick
published it) in Steinhaus’s book Mathematical Snapshots [15]. Since then, mathe-
maticians have come up with a variety of different proofs using tools ranging from
Euler’s formula to the Weierstrass ℘-function [1], [2], [4], [9], [16]. We have also
seen important connections between this formula (and its generalization) and ideas in
combinatorics, algebraic geometry, and complex analysis [2], [4].

In this note, we present a new proof of Pick’s theorem via Minkowski’s convex
body theorem. We begin by reviewing Minkowski’s theorem for the benefit of the
reader (see [10] or [11, p. 76] giving Siegel’s proof of it). Recall that a region R is an
open, connected set; R is a symmetric region if x in R implies that −x is in R.

Theorem (Minkowski’s Convex Body Theorem). A bounded, symmetric, convex re-
gion C in R

n with volume greater than 2n contains at least one nonzero lattice point.

Proof. We first define a function ϕ on R
n by ϕ(x) = 1 if x belongs to C/2 = {y/2 :

y ∈ C} and ϕ(x) = 0 otherwise. We then set

�(x) =
∑
λ∈Zn

ϕ(x + λ).

The function � is bounded and integrable, so
∫

[0,1]n
�(x)dx =

∫
[0,1]n

∑
λ∈Zn

ϕ(x + λ) dx =
∫

Rn
ϕ(x) dx

= vol

(
C

2

)
= vol(C)

2n
> 1.

Since � is integer-valued, we must have �(x) ≥ 2 for some x . In other words, there
are two distinct points P + λ1 and P + λ2 in C/2 that differ by a lattice point. Call
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these points P1/2 and P2/2 (so (P1 − P2)/2 is a lattice point). Then P1 and P2 are in
C , and by symmetry and convexity, (P1 − P2)/2 is also in C . Thus (P1 − P2)/2 is a
nonzero lattice point in C .

To avoid confusion later, it is appropriate to fix some definitions at this point. By
a polygon in the plane, we mean a compact subset of R

2 whose boundary consists
of a finite number of straight line segments that form a single non-self-intersecting
cycle. A convex polygon is a polygon such that for any two points in the polygon the
line segment connecting them also lies entirely in the polygon. If P1 and P2 are two
polygons in the plane that share portions of their boundaries but are otherwise disjoint
and if P = P1 ∪ P2, then we say that P can be decomposed into P1 and P2. We have
indicated earlier what a lattice polygon is.

In trying to prove Pick’s theorem, we will need to “triangulate” a convex lattice
polygon. To do so, we take any vertex and connect it to all other vertices by straight
line segments (some of which may already be edges of the polygon). In this way, we
decompose the polygon into triangles. Furthermore, any lattice point in the interior of
such a triangle T can be joined to the vertices of the triangle, while any lattice point
on an edge of T can be joined to the opposite vertex. In this way we can decompose
a lattice polygon into the union of lattice triangles that contain no lattice points apart
from vertices. We call such a triangle an elementary triangle.

We now use Minkowski’s theorem to prove Pick’s theorem for the case of elemen-
tary triangles. The key to this proof is constructing a bounded, symmetric, convex
figure with no nonzero lattice points out of eight copies of a given elementary triangle.

Lemma. Every elementary triangle has area 1/2.

Proof. Let 
ABC be an elementary triangle. Rotate this triangle by 180 degrees
around the vertex A, and call the new triangle obtained in this way 
A1 B1C1 (where
B1 is the image of B, and so on). We can translate this new triangle by a lattice point
so that side B1C1 attaches to side C B of the old triangle. Note that both the rotation
and translation are invertible transformations that send lattice points to lattice points.
Since the only lattice points in 
ABC were the vertices, there will be no lattice points
in the interior of this new figure.

If we repeat the foregoing procedure for vertices B and C we end up with a triangle
(call it P). We notice that the there are no lattice points in the interior of P . Now, if we
rotate P by 180 degrees about B and attach this to our original P , then the resulting
figure is a bounded, symmetric, convex figure (Figure 1).

A

BC

Figure 1.

The only lattice point in the interior of this figure is B, which we may take to be the
origin. By Minkowski’s theorem, this figure has area no larger than 4. The area of this
figure is eight times the area of 
ABC , so 
ABC has area at most 1/2.
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Now let (x1, y1), (x2, y2), and (x3, y3) be the coordinates of A, B, and C , respec-
tively. Then the area of 
ABC is the absolute value of

1

2

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ .

Because the determinant here is a nonzero integer, this expression is always at least
1/2.

We can now prove Pick’s theorem in general, by showing that the formula
I + B/2 − 1 is additive and decomposing a general polygon into elementary triangles.

Theorem (Pick’s Theorem). Suppose that P is a convex lattice polygon. If B is the
number of lattice points on the boundary of P (including vertices) and I is the number
of lattice points in the interior of P, then the area of P is given by the expression
I + B/2 − 1.

Proof. The lemma establishes that every elementary triangle satisfies this formula.
Now suppose that the lattice polygon can be decomposed into two lattice polgyons P1

and P2 for which the Pick formula holds. We show that P must satisfy this formula as
well. Let IX and BX signify the number of lattice points in the interior and boundary,
respectively, of a planar compact set X . Note that

IP = IP1 + IP2 + D − 2,

where D is the number of points on the common boundary of P1 and P2. Also,

BP = BP1 + BP2 − 2D + 2.

From this it follows that

IP + BP

2
− 1 = IP1 + BP1

2
− 1 + IP2 + BP2

2
− 1

= area of P1 + area of P2 = area of P.

Since any lattice polygon can be decomposed into elementary triangles, the proof is
complete.

Minkowski’s theorem is true for spaces of any dimension, and this leads us to hope
that we might be able to generalize Pick’s theorem to higher dimensions. However,
there is no simple generalization of Pick’s theorem even to three dimensions. To see
this, notice that the tetrahedron with vertices (0, 0, 0), (1, 0, 0), (1, 1, 0), and (0, 1, r)

is an elementary tetrahedron for all positive integers r but has volume r/6. Thus, we
cannot write down a formula for the volume of a polyhedron in terms of integer lattice
points.

J. E. Reeve was able to generalize Pick’s theorem to three dimensions with the help
of auxiliary lattices [13]. One such auxilliary lattice is the lattice of points (a, b, c) in
R

3 such that (2a, 2b, 2c) is in Z
3. Reeve was able to calculate the volume of a lattice

polyhedron by counting the number of integer lattice points and auxilliary lattice points
in the interior and boundary of that polyhedron.
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Generalizations to even higher dimensions are possible by way of so-called Ehrhart
polynomials [6], [7], [14]. If P is a d-dimensional polytope in R

d , then define FP(n) =
#{lattice points in n P}. It is a theorem of Ehrhart that FP(n) = ad nd + ad−1nd−1 +
· · · + a0 is a polynomial in n of degree d, called the Ehrhart polynomial of P . Ehrhart
was also able to determine some of the coefficients of this polynomial. He proved
that ad = vol(P) is the volume of P , ad−1 = (1/2)vol(δP) is half the surface area of
P normalized with respect to the sublattice on each facet of P , and a0 is the Euler
characteristic of P . Note that in the case of a two-dimensional polytope in R

2, we
can retrieve Pick’s formula by evaluating FP(1) = vol(P) + B/2 + 1 and noting that
FP(1) = I + B in the notation of the paper. The other coefficients of the polynomial
remained mysterious for some time. Recently, Morelli and others have been able to
link the other coefficients to Todd classes of toric varieties [3], [5].
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